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Some problems+solutions in 
information seeking

1. Underspecified,	uncertain	and	evolving	information	
need	
‣ interactive	on-line-learning	interfaces		

2.Context	bubble	
‣ exploration/exploitation	tradeoff	

3. Laziness	
• in	giving	relevance	feedback	
• in	pre-specifiying	filtering	criteria	

‣ no	pain,	no	gain	(but	maximize	gain/pain	by	
making	navigation	more	natural)
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Our solution in a nutshell

• Model	the	user’s	interests	on-line	
• Exploration-exploitation	tradeoff	when	suggesting	
new	

• Interactive	visualization	of	the	estimated	interests	
• for	the	user	to	navigate	
• for	the	system	to	collect	“feedback”
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Learning user intents/interests

Assume:	Interests	=	keywords	

Represent	i	th	keyword	by						,	where	the	jth	
dimension	is	1	if	keyword	i	occurs	in	document	j	
(“bag	of	documents”;	plus	tf-idf)	

Assume	relevance	feedback	is	a	linear	function,		

Exploration-exploitation:	Show	the	user	keywords	i	
with	the	highest	upper	confidence	bound	(LinRel,	
Auer	2002):	 7

vance vectors r̂future,l predicted into the future, called the future
relevance vectors. Each vector r̂future,l, l = 1, . . . , L, is a projec-
tion of the current search intent into the future in response to a set
of L feedback operations the user could potentially use.
The user provides relevance feedback to search intents by giving

relevance scores ri ∈ [0, 1] to a subset of J keywords ki, i =
1, . . . , J . Here ri = 1 denotes keyword ki is highly relevant to the
user and she would like to direct her search in that direction, and
ri = 0 denotes the keyword is of no interest to the user.
Estimating keyword relevances. Let each keyword ki be repre-

sented as a binary n×1 vector ki telling which of the n documents
the keyword appeared in. To boost significance of documents with
rare keywords, we convert the ki into the tf-idf representation.
We assume the relevance score ri of a keyword ki is a random

variable with expected value E[ri] = k
⊤
i w. The unknown weight

vector w determines the relevance of keywords and it is estimated
based on the relevance feedback given so far in the search session.
Estimating the weight vector. The algorithm maintains an es-

timate ŵ of the vector w which maps keyword features to rele-
vance scores. To estimate w for a given search iteration, we use
the LinRel algorithm [1]. In each search iteration, LinRel yields
an estimate ŵ. Let K be a matrix where each row k

⊤
i is a feature

representation of one of the keywords ki shown so far, and let the
column vector rfeedback = [r1, r2, . . . , rp]⊤ contain the p rele-
vance scores received so far from the user. LinRel estimates ŵ by
solving the linear regression r

feedback = Kw, and calculates an
estimated relevance score r̂i = k

⊤
i ŵ for each keyword ki.

Selecting keywords for presentation to the user. At each it-
eration the system might simply pick the keywords with highest
estimated relevance scores, but if ŵ is based on a small set of feed-
back, this exploitative choice could be suboptimal; or the system
could exploratively pick keywords where feedback would improve
accuracy of ŵ. To deal with the exploration-exploitation tradeoff
we select keywords not with the highest relevance score, but with
the largest upper confidence bound for the score. If σi is an up-
per bound on standard deviation of the relevance estimate r̂i, the
upper confidence bound of keyword ki is computed as r̂i + ασi,
where α > 0 is a constant used to adjust the confidence level of
the bound. Let rfeedback again denote the vector of all relevance
scores received from the user. In each iteration, LinRel computes
si = K(K⊤

K + λI)−1
ki where λ is a regularization parameter,

and the keywords ki that maximize s⊤i rfeedback + α
2 ∥si∥ are se-

lected for presentation; they represent the estimated current search
intent and are visualised in the inner grey circle of the Intent Radar
visualization (Figure 1). We use LinRel since it allows, at the same
time, to maximize relevance of intent estimates based on user in-
teractions and reduce system uncertainty about the relevant intents
that occurs because of limited and possibly suboptimal feedback.
Estimating alternative future intents. Our approach not only

estimates user’s current intents, but also suggests potential search
directions to the user. At each iteration, based on the current esti-
mated search intent (relevance vector r̂current over keywords), the
system estimates a set of alternative future search intents (future
estimates of the relevance vector). The future search intent is es-
timated for each of L alternative feedbacks l = 1, . . . , L; in each
feedback l, a pseudo-relevance feedback of 1 is given to the lth
keyword in the search intent visualization, the feedback is added to
the feedback from previous search iterations, and LinRel is used to
estimate the future relevance vector r̂future,l for keywords.
Each r̂

future,l provides the user a set of keywords she would
most likely be shown, if she decided to give positive feedback to
the lth currently shown keyword. Thus the user gets a view of L
potential search directions which can be explored in more detail.

Denote the current estimated search intent as r̂
current =

[r̂current
1 , . . . , r̂current

Nkeywords
]⊤, where r̂current

l is the estimated rel-
evance of the lth keyword. Future intents are estimated as the
Nkeywords × L matrix R̂future, where the element in row i, col-
umn l, is r̂future,li ∈ [0, 1], predicted relevance of the ith keyword
in the next search iteration according to the lth future intent.

2.3 Layout Optimization
We optimize a data-driven layout for the search intent and alter-

native future intents on the Intent Radar interface. We optimize lo-
cations of keywords in the inner circle (representing current intent)
and keywords in the outer circle (representing future intents) by
probabilistic modeling-based nonlinear dimensionality reduction.
Representation of the outer keywords. We lay out the future

potentially relevant keywords into the outer circle, based on their
potential future relevances. Consider the matrix R̂

future of pre-
dicted future keyword relevances across a set of future search in-
tents as discussed in Section 2.2. Each keyword ki in the outer
circle can be characterized by row i of R̂future, that is, by the row
vector r̃i = [r̂future,li , . . . , r̂future,Li ] where r̂future,li ∈ [0, 1] is
the estimated relevance of ki in the lth future search intent.
The norm ||r̃i|| represents overall predicted relevance of key-

word ki across future search intents; we use it as the radius of ki
on the radar. The vector r̄i = r̃i/||r̃i|| then tells which future
search intents make ki most relevant, that is, which direction of fu-
ture intent ki is associated with. We use a radial layout in which
keywords associated with similar future intents have similar angles.
Layout of keywords in the outer circle. Keywords ki and kj

in the outer circle can be called neighbors if their characterizations
r̄i, r̄j are similar: the keywords most similar to ki can be described
as a probabilistic neighbor distribution pi = {p(j|i)} where

p(j|i) = exp(−||r̄i − r̄j ||
2/σ2

i ) · (
∑

j′

exp(−||r̄i − r̄j′ ||
2/σ2

i ))
−1

and the σi are set as in [12]. On the display ki and kj appear similar
in the outer circle if they have close-by directions (angles) ai and
aj ; the keywords that appear most similar to ki in the outer circle
can then be described by neighbor distribution qi = {q(j|i)}where

q(j|i) = exp(−|ai − aj |
2/σ2

i ) ·
∑

j′

exp(−|ai − aj′ ||
2/σ2

i ))
−1 .

The task of the layout algorithm is to place keywords so that neigh-
boring keywords on the display have neighboring characterizations.
To do so, we measure the total Kullback-Leibler divergence DKL

between the neighborhoods of display locations versus characteri-
zations, as (

∑
s DKL(pi, qi) +

∑
s DKL(qi, pi))/2. The total di-

vergence is a function of the angles ai of the keywords in the outer
circle; we optimize the ai by gradient descent to minimize the to-
tal divergence. A similar approach was used to visualize fixed data
sets in [12]. This layout approach can be shown to correspond to
optimizing information retrieval of neighboring keywords from the
display layout (minimizing misses and false positives of such re-
trieval).
Highlighting of keywords in the outer circle. To highlight the

structure in the outer circle layout, we apply a simple agglomera-
tive clustering to angles ai of keywords in the outer circle. In detail,
start a cluster from the keyword with the smallest angle, and itera-
tively add the keyword with the next largest angle into the cluster as
long as the angle difference is below a treshold and the size of the
cluster is smaller than a specified percentage of all keywords in the
outer circle; when either condition fails start the next cluster. We
show clusters with different colors, and show for each cluster the
label of the predicted most relevant keyword (having largest ||r̃i||).
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∑
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The task of the layout algorithm is to place keywords so that neigh-
boring keywords on the display have neighboring characterizations.
To do so, we measure the total Kullback-Leibler divergence DKL
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trieval).
Highlighting of keywords in the outer circle. To highlight the
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start a cluster from the keyword with the smallest angle, and itera-
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cluster is smaller than a specified percentage of all keywords in the
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HIIT-Wide Focus Area
Interactive Intent Modelling
Visualization and interaction

User Experiments
Conclusions and call to arms

Unique Data

We have acquired and index roughly the whole scientific product of the
humanity, over 60.000.000 abstracts and related metadata, including
citation network, authors, forums, etc.

