
Data Sketches for Disaggregated Subset Sum Estimation

Daniel Ting
Tableau So�ware

1162 N 34th St

Sea�le, Washington 98103

dting@tableau.com

ABSTRACT

We introduce and study a new data sketch for processing massive

datasets. It addresses two common problems: 1) computing a sum

given arbitrary �lter conditions and 2) identifying the frequent

items or heavy hi�ers in a data set. For the former, the sketch

provides unbiased estimates with state of the art accuracy. It is

speci�cally designed to handle the challenging scenario when the

data is disaggregated. In this case, there is a per unit metric of

interest that can only be computed as an expensive pre-aggregation

of the raw, disaggregated data. For example, the metric of interest

may be total clicks per user while the raw data is a click stream

containing multiple rows per user. By creating a small, in-memory

sketch of a massive dataset, a consumer may interactively query

the data nearly instantaneously while still being able to slice or

�lter by almost any dimension. �e sketch is suitable for use in

a wide range of applications including computing historical click

through rates for ad prediction, reporting user metrics from user

event streams, and measuring network tra�c for IP �ows.

We informally prove and empirically show that the sketch has

good properties for both the disaggregated subset sum estimation

and frequent item problems on i.i.d. data. It not only picks out the

frequent items but also gives strongly consistent estimates for the

proportion of each frequent item. For subset sum estimation, it

asymptotically draws a probability proportional to size sample that

is optimal for estimating the sum over the data. Empirically, despite

the disadvantage of operating on disaggregated data, our method

matches or bests priority sampling, a state of the art method on

pre-aggregated data. When compared to naive uniform sampling,

it performs orders of magnitude be�er on skewed data. We also

propose extensions to the sketch that allow it to be used in combin-

ing multiple data sets, in distributed systems, and for time decayed

aggregation.

�is paper is a work in progress.

CCS CONCEPTS

•Mathematics of computing→Probabilistic algorithms; •�eory

of computation →Sketching and sampling;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA’17), Halifax,
Nova Scotia, Canada

© 2017 Copyright held by the owner/author(s). .
DOI:

KEYWORDS

Data sketching, subset sum estimation, counting, frequent item,

heavy hi�ers, sampling

1 INTRODUCTION

When analyzing massive data sets, even simple operations such

as computing a sum or mean is costly and time consuming. �ese

simple operations are frequently performed both by people investi-

gating the data interactively and asking a series of questions about

it as well as in automated systems which must monitor or collect a

multitude of statistics.

Data sketching algorithms enable the information in these mas-

sive datasets to be e�ciently processed, stored, and queried. �is

allows them to be applied, for example, in real-time systems, both

for ingesting massive data streams or for interactive analysis.

In order to achieve this e�ciency, sketches are designed to only

answer a speci�c class of question, and there is typically error

in the answer. In other words, it is a form of lossy compression

on the original data where one must choose what to lose in the

original data. A good sketch makes the most e�cient use of the

data so that the errors are minimized while having the �exibility

to answer a broad range of questions of interest. Some sketches,

such as HyperLogLog, are constrained to answer very speci�c

questions with extremely li�le memory. On the other end of the

spectrum, sampling based methods such as priority sampling [13]

or coordinated sampling [3], [7] are able to answer almost any

question on the original data but at the cost of far more space to

achieve the same approximation error.

We introduce a sketch, unbiased space saving, that simultane-

ously addresses two common data analysis problems: the disag-

gregated subset sum problem and the frequent item problem. �is

makes the sketch more �exible than previous sketches that address

one problem or the other. Furthermore, it is e�cient as it provides

state of the art performance on the disaggregated subset sum prob-

lem and has a stronger consistency guarantee for frequent item

count estimation than previous results for i.i.d. streams.

�e disaggregated subset sum estimation is a more challenging

variant of the subset sum estimation problem [13], the extremely

common problem of computing a sum or mean over a dataset with

arbitrary �ltering or grouping conditions. In the disaggregated

subset sum problem [5], [17] the data is ”disaggregated” so that a

per itemmetric of interest is split across multiple rows. For example

in an ad click stream, the data may arrive as a stream of single clicks

that are identi�ed with each ad while the metric of interest is the

total number of clicks per ad. �e frequent item problem is the

problem of identifying the heavy hi�ers or most frequent items in

a dataset. Several sketches exist for both these individual problems.

78

In particular, the sample and hold methods of [5], [15], [17] address

the disaggregated subset sum estimation problem. Frequent item

sketches include the space saving sketch [23], Misra-Gries sketch

[24], and lossy counting sketch. [22].

Our sketch is an extension of the space saving frequent item

sketch, and as such, has stronger frequent item estimation proper-

ties than sample and hold. In particular, unlike sample and hold,

theorem 6.1 gives both that a frequent item will eventually be in-

cluded in the sketch with probability 1, and that the proportion of

times it appears will be consistently estimated for i.i.d. streams. In

contrast to frequent item sketches which are biased, our unbiased

space saving sketch gives unbiased estimates for any subset sum,

including subsets containing no frequent items.

Our contributions are in three parts: 1) the development of the

unbiased space saving sketch, 2) the generalizations obtained from

understanding the properties of the sketch and the mechanisms by

which it works, and 3) the theoretical and empirical results estab-

lishing the correctness and e�ciency of the sketch for answering

the problems of interest. In particular, the generalizations allow

multiple sketches to be merged so that information from multiple

data sets may be combined as well as allowing it to be applied in

distributed system. Other generalizations include the ability to

handle signed and real-valued updates as well as time-decayed ag-

gregation. We empirically test the sketch on both synthetic and real

ad prediction data. Surprisingly, we �nd that it even outperforms,

priority sampling, a method that requires pre-aggregated data.

