How Developers Iterate on Machine Learning Workflows -- A Survey of the Applied Machine Learning Literature

Doris Xin¹, Litian Ma¹, Shuchen Song¹, Rong Ma², Aditya Parameswaran¹

¹ University of Illinois at Urbana-Champaign

² Peking University

Developing Machine Learning Applications is **Iterative**

Developing Machine Learning Applications is Interactive!

Creating systems to enhance interactivity requires *a statistical characterization of how developers iterate on ML workflows*.

Num. Iterations

How Do Developers Iterate on Machine Learning Workflows?

How Do Developers Iterate on Machine Learning Workflows?

Our approach: study iterations by collecting statistics from applied ML papers **grouped by application domains**.

- Data & Limitations
- Methodology
 - Statistics
 - Estimation
- Results
- Conclusion & Future Work

- Data & Limitations
- Methodology
 - Statistics
 - Estimation
- Results
- Conclusion & Future Work

Corpus: 105 Papers from 2016

Limitations

- Incomplete picture of iterations
 o Focus on ML and omit DPR
- Results presented side-by-side
 Can't determine the order
- # papers / domain is small
 - May lead to spurious results

Remedies

- Multiple surveyors to reduce chance of spurious results
- Iteration estimators that do not rely on order

• Data & Limitations

Methodology

- Statistics
- \circ Estimation
- Results
- Conclusion & Future Work

Collecting Statistics

Data Prep.		ML Model Class		ML Tuning			Evaluation Metrics					
norm.	impute		LSTM	SVM		Reg.	Learn. Rate		AUC		# tables	# figs

Open source dataset at https://github.com/helix-ml/AppliedMLSurvey

Estimating Iterations

	Data Prep.		ML Model Class		ML Tuning			Evaluation Metrics					
	norm.	impute		LSTM	SVM		Reg.	Learn. Rate		AUC		# tables	# figs
e												5	2

Aggregate

Number of data prep. iterations t_{DPR}

Number of ML iterations t_{LI}

Number of post proc. iterations t_{PPR}

- Data & Limitations
- Methodology
 - Statistics
 - Estimation

• <u>Results</u>

• Conclusion & Future Work

Mean Iteration Count by Domains

Data Preprocessing

Social Sciences	Natural Sciences	Web Apps	NLP	Computer Vision	
Join (31.0%)	Feat. Def. (40.6%)	Feat. Def. (36.1%)	Feat. Def. (32.1%)	Feat. Def. (37.5%)	
Feat. Def. (27.6%)	Univar. FS (18.8%)	Join (22.2%)	BOW (17.9%)	BOW (25.0%)	
Normalize (17.2%)	Normalize (12.5%)	Normalize (13.9%)	Join (14.3%)	Interaction (25.0%)	
Impute (6.9%)	PCA (9.4%)	Discretize (8.3%)	Normalize (10.7%)	Join (12.5%)	

- Feat. Def. = human defined features from raw attributes
 - e.g. adult=true if age >=18

ML Model Classes

Social Sciences	Natural Sciences	Web Apps	NLP	Computer Vision
GLM (36.0%)	SVM (32.7%)	GLM (37.0%)	RNN (32.4%)	CNN (38.2%)
SVM (28.0%)	GLM (15.4%)	SVM (11.1%)	GLM (14.7%)	SVM (17.6%)
RF (20.0%)	RF (13.5%)	RF (11.1%)	SVM (11.8%)	RNN (17.6%)
Decision Tree (12.0%)	DNN(13.5%)	Matrix Factor. (11.1%)	CNN (8.8%)	RF (5.9%)

- Generalized linear models: logistic regression, linear regressions, etc.
- SVMs are popular (especially in natural sciences!) possibly due to kernels
- **Deep learning** is only popular in NLP and computer vision so far

ML Model Tuning

Social Sciences	Natural Sciences	Web Apps	NLP	Computer Vision	
Regularize(40.0%)	Cross Val. (31.8%)	Regularize(41.2%)	Learn Rate(39.4%)	Learn Rate(46.2%)	
Cross Val. (30.0%)	Learn Rate(22.7%)	Learn Rate(23.5%)	Batch Size(24.2%)	Batch Size(30.8%)	
Learn Rate(10.0%)	DNN Arch.(18.2%)	Batch Size(11.8%)	DNN Arch.(18.2%)	DNN Arch.(11.5%)	
Batch Size(10.0%)	Kernel (9.1%)	Cross Val. (11.8%)	Kernel (6.1%)	Regularize(11.5%)	

• Learning Rate + Batch Size \rightarrow looking for faster training

Post Processing

Social Sciences	Natural Sciences	Web Apps	NLP	Computer Vision
Prec/Rec (25.7%)	Accuracy (28.6%)	Accuracy (20.8%)	Prec/Rec (29.2%)	Visualiz. (33.3%)
Accuracy (20.0%)	Prec/Rec(18.6%)	Prec/Rec (20.8%)	Accuracy(27.1%)	Accuracy (29.8%)
Feat. Contrib. (17.1%)	Visualiz. (15.7%)	Case Studies (13.2%)	Case Studies (14.6%)	Prec/Rec (17.5%)
Visualiz. (14.3%)	Correlation (11.4%)	DCG (9.4%)	Human Eval (8.3%)	Case Studies (12.3%)

- **Precision/Recall** & Accuracy \rightarrow coarse-grained evaluation
- Case Studies & Visualization \rightarrow fine-grained evaluation

Takeaways

- Study iteration using **empirical evidence** from applied ML papers
 - Grouping by domains gives better insights
- Lessons from results
 - **Data prep**: fine-grained feature engineering, efficient joins
 - **ML**: explainable models and fast training
 - **Eval**: fine-grained evals are as common as coarse-grained metrics
- Open source dataset at <u>https://github.com/helix-ml/AppliedMLSurvey</u>

Future Work

- Refine statistics and estimators
- Develop insights and trends into a benchmark
- Look at code repositories (e.g. Kaggle) for a more complete picture

- Address user needs discovered in our survey
- Selectively materialize intermediate results for reuse in future iterations

More on Helix in the technical report @ http://data-people.cs.illinois.edu/helix-tr.pdf