Data are pre-processed and can be used for research within HIIT.

T. Ruotsalo J. Peltonen D. G lowacka M.J. Eugster A. Reijonen K. Konyushkova K. Athukorala I. Kosunen G. Jacucci P. Myllymki S. Kaski and other researchersHIIT-wide Focus Area: Interactive Intent Modelling for Exploratory Search

Sample experiment in 
Information seeking

•60,000,000	scientific	abstracts	

•User’s	task:	Scientific	writing	scenario;	collect	
material	for	an	essay	on	a	given	topic	(semantic	

search	or	robotics)	

•Ground	truth:	Expert	evaluations	

•30	users
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Information seeking results
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Figure 2: Results of the user experiments divided according to the evaluation aspects: Quality of displayed information, Interaction
support for exploration, and Task performance.

received in response to interactions with the intent models, while
users bookmarked more obvious documents from the results they
obtained using typed queries.
Overall the results suggest that interactive intent modeling, in

particular the Intent Radar interface, which complements future
intent prediction with appropriate visualization, allowed users to
reach the novel documents that were harder to find with the Typed
Query system.

5. CONCLUSIONS
In this paper we introduced interactive intent modeling for di-

recting exploratory search and demonstrated its usefulness in task-
based user experiments. Our results show that interactive intent
modeling, in which visualization is used to allow uses to engage
with directing their search from initial expressions of their infor-
mation needs, can significantly improve users’ performance in ex-
ploratory search tasks. The improvements can be attributed to im-
proved quality of displayed information in response to user interac-
tions, better targeted interaction between the user and the system,
and improved support for directing search to achieve novel infor-
mation. Interaction with intent visualization does not replace the
query-typing interaction, but offers an additional complementary
way to express more specific intents to direct search towards novel,
but still relevant information. The improved quality of informa-
tion, in particular when displayed on the Intent Radar interface,
also transfers to improved task performance. Our findings suggest
that interactive intent modeling can significantly improve the effec-
tiveness of exploratory search.
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Interactive expert knowledge elicitation

Interactive system brings an expert to the loop	

	

	 Ex-vivo	drug	response



Prediction given “small n, large p”
• e.g.	prediction	of	drug	responses	based	on	high	dimensional	
patient	profiles.	

• 	Existing	ways	to	mitigate	“small	n,	large	p”	
• strong	informative	modelling	assumptions	
• collecting	more	data	
• expert	prior	elicitation



• Use	multi-armed	bandit	model	as	in	information	
discovery:	

• keywords	->	patient	features	
• relevance	for	retrieval	->	relevance	for	prediction	
of	treatment	effectiveness	

• Good:	explicitly	aims	at	balancing	between	
exploration	and	exploitation	

• Problem:	Does	not	directly	aim	at	maximizing	
prediction	accuracy

Approach 1: separate user model



Approach 2: Sequential 
experimental design

Formulate	knowledge	elicitation	as	a	probabilistic	
inference	process,	where	expert	knowledge	is	
sequentially	queried	to	improve	predictions.		



User interaction as inference
1. An	observation	model		

2. A	feedback	model	for	user’s	knowledge	
3. A	prior	model		

4. A	query	algorithm	that	facilitates	gathering		f	iteratively	from	the	user.	

5. Update	process	of	the	model	after	user	interaction.
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Case study: drug sensitivity 
predictions given genomic data
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Sparse regression with feedback 
observation model
• 	
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Sparse regression with feedback 
observation model

	



9.8.2017
20



• Formulate	choosing	of	the	query	as	a	sequential	
experimental	design	problem.	Aim	at	maximal	
expected	information	gain	about	predictions:

Query algorithm

9.8.2017
11

Sequential experimental design

• Maximizes	the	expected	information	gain	in	next	query

arg max
(/,8)

UVWX,Y|[\]^ _`a["(,c/|d-, efgh, >W/,8)||"(,c/|d-, efgh)]

j

-kh

• Posterior	predictive	before and	after feedback	on	how	
feature	l affects	the	response	to	drug	7

• Avoids	repeating	the	queries	by	restricting	maximization	to	
previously	unseen	pairs

à Selects	a	pair	of	feature	m and	drug	n



Computation
Problems:		
• No	closed	form	solution	is	available	for		

• Posterior	distribution	
• Predictive	distributions	
• Information	gain	maximization	

• High	dimensionality	
• Needs	to	be	fast	for	user	interaction

Solution:		
• Deterministic	posterior	approximations:	

• Expectation	propagation	to	approximate	the	spike-and-slab	
prior	and	the	feedback	models	(Minka	2011,	Hernández-Lobato	2015)	

• Variational	Bayes	to	approximate	the	residual	variance	

• Partial/single-step	EP	updates	for	candidate	evaluation	
(Seeger	2008)



Simulations - synthetic data (1/2)
• 10	training	data,	100	features	(10	relevant,	90	zeros).



Simulations - synthetic data (2/2)
• 10	training	data,	10	relevant	features.	

• Increasing	dimensionality	(hence	also	increasing	sparsity)
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Results –  
Sequential knowledge elicitation reduces the 
number of queries required from the expert
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#	of	expert	feedbacks	on	(drug,feature)	pairs
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Abstract

Predicting the e�cacy of a drug for a given individual, using high-
dimensional genomic measurements, is at the core of precision medicine.
However, identifying features on which to base the predictions remains
a challenge, especially when the sample size is small. Incorporating ex-
pert knowledge o↵ers a promising alternative to improve a prediction
model, but collecting such knowledge is laborious to the expert if the
number of candidate features is very large. We introduce a probabilistic
model that can incorporate expert feedback about the impact of ge-
nomic measurements on the sensitivity of a cancer cell for a given drug.
We also present two methods to intelligently collect this feedback from
the expert, using experimental design and multi-armed bandit models.
In a multiple myeloma blood cancer data set (n=51), expert knowledge
decreased the prediction error by 8%. Furthermore, the intelligent ap-
proaches can be used to reduce the workload of feedback collection to
less than 30% on average compared to a naive approach.

1 Introduction

In genomics-based personalized or precision medicine, large-scale screenings
and sequencing produce thousands of genomic and molecular features for
each sample. However, the data sets are small: typically only hundreds, or
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Abstract Prediction in a small-sized sample with a large number of covariates, the “small n,
large p” problem, is challenging. This setting is encountered in multiple applications, such
as in precision medicine, where obtaining additional data can be extremely costly or even
impossible, and extensive research effort has recently been dedicated to finding principled
solutions for accurate prediction. However, a valuable source of additional information,
domain experts, has not yet been efficiently exploited. We formulate knowledge elicitation
generally as a probabilistic inference process, where expert knowledge is sequentially queried
to improve predictions. In the specific case of sparse linear regression, where we assume the
expert has knowledge about the relevance of the covariates, or of values of the regression
coefficients, we propose an algorithm and computational approximation for fast and efficient
interaction, which sequentially identifies the most informative features on which to query
expert knowledge. Evaluations of the proposed method in experiments with simulated and
real users show improved prediction accuracy already with a small effort from the expert.

Keywords Bayesian methods · Experimental design ·Human-to-machine transfer learning ·
Interactive machine learning · Statistics in high dimensions

1 Introduction

Datasets with a small number of samples n and a large number of variables p are nowadays
common. Statistical learning, for example regression, in these kinds of problems is ill-posed,
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ABSTRACT
Providing accurate predictions is challenging for machine
learning algorithms when the number of features is larger
than the number of samples in the data. Prior knowledge can
improve machine learning models by indicating relevant vari-
ables and parameter values. Yet, this prior knowledge is often
tacit and only available from domain experts. We present a
novel approach that uses interactive visualization to elicit the
tacit prior knowledge and uses it to improve the accuracy of
prediction models. The main component of our approach is a
user model that models the domain expert’s knowledge of the
relevance of different features for a prediction task. In partic-
ular, based on the expert’s earlier input, the user model guides
the selection of the features on which to elicit user’s knowl-
edge next. The results of a controlled user study show that the
user model significantly improves prior knowledge elicitation
and prediction accuracy, when predicting the relative citation
counts of scientific documents in a specific domain.