�is paper is structured as follows. First, we describe the disag-

gregated subset sum problem, some of its applications, and related

sketching problems. We then introduce our sketch, unbiased space

saving, as a small but signi�cant modi�cation of the space-saving

sketch. We examine its relation to other frequent item sketches,

and show that they di�er in a ”reduction” operation. �is is used

to show that any unbiased reduction operation yields an unbiased

sketch for the disaggregated subset sum estimation problem. �e

theoretical properties of the sketch are then examined. We conjec-

ture its consistency for the frequent item problem and for drawing

a probability proportional to size sample and provide informal ar-

guments that we believe can be made precise. Finally, we present

experiments using real and synthetic data.

2 DISAGGREGATED SUBSET SUM PROBLEM

Many data analysis problems consist of a simple aggregation over

some �ltering and group by conditions.

SELECT sum(metric), dimensions

FROM table

WHERE filters

GROUP BY dimensions

�is problem has several variations that depend on what is

known about the possible queries and about the data before the

sketch is constructed. For problems in which there is no group by

clause and the set of possible �lter conditions are known before

the sketch is constructed, counting sketches such as the CountMin

sketch [9] and AMS sketch [2] are appropriate. When the �lters

and group by dimensions are not known and arbitrary, the problem

is the subset sum estimation problem. Sampling methods such as

priority sampling [13] can be used to solve it. �ese work by exploit-

ing a measure of importance for each row and sampling important

rows with high probability. For example, when computing a sum,

the rows containing large values contribute more to the sum.

�e disaggregated subset sum estimation problem is a more dif-

�cult variant where there is li�le to no information about row im-

portance and only a small amount of information about the queries.

For example, many user metrics, such as number of clicks, are com-

puted as aggregations over some event stream where each event

has the same weight 1 and hence, the same importance. Filters and

group by conditions can be arbitrary except for a small restriction

that one cannot query at a granularity �ner than a speci�ed unit

of analysis. In the click example, the �nest granularity may be at

the user level. One is allowed to query over arbitrary subsets of

users but cannot query a subset of a single user’s clicks. �e data

is ”disaggregated” since the relevant per unit metric is split across

multiple rows. We will refer to something at the smallest unit of

analysis as an item to distinguish it from one row in the data.

Since pre-aggregating to compute per unit metrics does not

reduce the amount of relevant information, it follows that the best

accuracy one can achieve is to �rst pre-aggregate and then apply

a sketch for subset sum estimation. �is operation, however, is

extremely expensive, especially as the number of units is o�en

large. Examples of units include users and ad id pairs for ad click

prediction, source and destination IP pairs for IP �ow metrics, and

distinct search queries or terms. Each of these have trillions or

more possible units.

Several sketches based on sampling have been proposed that

address the disaggregated subset sum problem. �ese include the

bo�om-k sketch [6] which samples items uniformly at random,

the class of ”NetFlow” sketches [14], and the sample and hold

sketches [5], [15], [17]. Of these, the Sample-and-Hold sketches are

clearly the best as they use strictly more information than the other

methods to construct samples and maintain aggregate statistics.

We describe them in more depth in section 4.4.

�e unbiased space-saving sketch we propose throws away even

less information than previous sketches. Surprisingly, this allows it

to match the accuracy of priority sampling, a nearly optimal subset

sum estimation algorithm [29], which uses pre-aggregated data.

In some cases, our sketch achieves be�er accuracy despite being

computed on disaggregated data.

2.1 Applications

�e disaggregated subset sum problem has many applications.

�ese include machine learning and ad prediction [28], analyz-

ing network data [14], [5], detecting distributed denial of service

a�acks [27], database query optimization and join size estimation,

as well as analyzing web users’ activity logs or other business

intelligence applications.

For example, in ad prediction the historical click-through rate

and other historical data are among the most powerful features for

future ad clicks [18]. Since there is no historical data for newly

created ads, one may use historical click or impression data for

previous ads with similar a�ributes such as the same advertiser or

product category [26]. In join size estimation, it allows the sketch

to estimate the size under the arbitrary �ltering conditions that a

user might impose.

2

79

Algorithm 1 Space-Saving algorithms

• Maintain anm list of (item, count) pairs initialized to have

count 0.

• For each new row in the stream, let xnew be its item and

increment the corresponding counter if the item is in the

list. Otherwise, �nd the pair (xmin , N̂min) with the small-

est count. Increment the counter and replace the item label

with xnew with probability p.

• For the original space-saving algorithmp = 1. For unbiased

count estimates p = 1/(N̂min + 1).

It also can be naturally applied to hierarchical aggregation prob-

lems. For network tra�c data, IP addresses are arranged hierarchi-

cally. A network administrator may both be interested in individual

nodes that receive or generate an excess of tra�c or aggregated traf-

�c statistics on a subnet. Several sketches have been developed to

exploit hierarchical aggregations including [8], [25], and [30]. Since

the disaggregated subset sum sketches handles arbitrary group by

conditions, it can compute the next level in a hierarchy.

2.2 Frequent item problem

�e frequent item or heavy hi�er problem is related to the disag-

gregated subset sum problem. Our sketch is an extension of space

saving, [23], a frequent item sketch. Like the disaggregated subset

sum problem, frequent item sketches are computed with respect

to a unit of analysis that requires a partial aggregation of the data.

Only the most frequent items are of interest though. Most frequent

item sketches are deterministic and have deterministic guarantees

on both the identi�cation of frequent items and the error in the

counts of individual items. However, since counts in frequent item

sketches are biased, further aggregation on the sketch can lead to

large errors as bias accumulates as shown in section 6.2.

Our work is based on a frequent item sketch, but applies ran-

domization to achieve unbiased count estimates. �is allows them

to be used in subset sum queries. Furthermore, it maintains good

frequent item estimation properties as shown in section 6.