Author Keywords
interactive knowledge elicitation; prediction; user model

ACM Classification Keywords
H.1.m Models and Principles: Miscellaneous; H.5.m Infor-
mation Interfaces and Presentation (e.g. HCI): Miscellaneous

INTRODUCTION
We address the machine learning problem of predicting val-
ues of a target variable given a training data set in which the
target variable values are known. The training data set needs
to be representative of the underlying population, and its size
must be large enough for the machine learning model to accu-
rately learn to predict the target variable. Yet, in applications
like personalized medicine [8, 24, 32], brain imaging [34, 36]
and textual document categorization [13, 19, 20, 25, 35], the
number of features by far exceeds the number of samples,
leading to the “small n large p” problem [11] where classi-
cal models inaccurately predict the target. Fitting regression
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models for this problem requires regularizing the model’s re-
gression coefficients [14, 33, 37]. Typically, the level of reg-
ularization is tuned by estimating a hyperparameter from the
data, but this neglects prior information that could be avail-
able on the problem, the prior information referring to any
knowledge of the problem the user may have before inspect-
ing the data. Yet, knowledge of the features’ effects on the
target could significantly improve predictions [29].

The use of prior knowledge in prediction is often not straight-
forward. For example, the prior information may not be avail-
able in any format that can easily be plugged into the predic-
tion model. Nevertheless, a domain expert may possess tacit
knowledge, not written down anywhere, of the relationships
between the features and the target variable. Take, for exam-
ple, the task of predicting the number of citations a scientific
document receives in a certain domain. An expert can eas-
ily indicate that the presence of a term ‘neural’ in the docu-
ment implies a higher relative citation count in the machine
learning domain. However, eliciting such tacit knowledge is
difficult when the number of putative features is large, and
checking each individual feature is excessively laborious.

We present a novel approach that extracts the tacit knowledge
from the domain expert and uses this knowledge as prior in-
formation for improved predictions. A prediction model is
still responsible for generating the predictions for the target
variable. However, a user model selects features whose rel-
evance is indicated by the user, a domain expert, using an
interactive visualization. Here, a relevant feature is a feature
that is positively correlated1 with the target value. The user
model iteratively elicits this information, to build a model of
the user’s tacit knowledge and select other features that would
benefit from the user’s input. The user input is then encoded
into prior knowledge for the prediction model to improve its
accuracy. Our contributions are:

• We present a novel method that interactively models the
user’s tacit knowledge of the relevance of features to the
predicted target, and uses this elicited information as prior
knowledge for a more accurate prediction model.

• Through a user study, we demonstrate that using a user
model to select the features that require input from the do-
main expert significantly improves prior knowledge elici-
tation when compared to randomly selected features.

1correlated in general, even if not necessarily in the training data
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“Isn’t it trivial to infer interests? Just 
monitor where the user looks.”



Accuracy	of	inferring	
which	titles	were	
relevant:	73%	(naive	
model:	67%)	

Combined	with	
collaborative	
filtering:	85%	

Puolamäki et al., SIGIR 2005
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ABSTRACT
Online crowds can help infuse creativity into the design pro-
cess, but traditional strategies for leveraging them, such as
large-scale ideation platforms, require time and organizational
effort in order to obtain results. We propose a new method
for crowd-based ideation that simplifies the process by having
smaller crowds join in-person ideators during synchronous cre-
ative sessions. Our system Crowdboard allows online crowds
to provide real-time creative input during early-stage design
activities, such as brainstorming or concept mapping. The
system enables in-person ideators to develop ideas on a physi-
cal or digital whiteboard which is augmented with real-time
creative input from online participants who see and hear a live
broadcast of the meeting. We validate Crowdboard via two
user studies in which dyads of in-person ideators brainstormed
with the help of crowd ideators. Our studies suggest that
Crowdboard can effectively enhance ongoing brainstorming
sessions, but also revealed key challenges for how to better
facilitate interactions among in-person and crowd ideators.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Creativity Support Tools; Brainstorming; Crowdsourcing.

INTRODUCTION
Creativity is a social process. Contrary to the “lone genius”
myth, recent studies point out that innovation is more likely to
arise through combinations of ideas from collaborating indi-
viduals with a diverse set of viewpoints and experiences [26,
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Figure 1. Crowdboard 2.0 (studio interface). In-person ideators write
or sketch ideas on virtual sticky notes and get real-time creative input
on their ideas from crowd workers who see their activity and who con-
tribute to the creative discussion. Crowd workers can add their ideas
either to chats attached to specific notes or to a general chat.

35, 39]. Based on this consideration, researchers have recently
investigated a variety of techniques for crowd-based ideation
[4, 9, 10, 41]. A number of large-scale ideation platforms have
been developed to create spaces where people contribute ideas
to help solve challenging problems. The guiding principle
is to build up a large pool of ideas from which a few good-
quality ideas can be extracted. This asynchronous large-scale
approach to crowd-aided ideation has some limitations, how-
ever. For example the quality of individual ideas is generally
poor [13]. Many obvious ideas are also proposed multiple
times, due to the lack of coordination among crowd members
[33]. Furthermore, a great amount of time is required to select
the best ideas [37].

In-person ideators who may want to leverage the crowd to
boost an early-stage idea would be subject to these and other
limitations. In particular, they would need a great amount of
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ABSTRACT
We present visual re-ranking, an interactive visualization technique
for multi-aspect information retrieval. In multi-aspect search, the
information need of the user consists of more than one aspect or
query simultaneously. While visualization and interactive search
user interface techniques for improving user interpretation of search
results have been proposed, the current research lacks understand-
ing on how useful these are for the user: whether they lead to quan-
tifiable benefits in perceiving the result space and allow faster, and
more precise retrieval. Our technique visualizes relevance and doc-
ument density on a two-dimensional map with respect to the query
phrases. Pointing to a location on the map specifies a weight distri-
bution of the relevance to each of the query phrases, according to
which search results are re-ranked. User experiments compared our
technique to a uni-dimensional search interface with typed query
and ranked result list, in perception and retrieval tasks. Visual re-
ranking yielded improved accuracy in perception, higher precision
in retrieval and overall faster task execution. Our findings demon-
strate the utility of visual re-ranking, and can help designing search
user interfaces that support multi-aspect search.

Keywords
Information visualization; information retrieval; multi-aspect search;
multi-dimensional ranking

1. INTRODUCTION
Multi-aspect search refers to activities in which the information

need of the user consists of more than one aspect or query simul-
taneously. Such situation arises in contexts such as exploratory
search, item selection and multi-criteria decision making. In ex-
ploratory search activities, the user’s goal is not clearly defined,
and the information space is usually unfamiliar to the user. In such
scenarios, the user might start from a small set of notions, with the
intent of learning and making sense of the related document space.
In this case, conventional result lists offer little insight of the data
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Figure 1: Interactive relevance map visualization. (a) Position
of a document marker is computed as a weighted linear com-
bination of relevance to individual query phrases r1, r2, r3. (b)
Radius of a document marker encodes the overall relevance of
the corresponding document to all query phrases. (c) Opacity
encodes the density of document mass in a certain position of
the 2D plane. (d) The result list can be re-ranked by relevance
and the distance to the selected position rr.

and nothing indicates how the given results relate to the multiple
aspects of the query. For example, a user looking for recent liter-
ature on physiological measurements might want to search for as-
pects such as ‘Electroencephalography’, ‘Electrodermal Activity’,
‘Electromyography’ and quickly be able to assess how the result
space is distributed and how the retrieved documents relate to each
aspect.