3 UNBIASED SPACE-SAVING

Our sketch is based on the space-saving sketch [23] used in frequent

item estimation. For simplicity, we consider the case where the

metric of interest is the count for each item. �e space saving

sketch works by maintaining a list of m bins labeled by distinct

items. A new row with item i increments i’s counter if it is in the

sketch. Otherwise, the smallest bin is incremented, and its label is

changed to i . Our sketch introduces one small modi�cation. If N̂min

is the count for the smallest bin, then only change the label with

probability 1/(N̂min + 1). �is change provably yields unbiased

counts as shown in theorem 3.1 More formally, the algorithms are

given in algorithm 1.

Theorem 3.1. For any item x , the randomized Space-Saving algo-

rithm in �gure 1 gives an unbiased estimate of the count of x .

Proof. Let N̂x (t) denote the estimate for the count of x at time

t and N̂min (t) be the count in the smallest bin. We show that the

expected increment toNx (t) is 1 ifx is the next item and 0 otherwise.

Suppose x is the next item. If it is in the list of counters, then it is

incremented by exactly 1. Otherwise, it incremented by N̂min (t)+1

with probability 1/(N̂min (t) + 1) for an expected increment of 1.

Now suppose x is not the next item. �e estimated count N̂x (t)

can only be modi�ed if x is the label for the smallest count. It is

incremented with probability N̂x (t)/(N̂x (t)+1). Otherwise N̂x (t +

1) is updated to 0. �is gives the update an expected increment of

EN̂x (t + 1) − N̂x (t) = (N̂x (t) + 1)N̂x (t)/(N̂x (t) + 1) − N̂x (t) = 0

when the new item is not x . �

We note that although given any �xed item x , the estimate of its

count is unbiased, each stored pair o�en contains an overestimate

of the item’s count. �is occurs since any item with a positive count

will receive a downward biased estimate of 0 when it is not in the

sketch. �us, conditional on an item appearing in the sketch, the

count must be biased upwards to balance out the bias.

4 RELATED SKETCHES AND FURTHER
GENERALIZATIONS

Although our primary goal is to demonstrate the usefulness of the

unbiased space-saving sketch, we also try to understand the mech-

anisms by which it works and �nd extensions and generalizations

that can be gleaned from that understanding.

In particular, we examine the relationship between unbiased

space saving and existing deterministic frequent items sketches.

We show that existing frequent item sketches all share the same

structure as an exact increment of the count followed by a size reduc-

tion. �is size reduction is implemented as an adaptive sequential

thresholding operation which biases the counts. Our modi�cation

replaces the thresholding operation with a subsampling operation.

�is observation allows us to extend the sketch. �is includes en-

dowing it with an unbiased merge operation that can be used to

combine datasets or in distributed computing environments.

�e sampling design in the reduction step may also be chosen

to give the sketch di�erent properties. For example, time-decayed

sampling methods may be used to weight recently occurring items

more heavily. If multiple metrics are being tracked, the multi-

objective sampling [4] may be used.

4.1 Probability proportional to size sampling

Our key observation in generalizing unbiased space saving is that

the choice of label is a sampling operation. In particular, this sam-

pling operation chooses the item with probability proportional to

its size. We brie�y review probability proportional to size sampling

and priority sampling as well as the Horvitz-�ompson estima-

tor which allows one to unbias the sum estimate from any biased

sampling scheme.

For unequal probability samples, an unbiased estimator for the

sum over the true population {xi } is given by the Horvitz-�omson

estimator Ŝ =
∑
i
xiZi
πi

whereZi denotes whether xi is in the sample

and πi = P (Zi = 1) is the inclusion probability. When only linear

statistics of the sampled items are computed, the item values may

be updated xnewi = xi/πi .

When drawing a sample of �xed size, it is trivial to see that an

optimal set of inclusion probabilities is given by πi ∝ xi when this

is possible. In other words, it generates a probability proportional

3

80

to size (PPS) sample. In this case, each term in the sum is constant,

so that the estimator is exact and has zero variance. When the

data is skewed, drawing a probability proportional size sample may

be impossible for sample sizes greater than 1. For example, given

values 1, 1, and 10, any scheme to draw 2 items with probabilities

exactly proportional to size has inclusion probabilities bounded by

1/10, 1/10, and 1. �e expected sample size is at most 12/10 < 2. In

this case, one o�en chooses inclusion probabilities πi = min{αxi , 1}

for some constant α . �e inclusion probabilities are proportional

to the size if the size is not too large and 1 otherwise.

Many algorithms exist for generating PPS samples. In particular,

the spli�ing procedure of [12] provides a class of methods to gener-

ate a �xed size PPS sample with the desired inclusion probabilities.

Another method which approximately generates a PPS sample is

priority sampling. Instead of exact inclusion probabilities which

are typically intractable to compute, priority sampling generates a

set of pseudo-inclusion probabilities.

4.2 Misra-Gries and frequent item sketches

�eMisra-Gries sketch [24], [11], [20] is a frequent item sketch and

is isomorphic to the space saving sketch [1]. �e only di�erence is

that it decrements all counters rather than incrementing the small-

est bin when processing an item that is not in the sketch. �us, the

count in the smallest bin for the space-saving sketch is equal to the

total number of decrements in the Misra-Gries sketch. Given esti-

mates N̂ from a space-saving sketch, the corresponding estimated

item counts for the Misra-Gries sketch are N̂MG
i = (N̂i − N̂min)+

where N̂min is the count for the smallest bin and the operation (x)+
truncates negative values to be 0. In other words, the Misra-Gries

estimate is the same as space saving estimate so� thresholded by

N̂min . Equivalently, the space-saving estimates are obtained by

adding back the total number of decrements N̂min to any nonzero

counter in the Misra-Gries sketch.

�e sketch has a deterministic error guarantee. When the total

number of items is N and the total estimated count for items in

the sketch is n̂tot =
∑
i n̂i then the error for any item’s count is at

most (n − n̂tot)/(m + 1).

Other frequent item sketches include the deterministic lossy

counting and randomized sticky sampling sketches [22]. We de-

scribe only lossy counting as sticky sampling has both worse prac-

tical performance and weaker guarantees than other sketches.

A simpli�ed version of Lossy counting applies the same decre-

ment reduction as the Misra-Gries sketch but decrements occur at a

�xed schedule rather than one which depends on the data itself. To

count items with frequency > N /m, all counters are decremented

a�er everym rows. Lossy counting does not provide a guarantee

that the number of counters can be bounded bym. In the worst

case, the size can grow to m log(N /m) counters. Similar to the

isomorphism between the Misra-Gries and Space-saving sketches,

the original Lossy counting algorithm is recovered by adding the

number of decrements back to any nonzero counter.

4.3 Reduction operations

Existing deterministic frequent item sketches di�er in only the

operation to reduce the number of nonzero counters. �ey all have

the form described in algorithm 2 and have reduction operations

that can be expressed as a thresholding operation. Although it

Algorithm 2 General frequent item sketching

• Maintain current estimates of counts N̂(t)

• Increment N̂ ′xt+1 (t + 1) ← N̂xt+1 (t) + 1.

• N̂(t + 1) ← ReduceBins (N̂′(t + 1), t + 1)

is isomorphic to the Misra-Gries sketch, space-saving’s reduction

operation can also be described as collapsing the two smallest bins

by adding the larger bin’s count to the smaller one’s.

Modifying the reduction operation provides the sketch with

di�erent properties. We highlight several uses for alternative re-

duction operations.

�e reduction operation for unbiased space saving can be seen as

a PPS sample on the two smallest bins. A natural generalization is

to consider a PPS sample on all the bins. We highlight three bene�ts

of such a scheme. First, items can be added with arbitrary counts

or weights. Second, the sketch size can be reduced by multiple

bins in one step. �ird, there is less quadratic variation added by

one sampling step, so error can be reduced. �e �rst two bene�ts

are obvious consequences of the generalization. To see the third,

consider when a new row contains an item not in the sketch, and let

J be the set of bins equal to the size of the smallest bin N̂min . When

using the thresholded PPS inclusion probabilities from section 4.1,

the resulting PPS sample has inclusion probability α = |J |/(1 +

|J |N̂min) for the new row’s item and αN̂min for bins in J . Other

bins have inclusion probability 1. A�er sampling, the Horvitz-

�ompson adjusted counts are 1/|J | + N̂min . Unbiased space

saving is thus a further randomization to convert the real valued

increment 1/|J | over |J | bins to an integer update on a single

bin. Since unbiased space saving adds an additional randomization

step, the PPS sample has smaller variance. �e downside of this

procedure, however, is that it requires real valued counters that

require more space per bin.

Changing the sampling procedure can also provide other desir-

able behaviors. Applying forward decay sampling [10] allows one

to obtain estimates that weight recent items more heavily. Other

possible operations include adaptively varying the sketch size in

order to only remove items with small estimated frequency.

Furthermore, the reduction step does not need to be limited

strictly to subsampling. �eorem 4.1 gives that any unbiased re-

duction operation yields unbiased estimates. �is generalization

allows us to analyze Sample-and-Hold sketches.

Theorem 4.1. Any reduction operation where the expected post-

reduction estimates are equal to the pre-reduction estimates yields

an unbiased sketch for the disaggregated subset estimation problem.

More formally, if E(N̂(t) |Spre (t)) = N̂pre (t) where Spre (t), N̂pre (t)

are the sketch and estimated counts before reduction at time step t

and N̂(t) is the post reduction estimate, then N̂(t) is an unbiased

estimator.

Proof. Since N̂pre (t) = N̂post (t − 1) + (n(t) − n(t − 1)), it

follows that N̂(t)−n(t) is a martingale with respect to the �ltration

adapted to S (t). �us, EN̂(t) = n(t), and the sketch gives unbiased

estimates for the disaggregated subset sum problem. �

We also note that reduction operations can be biased. �e merge

operation on the Misra-Gries sketch given by [1] can be seen as

4

81

performing a so�-thresholding by the size of the (m + 1)th counter.

�is also allows it to reduce the size of the sketch by more than 1

bin at a time. It can be modi�ed to handle deletions and arbitrary

numeric aggregations by making the thresholding operation two-

sided so that negative values are shrunk toward 0 as well. In this

case, we do not provide a theoretical analysis of the properties.

Modifying the reduction operation also yields interesting appli-

cations outside of counting. In particular, a reduction operation on

matrices can yield accurate low rank decompositions [21], [16].

4.4 Sample and Hold

To the author’s best knowledge, the current state of the art sketches

designed to answer disaggregated subset sum estimation problems

are the family of sample and hold sketches [17], [15], [5]. �ese

methods can also be described with a randomized reduction opera-

tion.

For adaptive sample and hold [5], the sketch maintains an auxil-

iary variable p which represents the sampling rate. Each point in

the stream is assigned a Ui ∼ Uni f orm(0, 1) random variable, and

the items in the sketch are those withUi < p. If an item remains in

the sketch starting from time t0, then the counter stores the number

of times it appears in the stream a�er the initial time. Every time

the sketch becomes too large, the sampling rate is decreased so that

under the new rate p′, one item is no longer in the sketch.

It can be shown that unbiased estimates can be obtained by

keeping a counter value the same with probability p′/p and decre-

menting the counter by a random Geometric (p′) random variable

otherwise. If a counter becomes negative, then it is set to 0 and

dropped. Adding back the mean (1 − p′)/p′ of the Geometric ran-

dom variable to the nonzero counters gives an unbiased estimator.