Item or product selection is currently widely supported by
faceted search and search result clustering. Such systems are
widespread in e-commerce and library catalogs. These techniques
allow the user to investigate the results through the use of multiple
filters, but they offer limited support for perceiving the result space
and weighting the aspects accordingly. Conventional query-based
search tools usually visualize results as a one-dimensional ranked
list, and offer limited support for multi-aspect retrieval. Another
example is multi-criteria decision making, a well researched pro-
cess that often requires multi-aspect search [8]. Take the example
of a user looking online for a new car. Usual faceted tools allow her
to select filters to narrow down the offering: e.g., a manufacturer,
a price range, a fuel type. Such criteria require the user to have
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ABSTRACT
We present visual re-ranking, an interactive visualization technique
for multi-aspect information retrieval. In multi-aspect search, the
information need of the user consists of more than one aspect or
query simultaneously. While visualization and interactive search
user interface techniques for improving user interpretation of search
results have been proposed, the current research lacks understand-
ing on how useful these are for the user: whether they lead to quan-
tifiable benefits in perceiving the result space and allow faster, and
more precise retrieval. Our technique visualizes relevance and doc-
ument density on a two-dimensional map with respect to the query
phrases. Pointing to a location on the map specifies a weight distri-
bution of the relevance to each of the query phrases, according to
which search results are re-ranked. User experiments compared our
technique to a uni-dimensional search interface with typed query
and ranked result list, in perception and retrieval tasks. Visual re-
ranking yielded improved accuracy in perception, higher precision
in retrieval and overall faster task execution. Our findings demon-
strate the utility of visual re-ranking, and can help designing search
user interfaces that support multi-aspect search.

Keywords
Information visualization; information retrieval; multi-aspect search;
multi-dimensional ranking

1. INTRODUCTION
Multi-aspect search refers to activities in which the information

need of the user consists of more than one aspect or query simul-
taneously. Such situation arises in contexts such as exploratory
search, item selection and multi-criteria decision making. In ex-
ploratory search activities, the user’s goal is not clearly defined,
and the information space is usually unfamiliar to the user. In such
scenarios, the user might start from a small set of notions, with the
intent of learning and making sense of the related document space.
In this case, conventional result lists offer little insight of the data
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Figure 1: Interactive relevance map visualization. (a) Position
of a document marker is computed as a weighted linear com-
bination of relevance to individual query phrases r1, r2, r3. (b)
Radius of a document marker encodes the overall relevance of
the corresponding document to all query phrases. (c) Opacity
encodes the density of document mass in a certain position of
the 2D plane. (d) The result list can be re-ranked by relevance
and the distance to the selected position rr.

and nothing indicates how the given results relate to the multiple
aspects of the query. For example, a user looking for recent liter-
ature on physiological measurements might want to search for as-
pects such as ‘Electroencephalography’, ‘Electrodermal Activity’,
‘Electromyography’ and quickly be able to assess how the result
space is distributed and how the retrieved documents relate to each
aspect.

Item or product selection is currently widely supported by
faceted search and search result clustering. Such systems are
widespread in e-commerce and library catalogs. These techniques
allow the user to investigate the results through the use of multiple
filters, but they offer limited support for perceiving the result space
and weighting the aspects accordingly. Conventional query-based
search tools usually visualize results as a one-dimensional ranked
list, and offer limited support for multi-aspect retrieval. Another
example is multi-criteria decision making, a well researched pro-
cess that often requires multi-aspect search [8]. Take the example
of a user looking online for a new car. Usual faceted tools allow her
to select filters to narrow down the offering: e.g., a manufacturer,
a price range, a fuel type. Such criteria require the user to have
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ABSTRACT
An important problem for HCI researchers is to estimate the
parameter values of a cognitive model from behavioral data.
This is a difficult problem, because of the substantial complex-
ity and variety in human behavioral strategies. We report an
investigation into a new approach using approximate Bayesian
computation (ABC) to condition model parameters to data and
prior knowledge. As the case study we examine menu interac-
tion, where we have click time data only to infer a cognitive
model that implements a search behaviour with parameters
such as fixation duration and recall probability. Our results
demonstrate that ABC (i) improves estimates of model pa-
rameter values, (ii) enables meaningful comparisons between
model variants, and (iii) supports fitting models to individual
users. ABC provides ample opportunities for theoretical HCI
research by allowing principled inference of model parameter
values and their uncertainty.

ACM Classification Keywords
H.1.2 User/Machine Systems: Human factors, Human infor-
mation processing

Author Keywords
Approximate Bayesian computation; Cognitive models in
HCI; Computational rationality; Inverse modeling

INTRODUCTION
It has become relatively easy to collect large amounts of data
about complex user behaviour. This provides an exciting op-
portunity as the data has the potential to help HCI researchers
understand and possibly predict such user behavior. Yet, un-
fortunately it has remained difficult to explain what users are
doing and why in a given data set.

The difficulty lies in two problems: modeling and inference.
The modeling problem consists of building models that are
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sufficiently general to capture a broad range of behaviors.
Any model attempting to explain real-world observations must
cover a complex interplay of factors, including what users
are interested in, their individual capacities, and how they
choose to process information (strategies). Recent research
has shown progress in the direction of creating models for
complex behavior [5, 13, 14, 16, 19, 21, 25, 27, 29, 36]. After
constructing the model, we are then faced with the inference
problem: how to set the parameter values of the model, such
that the values agree with literature and prior knowledge, and
that the resulting predictions match with the observations we
have (Figure 1). Unfortunately, this problem has been less
systematically studied in HCI. To this end, the goal of this
paper is to report an investigation into a flexible and powerful
method for inferring model parameter values, called approxi-
mate Bayesian computation (ABC) [42].

ABC has been applied to many scientific problems [7, 15, 42].
For example, in climatology the goal is to infer a model of
climate from sensor readings, and in infectious disease epi-
demiology an epidemic model from reports of an infection
spread. Inference is of great use both in applications and
in theory-formation, in particular when testing models, iden-
tifying anomalies, and finding explanations to observations.
However ABC, nor any other principled inference method,
have, to our knowledge, been applied to complex cognitive
models in HCI1.

We are interested in principled methods for inferring parame-
ter values, because they would be especially useful for process
models of behaviour. This is because the models are usually
defined as simulators, and thus the inference is very difficult to
perform using direct analytical means2. Such process models
in HCI have been created, for example, based on cognitive
science [2, 9, 11, 16, 26, 41], control theory [23], biomechan-
ics [4], game theory [10], foraging [38, 37], economic choice
[3], and computational rationality [13]. In the absence of prin-
cipled inference methods for such models, some approaches

1For simpler models, such as regression models (e.g., Fitts’ law),
there exist well-known methods for finding parameter values, such as
ordinary least squares.
2In technical terms, such models generally do not have a likeli-
hood function—defining the likelihood of parameter values given the
observations—that could be written in closed form.
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Inverse Reinforcement Learning from Summary Data

Antti Kangasrääsiö 1 Samuel Kaski 1

Abstract

Inverse reinforcement learning (IRL) aims to ex-
plain observed complex behavior by fitting re-
inforcement learning models to behavioral data.
However, traditional IRL methods are only ap-
plicable when the observations are in the form
of state-action paths. This is a problem in many
real-world modelling settings, where only more
limited observations are easily available. To ad-
dress this issue, we extend the traditional IRL
problem formulation. We call this new formu-
lation the inverse reinforcement learning from
summary data (IRL-SD) problem, where instead
of state-action paths, only summaries of the paths
are observed. We propose exact and approxi-
mate methods for both maximum likelihood and
full posterior estimation for IRL-SD problems.
Through case studies we compare these methods,
demonstrating that the approximate methods can
be used to solve moderate-sized IRL-SD prob-
lems in reasonable time.

1. Introduction
Inverse reinforcement learning (IRL) has generally been
formulated (Russell, 1998; Ng & Russell, 2000; Ra-
machandran & Amir, 2007; Ziebart et al., 2008) as:

Given (1) a set of state-action paths ⌅ = {⇠1, . . . , ⇠N},
where ⇠

i

= (si0, a
i

1, . . . , a
i

T

i

�1, s
i

T

i

); (2) a Markov
decision-process (MDP) with reward-function R(s, a; ✓),
where the ✓ are unknown parameters; and optionally (3)
prior P (✓).1

Determine a point estimate ˆ✓ or a posterior P (✓|⌅).

Methods for solving the IRL problem have been used
for parameter inference in multiple real-world modelling
situations where complex behavior has been observed in

1Helsinki Institute for Information Technology HIIT, Depart-
ment of Computer Science, Aalto University, Finland. Correspon-
dence to: Antti Kangasrääsiö <antti.kangasraasio@aalto.fi>,
Samuel Kaski <samuel.kaski@aalto.fi>.

Copyright 2017 by the author(s).
1 The notation is elaborated in Section 2.

the form of state-action paths. Examples include driver
route modelling (Ziebart et al., 2008), helicopter acrobat-
ics (Abbeel et al., 2010), learning to perform motor tasks
(Boularias et al., 2011), dialogue systems (Chandramo-
han et al., 2011), pedestrian activity prediction (Ziebart
et al., 2009; Kitani et al., 2012), and commuting routines
(Banovic et al., 2016). An overview of existing methods is
given in Section 2.