E�ectively, the sketch replaces the �rst time an item enters the

sketch with the expected Geometric (p′) number of tries before

it successfully enters the sketch plus it adds the actual count af-

ter the item enters the sketch. Using the memoryless property of

Geometric random variables, it is easy to show that the sketch sat-

is�es the conditions of theorem 4.1. It is also clear that one update

step adds more error and unbiased space saving as it potentially

adds Geometric (p′) noise with variance (1 − p′)/p′2 to every bin.

Furthermore, the eliminated bin may not even be the smallest bin.

Since p′ is the sampling rate, it is expected to be close to 0. By con-

trast, unbiased space saving has bounded increments of 1 for bins

other than the smallest bin, and the only bin that can be removed

is the current smallest bin.

�e discrepancy is especially prominent for frequent items. A

frequent item in an i.i.d. stream for unbiased space saving enters

the sketch almost immediately, and the count for the item is nearly

exact as shown in theorem 6.1. For adaptive sample and hold, the

�rst ni (1 − p
′) occurrences of item i are expected to be discarded

and replaced with a high variance Geometric (p′) random variable.

Since p′ is typically small in order to keep the number of counters

low, most of the information about the count is discarded.

Another sketch, step sample-and-hold, avoids the problem by

maintaining counts for each ”step” when the sampling rate changes.

However, this is more costly both from storage perspective as well

as a computational one. For each item in the sketch, computing

the expected count takes time quadratic in the number of steps Ji

100 80 60 40 20 0

Misra−Gries

Bin

Ite
m

 c
ou

nt

−

100 80 60 40 20 0

Unbiased Space Saving

Bin

+

−

Figure 1: In a merge operation, the Misra-Gries sketch sim-

ply removes mass from the extra bins with small count. Un-

biased space saving moves the mass from infrequent items

to moderately frequent items. It loses the ability to pick

those items as frequent items in order to provide unbiased

estimates for the counts in the tail.

in which the step’s counter for the item is nonzero, and storage is

linear in Ji .

4.5 Merging and Distributed counting

�e generalized reduction operations allow for merge operations

on the sketches. Merge operations and mergeable sketches [1] are

important since they allow a collection of sketches, each which

answers questions about the speci�c data it was constructed on,

to be combined to answer a question over all the data. For exam-

ple, a set of frequent item sketches that give trending news for

each country can be combined to give trending news for Europe

as well as a multitude of other possible combinations. Another

common scenario arises when sketches are aggregated across time.

Sketches for clicks may be computed per day, but the �nal machine

learning feature may combine the last 7 days. Furthermore, merges

allow for simple distributed computation. In a map-reduce frame-

work, each mapper can quickly compute a sketch, and only a set

of small sketches needs to be sent over the network to perform an

aggregation at the reducer.

As noted in the previous section, the Misra-Gries sketch has

a simple merge operation which preserves its deterministic error

guarantee. It simply so� thresholds by the (m+1)th largest counter

so that at mostm nonzero counters are le�. Previously, no merge

operation existed for space-saving except to �rst convert it to a

Misra-Gries sketch. �e conversion of so�-thresholds to approx-

imate hard thresholds yields a merge operation for space-saving

sketches. However, this does not preserve the total item count. �e-

orem 4.1 shows that by replacing the pairwise randomization with

priority sampling or some other sampling procedure still allows

one to obtain an unbiased space saving merge that can preserve

the expected count in the sketch rather than biasing it downward.

�e trade-o� required for such an unbiased merge operation is

that the sketch may detect fewer of the top items by frequency

than the biased Misra-Gries merge. Rather than truncating and

preserving more of the ”head” of the distribution, it must move

mass from the tail closer to the head. �is is illustrated in �gure 1.

5

82

5 PROPERTIES

We study the properties of the space-saving sketches here. �ese

include asymptotic properties, empirical properties, behavior in

pathological cases, and costs in time and space. In particular, we

conjecture and provide an informal proof that when the data is

i.i.d., the sketch eventually includes frequent items with probability

1. Other items are sampled with probability proportional to their

size. �is is also borne out in the experimental results where the

observed inclusion probabilities match the theoretical ones and

in estimation error where unbiased space saving matches or even

exceeds the accuracy of priority sampling. In pathological cases,

we demonstrate that deterministic space-saving fails at the subset

estimation problem. Furthermore, these pathological sequences can

arise naturally. Any sequence where items’ arrival rates change

signi�cantly over time forms a pathological sequence.

6 ASYMPTOTIC CONSISTENCY

We conjecture and provide a proof sketch that shows that the data

sketch contains all frequent items eventually on i.i.d. stream. �us

it does no worse than deterministic space-saving asymptotically

for frequent item estimation on such streams while having much

be�er aggregation behavior on pathological streams.

Assume that items are drawn from a possibly in�nite, discrete

distribution with probabilities p1 ≥ p2 ≥ . . . and, without loss of

generality, assume they are labeled by their index into this sequence

of probabilities. Letm be the number of bins and t be the number

of items processed by the sketch. We will also refer to t as time.

Let I (t) be the set of items that are in the sketch at time t and

Zi (t) = 1(i ∈ I (t)) indicate if the label i is in the sketch at time

t . De�ne an absolutely frequent item to be an item drawn with

probability > 1/m where m is the number of bins in the sketch.

Our precise conjecture and the proof sketch of its veracity are as

follows.

Conjecture 6.1. If p1 > 1/m, then as the number of items t → ∞,

Z1 (t) = 1 eventually.

Proof. �e goal is to show that label 1 will eventually become

”sticky.” �is requires (1) that some bin gets the label 1 and (2) that

the bin ”escapes” from being the smallest bin before it is relabeled,

and (3) that it remains that way so that the label cannot be changed.

For (1), it is easy to see that there are Ω(log t) times that the smallest

bin will �ip to label 1. Denote the size of the smallest bin Nmin (t)

and the estimated count for label 1 as N1 (t). Trivially Nmin (t) <

t/m ≤ tp1.For the remaining two requirements, we compare the

size of the bin with label 1 to t/m. For (2), we note that the smallest

bin grows at a rate of at least α =
∑
j>m pj . Hence, t/m−Nmin (t) ≤

(1−α)t/m+op (1). A bin growing at rate p1 will take approximately

t ′ − t = (t/m − Nmin (t)) (p1 − 1/m)−1 steps to catch up to t ′/m.

�e probability that the label is overwri�en during this time is

bounded above by (t ′ − t)/t ′ which simpli�es to a constant that

does not depend on the time t . �us, every time the label �ips to 1,

there is at least a constant nonzero probability of ”escape.” Every

time a bin escapes with label 1, N1 (t) − t/m forms an asymmetric

random walk starting at or slightly above 0. �e probability of

never returning to 0 and, hence, never being relabeled is at least

some positive constant c . Since there is some constant positive

probability a bin will become sticky a�er being relabeled 1, and

there are in�nitely many time it will acquire that label, it eventually

must become sticky. �

6.1 Approximate PPS Sample

An interesting consequence of the above conjecture is that bins

fall into two classes for i.i.d. streams. �e �rst class are bins with

labels that become ”sticky.” �ese are asymptotically ”pure” bins

where the proportion of items with the current label goes to 1. �e

second are bins where the label keeps changing because the rate of

a labeled bin is never greater than the rate for the smallest bin, and

hence, the size must remain close to the minimum bin size.

Each time an item is added to the smallest bin, the label for that

bin is a probability proportional to size sample of size 1 from the

items previously added to that bin. �is informal argument leads

to our second conjecture.

Conjecture 6.2. �e items in the sketch converge in distribution

to a PPS sample on i.i.d. streams where either a label is sampled with

probability 1 or with probability ∝ ni .

We note, however, that the resulting PPS sample has limita-

tions not present in PPS samples on pre-aggregated data. For

pre-aggregated data, one has both the original value xi and the

Horvitz-�ompson adjusted value xi/πi where πi is the inclusion

probability. �is allows the sample to compute non-linear statistics

such as the population variance which uses the second moment

estimator
∑
i x

2
i Zi/πi . With the PPS samples from disaggregated

subset sum sketching, only the adjusted values are observed.

6.2 Pathological sequences

Deterministic space-saving has remarkably low error when esti-

mating the counts of frequent items [8]. In general, if the order

data arrives is uniformly random or if the data stream consists of

i.i.d. data, one expects the deterministic space-saving algorithm to

share similar unbiasedness properties as the randomized version as

in both cases the label for a bin can be treated roughly as a uniform

random choice out of the items in that bin.

Pathological cases arise when an item’s arrival rate changes

over time rather than staying constant. Consider a sketch with 2

bins. For a sequence of c 1’s, c 2’s, a single 3, and a single 4, the

deterministic space saving algorithm will always return 3 and 4,

each with count c + 1. By contrast, randomized space-saving will

return 1 and 2 with probability (1− 1/c)2 ≈ 1 when c is large. Note

that in this case, the count for each frequent item is slightly below

the threshold that guarantees inclusion in the sketch, c < n/2. �is

example illustrates the behavior for the deterministic algorithm.

When an item is not in the ”frequent item head” of the distribution

then the bins that represent the tail pick the labels of the most

recent items without regard to the frequency of older items.

We note that such a pathological sequence can easily occur

naturally. For instance, partially sorted data can naturally lead to

such pathological sequences. Periodic bursts of an item followed

by periods in which its frequency drops below the threshold of

guaranteed inclusion are another example. Another pathological

case for disaggregated subset sum problems arises when every

item is distinct. �e deterministic sketch consists of the last m

6

83

items rather than a random sample, and no meaningful subset sum

estimate can be derived for deterministic space saving.

6.3 Running time and space complexity

�e update operation is identical to the deterministic space saving

update except that it changes the label of a bin less frequently. �us,

each update can be performed in O (1) time [23] when the stream

summary data structure is used. In this case the space usage is

O (m) in the number of bins.

7 EXPERIMENTS

We perform experiments with both simulations and real ad predic-

tion data. For synthetic data, we draw the count for each item using

a Weibull distribution that is discretized to integer values. �at

is ni ∼ Round (Weibull (k,α)) for item i . �e discretized Weibull

distribution is a generalization of the geometric distribution that

allows us to adjust the tail of the distribution to be more heavy

tailed. We choose it over the Zip�an or other truly heavy tailed

distributions as few real data distributions have in�nite variance.

Furthermore, we expect our methods to perform even be�er with

greater data skew as shown in �gure 2. For more easily reproducible

behavior we applied the inverse cdf method ni = F−1 (Ui) so that

theUi are on a regular grid of 1000 values rather thanUni f orm(0, 1)

random variables. In each case, we draw at least 10, 000 samples

to estimate the root mean squared error. To simulate a variety of

possible �ltering conditions, we draw random subsets of 100 items.

As expected, subsets which mostly pick items in the tail of the

distribution have estimates with higher relative root mean squared

error. Note that an algorithm with α times the root mean squared

error of a baseline algorithm o�en requires α2 times the space as

the variance, not the standard deviation, scales linearly with size.