However, a limitation with the traditional problem formu-
lation is the assumption that full paths containing both ac-
tions and states have been observed.2 In many real-world
situations such fine-grained observations may not be avail-
able, or acquiring them may be prohibitively expensive. In
fact, it can be argued that the number of cases where only
more limited observations are available is probably much
larger than those with accurate path data.

It is a common scenario that various other types of obser-
vations of the behavior of the agent are available, and we
would like to estimate the preferences, tasks or properties
of the agent. One such example would be identifying the
capabilities of computer users based on observations from
them “in the wild”, where the types of observations may
vary case-by-case (Wobbrock et al., 2011).

To extend IRL to the kind of situations where instead of
state-action paths, arbitrary summaries of the underlying
true paths are observed, we formulate the inverse reinforce-
ment learning from summary data (IRL-SD) problem, de-
fined in Section 3.

In Section 4 we derive the likelihood function for this prob-
lem, but observe that evaluating it is computationally ex-
pensive. To address this issue, we propose a surrogate that
is faster to evaluate in practice. For inference, we propose
a Bayesian optimization based method.

In Section 5 we demonstrate that by using the surrogate we
get results comparative to using the exact likelihood. We
also demonstrate that we are able to infer ML estimates
for moderate-sized toy models and the full posterior for a
model of human visual search, based on only summary ob-
servations.

2 Or in some formulations, a sufficient amount of separate
state-action transitions.
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Inverse modelling of complex 
interactive behavior with ABC

Inverse modelling of complex
interactive behavior with ABC

Figure 1. This paper studies methodology for inverse modeling of interactive behavior. The task is to find parameters (q ) for a complex cognitive
model to produce the most plausible explanation of observed behavior. Studying menu interaction as a case, this paper demonstrates that approximate
Bayesian computation (ABC) can find accurate estimates of users’ behavioral policies as well as cognitive characteristics from selection time data only.

SNIF-ACT [15], economic models of search [3], foraging the-
ory [29], and adaptive interaction [27]. Recent interest in CR
is due to the benefit that, when compared with classic cognitive
models, it requires no predefined specification of the user’s
task solution, only the objectives. Given the constraints of the
situation, we can use machine learning to infer the optimal
behavior policy. However, achieving the inverse, that is infer-
ring the constraints assuming that the behaviour is optimal,
is exceedingly difficult. Some methods for inverse modeling
in general exist, but the assumptions about data quality and
granularity tend to be unreasonable for HCI situations, where
often only noisy or aggregate-level data exists.

Our case study is a recent model of menu interaction [12],
where the inverse problem is to obtain estimates of the users’
search strategies as well as of their cognitive characteristics
from selection time data only. Menu interaction offers an ideal
starting point for investigating inverse modeling methodology
for HCI. Menus are a prevalent interaction method, used on
most computer platforms, and a long-standing topic in HCI [5,
8, 13, 19, 24]. Menu interaction has turned out to be relatively
complex to model, as it is a sequential decision problem that
involves perception, visual attention, motor control, as well as
memory and learning. Moreover, there is substantial scope for
strategic adaptation [27]. For example, searching through a
vertical menu can be done by starting at the top and reading
items one at a time, or by trying to jump to the location where
the target is remembered to be. The model investigated here
has previously been shown to successfully capture adaptation
of search behavior and, consequently changes to task comple-
tion times, to various situations [12]. It uses a reinforcement
learning algorithm called Q-learning to estimate an optimal be-
havioral policy given several constraints such as menu design,
target location, previous knowledge, and perceptual abilities
(e.g,. extent of peripheral vision, fixation duration, saccade
durations). Due to its complexity, the model is out of reach
for traditional parameter estimation methods. The forward
modeling problem requires solving the optimal behavioral pol-
icy, requiring the estimation of some 105 parameters, based on
some dozens of model parameters that define the environment.
The inverse modeling problem, on the other hand, would re-
quire inferring some of these model parameters just based on
observations of the actions taken based on the behavior policy.

In this paper, we explain how this inverse modeling problem
can be solved with ABC.

The rest of the paper looks into several inverse modeling prob-
lems in menu interaction with the goal of demonstrating four
technical contributions: (1) For the first time in HCI, we can
obtain estimates of both behavioral policies and cognitive
characteristics of users from behavioral observations only. (2)
Better model fit can be obtained when identifying parameters
via inverse modeling rather than setting them based on the lit-
erature. (3) Modeling assumptions can be critically explored
using this approach to find potentials for improvements. (4)
Models can be fit to explain sources of individual differences.
We conclude that ABC benefits HCI research on complex mod-
els by (1) reducing human effort needed for finding reasonable
parameter values for these models, and (2) improving the va-
lidity of the selected parameter values, as they are conditioned
both on prior knowledge and actual observations.

BACKGROUND
This paper is concerned with methodology for inverse mod-
eling of user behavior in HCI. Although we focus here on
computational rationality (CR) models, ABC methodology is
generic and has promise beyond CR in other types of complex
HCI models. To better understand the involved challenges, we
describe the modeling approach and discuss previously used
inference methodology.

Computational rationality is a converging paradigm for under-
standing intelligence in humans and machines [?]. It models
intelligent behavior ”building on a base of inferential processes
for predicting, learning, and reasoning under uncertainty.” The
roots of CR are in rational analysis, a method for analyzing
bounds of behavior in terms of utility [1, 11, 26], an idea
exploited for example in the information foraging theory and
economic models of search [29, 3]. A CR model can be de-
fined as a bounded agent executed computationally [22]: A
bounded agent is a machine with a set of observation functions,
a set of possible actions, and a space of possible programs
that can run on the machine to produce behavior. A policy is
a mapping from histories to distributions over actions. This
definition is flexible enough to define a wide repertoire of
stochastic sequential decision problems.

Preliminary unpublished results

Figure 5. Study 1 compared forward and inverse modeling approaches. Left column: forward modeling predictions from the Chen et al. model
[12]; all parameter values were set based on literature. Center column: inverse modeling predictions: the value of one parameter has been conditioned
on observation data using ABC. Right column: observation data (ground truth) from Bailly et al. [5]. Color coding: Blue:(top left, middle center):
Predicted features. Green (top center): Predicted features used for calculating the discrepancy to the observation data. Red (bottom left): Manually
fixed features. Purple (bottom center): Features conditioned on the observation data. Brown (top right): Observed features exposed to the inference
algorithm. Orange (bottom right): Observed features not exposed to the inference algorithm.

to condition this parameter on the observed aggregate task
completion time (TCT) only (combined observations from
both menu conditions: target absent, target present). This
approach was chosen, because predicted aggregate TCT was
documented in the original paper (the original model predicted
approximately 1.4 s), and as it represents a common case in
HCI research where only high-level aggregate data may be
available of the user. Implementation details of BOLFI are
given in the Appendix.

Results: The discrepancy inferred by BOLFI is visualized in
Figure 6, along with the prior, likelihood and posterior of the
fixation duration. The maximum a posteriori (MAP) value for
fixation duration was 244 ms, which corresponds to values
often encountered in e.g. reading tasks. A comparison of the
predictions of the forward and inverse models is shown in
Figure 5.

Aggregate TCT: The prediction for aggregate TCT made by
the inverse model fits the observed data favorably. The ground
truth aggregated TCT was 0.92 s (std 0.38 s). The forward
model prediction was 1.49 s (std 0.68 s), whereas the inverse
model, where fixation duration was conditioned by ABC, pre-
dicted 0.93 s (std 0.40 s).

Observations on Process Variables
A closer analysis of predictions made by the models exposed
a few places where model fit might be improved. We explain
these observations here and explore improvements in Study 2.

Our first observation concerns the predicted TCT individually
for the two conditions of the menu. The Chen et al. model was

well able to predict the aggregate TCT behavior when fitted
with ABC, but the predictions were not accurate when split
according to the target being either present in the menu or not.
This is apparent in Figure 5, where we notice that the predicted
task completion time when target is absent is actually around
four to six times as long as the actual user behavior. In Study

Figure 6. Estimated discrepancies in Study 1 (top left). Mean in black,
95 % confidence interval in orange, cut-off level (e) in green (set to the
minimum of the mean function). Top right: Prior of parameters. Bottom
left: Unnormalized likelihood of parameters. Maximum likelihood (ML)
solution in blue (232 ms). Bottom right: Unnormalized posterior of pa-
rameters. Maximum a posteriori (MAP) solution in magenta (244 ms).
Note: By ”unnormalized” distribution we mean that the shape of the
graph is correct, but the scaling has not been adjusted so that the in-
tegral of the distribution would be equal to 1, as this is not needed for
determining the maximum value.