For real data, we use a Criteo ad click prediction dataset 1. �is

dataset provides a sample of 45 million ad impressions. Each sample

includes the outcome of whether or not the ad was clicked as well as

multiple integer valued and categorical features. We pick a subset

of 9 of these features. �ere are over 500 million possible tuples

on these features and many more possible �ltering conditions. �e

impressions without a click are sampled at a lower rate than those

with clicks.

�e Criteo dataset provides a natural application of the disaggre-

gated subset sum problem. Historical clicks are a powerful feature

in click prediction [26], [19]. While the smallest unit of analysis

is the ad or the (user ,ad) pair, the data is in a disaggregated form

with one row per impression. Furthermore, since there may not be

enough data for a particular ad, the relevant click prediction feature

may be the historical click through rate for the advertiser or some

other higher level aggregation. Past work using sketches to esti-

mate these historical counts [28] include the CountMin counting

sketch as well as the Lossy Counting frequent item sketch.

Although we do not directly compare against sample and hold

methods, we note that �gure 2 in [5] shows that sample and hold

performs worse than priority sampling.

�is added variability in the threshold and the relatively small

sketch sizes for the simulations on i.i.d. streams may explain why

1h�p://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

Weibull(500k, 0.32) Geometric(0.03) Weibull(500k, 0.15)

0.001

0.100

0e+00 1e+05 2e+05 0e+00 1e+05 2e+05 0e+00 1e+05 2e+05

True count

R
e
la

ti
ve

 E
rr

o
r

(l
o
g
)

Unbiased Space Saving

Priority Sampling

Figure 2: �e empirical performance of Unbiased Space-

Saving matches priority sampling, which required an ex-

pensive pre-aggregation step. �e sketch accuracy improves

when the skew is higher and when more and larger bins are

contained in the subset. �e number of bins is 200.

Weibull(500k, 0.32) Geometric(0.03) Weibull(500k, 0.15)

0.01

0.10

1.00

0e+00 1e+05 2e+05 3e+05 0e+00 1e+05 2e+05 3e+05 0e+00 1e+05 2e+05 3e+05

True count

R
e
la

ti
ve

 E
rr

o
r

(l
o
g
)

Unbiased Space Saving

Priority Sampling

Bottom−k

Figure 3: Unbiased space saving performs orders of magni-

tude better than uniform sampling of items (Bottom-k). �e

plots show the smoothed plot of relative error versus the

true count. With 100 bins, the error is higher than with 200

bins given in �gure 2 but the curve is qualitatively similar.

●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●
●●
●●●●
●●●●●●
●●●●●●
●●●
●
●●
●●●●●
●●●
●●●●●
●●●●
●●●●
●●●
●●●●●
●●●●
●●
●●●
●●
●
●
●●
●●
●
●
●●
●
●●

●
●
●
●
●

●

●

●

●

●●●●●●●●●●●

0.
0

0.
4

0.
8

●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●
●●●●●●●●
●●●●●●●●
●
●
●●●●●
●
●●●●●●
●●●●
●●●●●●
●●●●
●●●●●●
●●●●●●
●
●●●●●
●●●●
●●●●
●●●
●●●
●
●
●●●
●●●
●●
●●●
●●

●●
●
●●●
●
●●
●●
●
●●
●●
●
●●
●
●
●
●
●●

●
●
●
●
●
●

●●

●●●●●●●●●●●●

0 400 800

0.
0

0.
4

0.
8

●●
●●

●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●
●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●
●
●●●
●●●●●●●●●
●
●●
●●●
●
●●
●●●●
●●●●●
●●●
●●●●●
●●

●

●
●●●
●●●●

●●●
●●●
●●●●
●●●●
●
●●
●
●
●●
●●
●

●●
●●●●

●
●
●

●

●
●●●
●

●●
●
●

●
●●

●
●

●

●●

●
●
●
●

●

●●

●
●

●
●
●
●

●
●
●
●

●

●
●
●
●
●
●●

●

●●
●●

●
●●
●
●
●

●

●

●

●
●

●●

●●

●

●
●
●

●●●

●
●●

●●
●

●●●

●

●
●

●

●

●
●
●
●

●●●

●

●●
●●

●

●
●●●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●
●

●●

●

●
●

●

●

●

●●

●
●

●
●

●●

●

●
●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●
●●

●
●
●

●

●●

●●

●

●

●
●

●
●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1000 1400 1800

In
cl

us
io

n
pr

ob
ab

ili
ty

D
et

er
m

in
is

tic

U
nb

ia
se

d

Item

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2

0.4

0.6

0.8

1.0

5000 10000 15000 20000 25000

True count

R
el

at
iv

e
E

rr
or

●

●

Unbiased

Deterministic

Figure 4: Deterministic Space-Saving performs poorly on

pathological sequences. Le�: Items 1 to 1000 only appear in

the �rst half of the stream. �e inclusion probabilities for a

pathological sequence still behave like a PPS sample for un-

biased space saving, but only the frequent items in the �rst

half are sampled under deterministic space saving. Right:

As a result, deterministic space saving is highly inaccurate

when querying items in the �rst half of the stream.

unbiased space saving performs even be�er than what could be

considered close to a ”gold standard” on pre-aggregated data.

7

84

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

8 CONCLUSION

We have introduced a novel sketch, unbiased space saving, that

answers both the disaggregated subset sum and frequent item prob-

lems. Surprisingly, for the disaggregated subset sum problem, the

sketch can outperform even methods that run on pre-aggregated

data. We prove that asymptotically, it can answer the frequent item

problem for i.i.d. sequences with probability 1 eventually. Further-

more, it gives stronger probabilistic consistency guarantees on the

accuracy of the count than the deterministic space saving sketch.

For infrequent items, we prove that the items selected for the sketch

are sampled approximately according to a PPS sample.