STA	in	parameter	inference:	(i)	simplified	models,	(ii)	find	
parameters	from	literature,	or	(iii)	fit	parameters	by	manual	
iteration	

Big	dream:	Instead	of	having	to	run	a	laborious	user	
experiment	every	time	a	new	interface	design	is	tried,	run	a	
simulated	user	experiment.	

In	other	words:	Modelling-driven	user	interface	design



Computational rationality
Instead	of	trying	to	model	all	aspects	of	human	behaviour,	make	
an	assumption:	

Computational	rationality:	Assume	users	behave	
(approximately)	to	maximize	utility	given	constraints	coming	
from	
• the	environment	(the	interface)	
• the	goal	and	
• their	own	limited	(cognitive)	capacity.	

The	simulator	is	given	the	constraints.	It	solves	the	optimal	
behavioural	policy	by	reinforcement	learning,	and	then	simulates	
behaviour	according	to	the	policy.



Example user task: Menu search
Task:	Find	a	given	entry	
from	a	menu	

Actions:	fixate	on	an	item,	
select	the	item,	quit	

Reward	for:	time	used	
(negative),	menu	item	
found	/	not	found	

Data:	Click	time	data	+	
possibly	eye	tracking

constraints imposed by the mechanisms concern saccade and
fixation latencies [35] and also the reduction of acuity with
eccentricity from the fovea [25]. It has been shown that given
these constraints, strategies can be derived through the use
of reinforcement learning algorithms [12, 19, 37], though it
is possible that strategies may be acquired by other learning
mechanisms, for example, by cultural transmission, through
instructions, or by evolution.

The approach that we take is also influenced by ideas in opti-
mal control and Machine Learning [5, 36, 38]. A key contri-
bution of this literature has been to provide a formal basis
for learning an optimal control policy given only a defini-
tion of the reward function, the state space, and the action
space. Control knowledge is simply knowledge that deter-
mines what-to-do-when. In the case of menu search it con-
cerns where to move the eyes and when to select an item.
In this framework, the expected value of an action given a
state is the sum of the immediate reward plus the rewards
that would accrue from subsequent actions if that action were
selected. This simple assumption has provided a means of
deriving human visual search strategies in well-known labo-
ratory tasks [12]. It also provides a means by which to de-
rive rational menu search behaviour given assumptions about
utility, ecology and psychological mechanisms but only if the
user’s menu search problem can be defined as a reinforcement
learning problem. In the following section we report a model
that does just that.
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Figure 2: An overview of the adaptive menu search model.

THEORY AND MODEL
Imagine that the goal for a user who is experienced with
menus, but who has never used Apple’s OS X Safari browser

before, is to select ‘Show Next Tab’ from the Safari Window
menu. This task and menu are illustrated to the bottom-left
of Figure 2. A user might solve this goal by first fixating the
top menu item, encoding the word ‘Minimize’; rejecting it
as irrelevant to the target, moving the eyes to the next group
of items, that begins ‘Show Previous Tab’, noticing that this
item is not the target but is closely related and also noticing, in
peripheral vision, that the next item has a similar word shape
and length to the target; then moving the eyes to ‘Show Next
Tab’, confirming that it is the target and selecting it. The aim
of the modelling is that behaviours such as this should emerge
from theoretical assumptions. Importantly, the aim is not to
model how people learn specific menus and the location of
specific items, rather the aim is to model the menu search
task in general. The requirement is that the model should
learn, from experience, the best way to search for new targets
in new, previously unseen, menus.

To achieve this goal we use a state estimation and optimal
control approach. In Figure 2 an external representation of
the displayed menu is fixated and the state estimator encodes
a percept containing information about the relevance of word
shapes (‘Minimise’ and ‘Zoom’, for example have different
lengths) and semantics (word meanings). This information is
used to update a state vector, which has an element for the
shape relevance of every item in the menu, an element for the
semantic relevance of every item in the menu, and an element
for the current fixation location. The vector items are null un-
til estimates are acquired through visual perception. Updates
are made after every fixation, e.g. after fixating ‘Minimize’
in the above example. After having encoded new informa-
tion through visual perception, the optimal controller chooses
an action on the basis of the available state estimate and the
strategy (i.e., the policy that determines a state-action value
function). The chosen action might be to fixate on another
item or to make a selection, or to exit the menu if the target
is probably absent. State-action values are updated incremen-
tally (learned) as reward and cost feedback is received from
the interaction. The menu search problem is thereby defined
as a reinforcement learning problem [38].

The paragraph above offers only a very brief overview of the
theory and it leaves out many of the details. In the following
subsections more detail is provided about how the state esti-
mation and optimal controller work. Subsequently a model
walkthrough is provided.

State estimator
The state estimator (the bottom right of Figure 2) encodes
semantic, alphabetic and shape information, constrained by
visual and cognitive mechanisms.

Semantic relevance
In common with many previous models of menu search [8,
15, 28, 34, 33], our model assumes that people have an abil-
ity to determine the semantic relevance of items by matching
them to the goal specification. To implement this assumption,
we used average pairwise relevance ratings gathered from hu-
man participants (which are taken from [2]). These relevance
ratings are described in detail below. For now, consider the
following example: if the model sampled the goal Zoom and
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sequences	

• For	summary	data	would	need	to	integrate	over	all	
unobserved	paths,	which	gets	intractable.
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Figure 2. Overview of the ABC inference process for HCI models: Ob-
served user data and priors of the parameters are fed into the ABC al-
gorithm, which then approximates the posterior distribution of the pa-
rameter values. The algorithm iterates by choosing values for the pa-
rameters of the model (here a CR model) and generating simulated user
data. For CR models, generating simulated data requires first training
a reinforcement learning agent using the given parameter values.

write down the formula for the most likely parameter values
given data. For complex models, such formula might not exist,
but it is often possible to write down an explicit likelihood
function, L(q |Yobs), which evaluates the likelihood of the pa-
rameters q given the observed data Yobs. When this likelihood
function can be evaluated efficiently, inverse modeling can be
done, even for reinforcement learning (RL) models [32, 39,
45]. However, this inverse reinforcement learning has been
only possible when precise observations are available of the
environment states and of the actions the agent took, which in
HCI applications is rarely the case.

When the likelihood function of the model can not be evaluated
efficiently, there are generally two options left. The traditional
way in HCI has been to set the model parameters based on past
models and existing literature. If this has not led to acceptable
predicted behavior, the researcher might have further tuned
the parameters by hand until the predictions were satisfactory.
However, this process generally has no guarantees that the
final parameters will be close to the most likely values. An
alternative solution, which we have not seen used in HCI con-
text before, would be to use likelihood-free inference methods,
that allow the model parameters to be estimated without re-
quiring the likelihood function to be evaluated directly. These
methods are derived based on mathematical principles, and
thus offer performance guarantees, at least in the asymptotic
case. ABC is one such method [42], and we will explain it
next in more detail.

Approximate Bayesian Computation (ABC)
ABC is a principled method for finding parameter values for
complex HCI models, including simulators, based on observed
data and prior knowledge. It repeatedly simulates data using
different parameter values, in order to find regions of the
parameter space that lead to simulated data that is similar to the
observed data. Different ABC algorithms differ, for example,
in the way in which they choose the parameter values.

The main benefit of ABC for HCI is its generality: the only
assumption needed is that the researcher is able to repeat-
edly simulate observations with different parameter values.
Therefore, while in this paper we examine only a particular
simulator, the approach is of more general value. To be precise,
ABC can be used in the following recurring scenario in HCI:

• Inputs: A model M with unknown parameters q ; prior
knowledge of reasonable values for q (for example from

literature); observations Yobs of interactive behavior (for
example from user study logs)

• Outputs: Estimates of likely values for parameters q and
their uncertainty. Likely values of q should produce a close
simulated replication of observed data: M(q)⇡ Yobs, while
still being plausible given prior knowledge.

The process of using ABC is depicted in Figure 2. First the
researcher implements her model as an executable simulator.
Values for well-known parameters of the model are set by hand.
For inferred parameters q a prior probability distribution P(q)
is defined by the researcher based on her prior knowledge
of plausible values. The researcher then defines the set of
observations Yobs that q will be conditioned on. Next, the re-
searcher defines a discrepancy function d(Yobs,Ysim)! [0,•),
that quantifies the similarity of the observed and simulated
data in a way meaningful for the researcher. Finally, an ABC
algorithm is run; it selects at which parameter values {qi} the
simulator will be run, and how the conditional distribution of
the parameter values, also known as the posterior P(q |Yobs),
is constructed based on the simulations.

BOLFI: An ABC Variant Used in This Paper
This paper employs a recent variant of ABC called BOLFI
[18], which reduces the number of simulations3 while still
being able to get adequate estimates for q . An overview of the
method is shown in Figure 3.

The main idea of BOLFI is to learn a statistical regression
model—called a Gaussian process—for estimating the dis-
crepancy values over the feasible domain of q from a smaller
number of samples that do not densely cover the whole pa-
rameter space. This is justified when the situation is such that
small changes in q do not yield large changes in the discrep-
ancy. Additionally, as we are most interested in finding regions
where the discrepancy is small, BOLFI uses a modern opti-
mization method called Bayesian optimization for selecting
the locations where to simulate. This way we can concentrate
the samples to parameter regions that are more likely to lead
to low discrepancy simulated data. This approach has resulted

3The naive way to use ABC would be to simulate a large amount of
samples densely covering the parameter space and keep those that
have the lowest discrepancy values. This method is also known as
Rejection ABC. However, as in our case the simulations take multiple
hours each, this approach has infeasible total computation time.

Figure 3. Left: BOLFI finds parameter values that are best able to re-
produce empirical observations Y0 (here the best sample is Y3, produced
by simulating with parameter values q3). Right: BOLFI first constructs
a statistical regression model for predicting the discrepancy values d as-
sociated with different parameter values q , and then uses Lower Confi-
dence Bound (LCB) values for choosing the next sample location qnext .

Figure 2. Overview of the ABC inference process for HCI models: Ob-
served user data and priors of the parameters are fed into the ABC al-
gorithm, which then approximates the posterior distribution of the pa-
rameter values. The algorithm iterates by choosing values for the pa-
rameters of the model (here a CR model) and generating simulated user
data. For CR models, generating simulated data requires first training
a reinforcement learning agent using the given parameter values.

write down the formula for the most likely parameter values
given data. For complex models, such formula might not exist,
but it is often possible to write down an explicit likelihood
function, L(q |Yobs), which evaluates the likelihood of the pa-
rameters q given the observed data Yobs. When this likelihood
function can be evaluated efficiently, inverse modeling can be
done, even for reinforcement learning (RL) models [32, 39,
45]. However, this inverse reinforcement learning has been
only possible when precise observations are available of the
environment states and of the actions the agent took, which in
HCI applications is rarely the case.

When the likelihood function of the model can not be evaluated
efficiently, there are generally two options left. The traditional
way in HCI has been to set the model parameters based on past
models and existing literature. If this has not led to acceptable
predicted behavior, the researcher might have further tuned
the parameters by hand until the predictions were satisfactory.
However, this process generally has no guarantees that the
final parameters will be close to the most likely values. An
alternative solution, which we have not seen used in HCI con-
text before, would be to use likelihood-free inference methods,
that allow the model parameters to be estimated without re-
quiring the likelihood function to be evaluated directly. These
methods are derived based on mathematical principles, and
thus offer performance guarantees, at least in the asymptotic
case. ABC is one such method [42], and we will explain it
next in more detail.

Approximate Bayesian Computation (ABC)
ABC is a principled method for finding parameter values for
complex HCI models, including simulators, based on observed
data and prior knowledge. It repeatedly simulates data using
different parameter values, in order to find regions of the
parameter space that lead to simulated data that is similar to the
observed data. Different ABC algorithms differ, for example,
in the way in which they choose the parameter values.

The main benefit of ABC for HCI is its generality: the only
assumption needed is that the researcher is able to repeat-
edly simulate observations with different parameter values.
Therefore, while in this paper we examine only a particular
simulator, the approach is of more general value. To be precise,
ABC can be used in the following recurring scenario in HCI:

• Inputs: A model M with unknown parameters q ; prior
knowledge of reasonable values for q (for example from

literature); observations Yobs of interactive behavior (for
example from user study logs)

• Outputs: Estimates of likely values for parameters q and
their uncertainty. Likely values of q should produce a close
simulated replication of observed data: M(q)⇡ Yobs, while
still being plausible given prior knowledge.

The process of using ABC is depicted in Figure 2. First the
researcher implements her model as an executable simulator.
Values for well-known parameters of the model are set by hand.
For inferred parameters q a prior probability distribution P(q)
is defined by the researcher based on her prior knowledge
of plausible values. The researcher then defines the set of
observations Yobs that q will be conditioned on. Next, the re-
searcher defines a discrepancy function d(Yobs,Ysim)! [0,•),
that quantifies the similarity of the observed and simulated
data in a way meaningful for the researcher. Finally, an ABC
algorithm is run; it selects at which parameter values {qi} the
simulator will be run, and how the conditional distribution of
the parameter values, also known as the posterior P(q |Yobs),
is constructed based on the simulations.

BOLFI: An ABC Variant Used in This Paper
This paper employs a recent variant of ABC called BOLFI
[18], which reduces the number of simulations3 while still
being able to get adequate estimates for q . An overview of the
method is shown in Figure 3.

The main idea of BOLFI is to learn a statistical regression
model—called a Gaussian process—for estimating the dis-
crepancy values over the feasible domain of q from a smaller
number of samples that do not densely cover the whole pa-
rameter space. This is justified when the situation is such that
small changes in q do not yield large changes in the discrep-
ancy. Additionally, as we are most interested in finding regions
where the discrepancy is small, BOLFI uses a modern opti-
mization method called Bayesian optimization for selecting
the locations where to simulate. This way we can concentrate
the samples to parameter regions that are more likely to lead
to low discrepancy simulated data. This approach has resulted

3The naive way to use ABC would be to simulate a large amount of
samples densely covering the parameter space and keep those that
have the lowest discrepancy values. This method is also known as
Rejection ABC. However, as in our case the simulations take multiple
hours each, this approach has infeasible total computation time.

Figure 3. Left: BOLFI finds parameter values that are best able to re-
produce empirical observations Y0 (here the best sample is Y3, produced
by simulating with parameter values q3). Right: BOLFI first constructs
a statistical regression model for predicting the discrepancy values d as-
sociated with different parameter values q , and then uses Lower Confi-
dence Bound (LCB) values for choosing the next sample location qnext .

BOLFI: Gutmann & Corander 2016 



Results: data distributions

Figure 7. Study 2: ABC exposes how changes to the model (Variants 1-3) result in changes to the predictions when parameter values are conditioned to
empirical data. Baseline: Same model as in Study 1, but now conditioned on observed behavior in both target conditions (absent, present) at the same
time. Variant 1: Selection delay feature added to baseline (parameter dsel ). Variant 2: Menu recall feature added to Variant 1 (parameter prec). Variant
3: Peripheral vision feature added to Variant 2 (parameter psem). Observation data: Same as in Study 1. Reported results are with the MAP parameter
values. Color coding: Same as in Figure 5. Abs: Data from when target was absent from the menu. Pre: Data from when target was present in the menu.

as the models became more flexible, but also provided evi-
dence that these features probably reflect actual user behavior
as well. Furthermore, ABC was found useful in hypothesis
comparison, as we avoided manually trying out a large number
of different parameter values manually to find values that lead
to reasonable predictions.

Study 3. ABC and Individual Differences
Most modeling research in HCI aims at understanding general
patterns of user behavior. However, understanding how indi-
viduals differ is important for both theoretical and practical
reasons. On the one hand, even seemingly simple interfaces
like input devices show large variability in user behavior. On
the other hand, adaptive user interfaces and ability-based de-
sign rely on differentiating users based on their knowledge
and capabilities.

Our final case looks at the problem of individual differences
in inverse modeling. In Study 3 we select a group of users
and fit an individual model for each of these users. We then
compare how good predictions these individual models are
able to produce, compared to the same model fit with the data
from all of the users in the dataset (population level model).

We selected a representative set of 5 users for Study 3. We
first selected all users from the dataset of whom there were 15
or more observations in each menu condition (target absent,
present), leaving 11 users. We then ordered the users based
on their difference in TCT to population mean, summed from
both menu conditions. To get a good distribution of different
users, for this experiment we selected the users who were the
furthest (S8), third most furthest (S5), and fifth most furthest
away (S23) from the population mean – as well as the users
who were the closest (S19) and third most closest (S18) to the
population mean.

The model we used in this study, for both individual and
population level modeling, corresponded to Variant 3 from the

previous section. To simplify the analysis, here we only infer
the values of two of the parameters for each user, keeping
the rest fixed. The inferred parameters were prec and psem.
Based on the Study 2, it seemed to us that there was less
variation in fdur and dsel , whereas the use of memory and
acuity of peripheral vision could plausibly vary more between
individuals. We fixed the value of fdur to 280 ms and dsel to
290 ms, according to the MAP estimate in Study 2.

For each of the selected users, we collected all of the ob-
servations of that user from the dataset, and conditioned the
parameter values of the individual model for that user on that
small dataset. The parameter values of the population level
model were the same as inferred in Study 2 for Variant 3. The
accuracy of the predictions made for each user by their indi-
vidual model was compared with the predictions made by the
population level model. In the comparison, we considered the
predicted TCTs and numbers of fixations at each condition to
the observed values, and report the magnitude (absolute value)
of the prediction errors.

Results
The predicted MAP parameter values are collected in Table 2.
The individual model parameter values deviate around ±10
percentage points from the population level model parame-
ter values, which is a reasonable magnitude for individual
variation.

We calculated the magnitude of prediction errors for all of the
models by taking the absolute difference in model predicted
means and observed data means for each feature. The predic-
tion errors of the population level model on the population data
and on individual user data are shown in Figure 8. Overall,
the prediction errors with a population level model tend to be
larger for individual users than they are for the whole popu-
lation. This shows that population level models that are good
for explaining population level dynamics may perform badly

Figure 7. Study 2: ABC exposes how changes to the model (Variants 1-3) result in changes to the predictions when parameter values are conditioned to
empirical data. Baseline: Same model as in Study 1, but now conditioned on observed behavior in both target conditions (absent, present) at the same
time. Variant 1: Selection delay feature added to baseline (parameter dsel ). Variant 2: Menu recall feature added to Variant 1 (parameter prec). Variant
3: Peripheral vision feature added to Variant 2 (parameter psem). Observation data: Same as in Study 1. Reported results are with the MAP parameter
values. Color coding: Same as in Figure 5. Abs: Data from when target was absent from the menu. Pre: Data from when target was present in the menu.

as the models became more flexible, but also provided evi-
dence that these features probably reflect actual user behavior
as well. Furthermore, ABC was found useful in hypothesis
comparison, as we avoided manually trying out a large number
of different parameter values manually to find values that lead
to reasonable predictions.

Study 3. ABC and Individual Differences
Most modeling research in HCI aims at understanding general
patterns of user behavior. However, understanding how indi-
viduals differ is important for both theoretical and practical
reasons. On the one hand, even seemingly simple interfaces
like input devices show large variability in user behavior. On
the other hand, adaptive user interfaces and ability-based de-
sign rely on differentiating users based on their knowledge
and capabilities.

Our final case looks at the problem of individual differences
in inverse modeling. In Study 3 we select a group of users
and fit an individual model for each of these users. We then
compare how good predictions these individual models are
able to produce, compared to the same model fit with the data
from all of the users in the dataset (population level model).

We selected a representative set of 5 users for Study 3. We
first selected all users from the dataset of whom there were 15
or more observations in each menu condition (target absent,
present), leaving 11 users. We then ordered the users based
on their difference in TCT to population mean, summed from
both menu conditions. To get a good distribution of different
users, for this experiment we selected the users who were the
furthest (S8), third most furthest (S5), and fifth most furthest
away (S23) from the population mean – as well as the users
who were the closest (S19) and third most closest (S18) to the
population mean.

The model we used in this study, for both individual and
population level modeling, corresponded to Variant 3 from the

previous section. To simplify the analysis, here we only infer
the values of two of the parameters for each user, keeping
the rest fixed. The inferred parameters were prec and psem.
Based on the Study 2, it seemed to us that there was less
variation in fdur and dsel , whereas the use of memory and
acuity of peripheral vision could plausibly vary more between
individuals. We fixed the value of fdur to 280 ms and dsel to
290 ms, according to the MAP estimate in Study 2.

For each of the selected users, we collected all of the ob-
servations of that user from the dataset, and conditioned the
parameter values of the individual model for that user on that
small dataset. The parameter values of the population level
model were the same as inferred in Study 2 for Variant 3. The
accuracy of the predictions made for each user by their indi-
vidual model was compared with the predictions made by the
population level model. In the comparison, we considered the
predicted TCTs and numbers of fixations at each condition to
the observed values, and report the magnitude (absolute value)
of the prediction errors.

Results
The predicted MAP parameter values are collected in Table 2.
The individual model parameter values deviate around ±10
percentage points from the population level model parame-
ter values, which is a reasonable magnitude for individual
variation.

We calculated the magnitude of prediction errors for all of the
models by taking the absolute difference in model predicted
means and observed data means for each feature. The predic-
tion errors of the population level model on the population data
and on individual user data are shown in Figure 8. Overall,
the prediction errors with a population level model tend to be
larger for individual users than they are for the whole popu-
lation. This shows that population level models that are good
for explaining population level dynamics may perform badly



 ELFI: ABC for everyone

ELFI	=	Engine	for	Likelihood-Free	Inference,	launched	
in	Dec	2016	

Why	use	ELFI?	
• For	end	users:	Bring	your	own	simulator,	the	engine	
does	the	inference,	diagnostics	and	visualization	

• For	advanced	users:	Model	definition	as	graphical	
models;	out-of-the-box	parallelization;	interface	in	
Python	

• For	developers:	Modular	community-driven	design		
—> easy	to	re-use	and	contribute



elfi.readthedocs.io
pip install elfi
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Skytén1, Marko Järvenpää1, Michael Gutmann2, Aki Vehtari1*,

Jukka Corander3*, and Samuel Kaski1*

1Department of Computer Science, Aalto University, Helsinki, Finland
2School of Informatics, The University of Edinburgh, Edinburgh,

United Kingdom
3Department of Biostatistics, University of Oslo, Oslo, Norway

*equal contribution
{jarno.lintusaari,henri.vuollekoski,antti.kangasraasio,kusti.skyten,

marko.j.jarvenpaa,aki.vehtari,samuel.kaski}@aalto.fi,

michael.gutmann@ed.ac.uk, jukka.corander@medisin.uio.no

August 3, 2017

Abstract

The Engine for Likelihood-Free Inference (ELFI) is a Python soft-
ware library for performing likelihood-free inference (LFI). ELFI pro-
vides a convenient syntax for specifying LFI models commonly composed
of priors, simulators, summaries, distances and other custom operations.
These can be implemented in a wide variety of languages. Separating
the modelling task from the inference makes it possible to use the same
model with any of the available inference methods without modifica-
tions. A central method implemented in ELFI is Bayesian Optimization
for Likelihood-Free Inference (BOLFI), which has recently been shown
to accelerate likelihood-free inference up to several orders of magnitude.
ELFI also has an inbuilt support for output data storing for reuse and
analysis, and supports parallelization of computation from multiple
cores up to a cluster environment. ELFI is designed to be extensible and
provides interfaces for widening its functionality. This makes addition
of new inference methods to ELFI straightforward and automatically
compatible with the inbuilt features.
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Summary
1.Interactive	intent	modelling	for	information	
discovery	
– Simple	user	model	balances	exploration-
exploitation	tradeoff	with	good	results	

2.Interactive	knowledge	elicitation	
– Elicitation	was	formulated	as	sequential	inference	
on	joint	user-prediction	model.	It	improves	
prediction	results	on	“large	p,	small	n”	data.	

3.Multimodal	feedback	
– Implicit	feedback	from	eye	tracking	and	mind	
reading	is	informative	but	not	sufficient	to	
replace	explicit	feedback	yet.



4.	Inferring	cognitive	user	models	with	ABC	
– Computational	rationality	based	models	require	
solving	a	new	inverse	reinforcement	problem,	
which	can	be	done	with	ABC	&	ELFI.	

		

Papers	and	code	available	at:	
http://research.cs.aalto.fi/pml/	
http://augmentedresearch.hiit.fi	

Thanks	to	many	students	and	collaborators,	listed	
earlier	in	the	talk!	

http://research.cs.aalto.fi/pml
http://augmentedresearch.hiit.fi