We study its behavior and connections to other data sketches. In

particular, we identify the primary di�erence between many of the

frequent item sketches is a slightly di�erent operation to reduce the

number of bins. We use that understanding to provide multiple gen-

eralizations to the sketch which allow it to be applied in distributed

se�ings, handle weight decay over time, and adaptively change its

size over time. �is also allows us to compare unbiased space to

the family of sample and hold sketches that are also designed to

answer the disaggregated subset sum problem.

REFERENCES
[1] P. K. Agarwal, G. Cormode, Z. Huang, Je� M Phillips, Z. Wei, and K. Yi. 2013.

Mergeable summaries. ACM Transactions on Database Systems 38, 4 (2013), 26.
[2] N. Alon, Y.Matias, andM. Szegedy. 1999. �e Space Complexity of Approximating

the Frequency Moments. J. Comput. System Sci. 58, 1 (1999), 137–147.
[3] K. R.W. Brewer, L.J. Early, and S.F. Joyce. 1972. Selecting several samples from a

single population. Australian & New Zealand Journal of Statistics 14, 3 (1972),
231–239.

[4] Edith Cohen. 2015. Multi-objective weighted sampling. In Hot Topics in Web
Systems and Technologies (HotWeb), 2015 �ird IEEE Workshop on. IEEE, 13–18.

[5] E. Cohen, N. Du�eld, H. Kaplan, C. Lund, and M. �orup. 2007. Sketching
unaggregated data streams for subpopulation-size queries. In PODS. ACM.

[6] Edith Cohen and Haim Kaplan. 2007. Summarizing data using bo�om-k sketches.
In PODC.

[7] E. Cohen and H. Kaplan. 2013. What You Can Do with Coordinated Samples. In
RANDOM.

[8] Graham Cormode and Marios Hadjiele�heriou. 2008. Finding frequent items in
data streams. VLDB 1, 2 (2008), 1530–1541.

[9] G. Cormode and S. Muthukrishnan. 2005. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms 55, 1 (2005),
58–75.

[10] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu. 2009. Forward decay: A
practical time decay model for streaming systems. In ICDE. IEEE, 138–149.

[11] E. D. Demaine, A. López-Ortiz, and J. I. Munro. 2002. Frequency estimation of
internet packet streamswith limited space. In European Symposium on Algorithms.
348–360.

[12] J.C. Deville and Y. Tillé. 1998. Unequal probability sampling without replacement
through a spli�ing method. Biometrika 85, 1 (1998), 89–101.

[13] Nick Du�eld, Carsten Lund, and Mikkel �orup. 2007. Priority sampling for
estimation of arbitrary subset sums. Journal of the ACM (JACM) 54, 6 (2007), 32.

[14] C. Estan, K. Keys, D. Moore, and G. Varghese. 2004. Building a be�er NetFlow.
In ACM SIGCOMM Computer Communication Review, Vol. 34. ACM, 245–256.

[15] Cristian Estan and George Varghese. 2002. New directions in tra�c measurement
and accounting. Vol. 32. ACM.

[16] Mina Ghashami, Edo Liberty, and Je� M Phillips. E�cient Frequent Directions
Algorithm for Sparse Matrices. (��).

[17] P. B. Gibbons and Y. Matias. 1998. New sampling-based summary statistics for
improving approximate query answers. In ACM SIGMOD Record, Vol. 27. ACM,
331–342.

[18] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers,
and others. 2014. Practical lessons from predicting clicks on ads at facebook. In
Proceedings of the International Workshop on Data Mining for Online Advertising.
ACM, 1–9.

[19] D. Hillard, S. Schroedl, E. Manavoglu, H. Raghavan, and C. Legge�er. 2010.
Improving ad relevance in sponsored search. InWSDM. ACM, 361–370.

[20] R. M. Karp, S. Shenker, and C. H Papadimitriou. 2003. A simple algorithm for
�nding frequent elements in streams and bags. ACM Transactions on Database
Systems (TODS) 28, 1 (2003), 51–55.

[21] Edo Liberty. 2013. Simple and deterministic matrix sketching. In KDD. ACM.
[22] G. Manku and R. Motwani. 2002. Approximate frequency counts over data

streams. In VLDB.
[23] A. Metwally, D. Agrawal, and A. El Abbadi. 2005. E�cient computation of

frequent and top-k elements in data streams. In ICDT.
[24] J. Misra and D. Gries. 1982. Finding repeated elements. Science of computer

programming 2, 2 (1982), 143–152.
[25] M. Mitzenmacher, T. Steinke, and J. �aler. 2012. Hierarchical heavy hi�ers with

the space saving algorithm. InMeeting on Algorithm Engineering & Expermiments.
160–174.

[26] Ma�hew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In WWW. ACM, 521–530.

[27] V. Sekar, N. Du�eld, O. Spatscheck, J. E. van der Merwe, and H. Zhang. LADS:
Large-scale Automated DDoS Detection System.

[28] A. Shrivastava, A. C. König, and M. Bilenko. 2016. Time Adaptive Sketches
(Ada-Sketches) for Summarizing Data Streams. SIGMOD (2016).

[29] Mario Szegedy. 2006. �e DLT priority sampling is essentially optimal. In STOC.
ACM, 150–158.

[30] Y. Zhang, S. Singh, S. Sen, N. Du�eld, and C. Lund. 2004. Online identi�cation of
hierarchical heavy hi�ers: algorithms, evaluation, and applications. In Internet
Measurement Conference (IMC). ACM, 101–114.

8

85

	Abstract
	1 Introduction
	2 Disaggregated subset sum problem
	2.1 Applications
	2.2 Frequent item problem

	3 Unbiased Space-saving
	4 Related sketches and further generalizations
	4.1 Probability proportional to size sampling
	4.2 Misra-Gries and frequent item sketches
	4.3 Reduction operations
	4.4 Sample and Hold
	4.5 Merging and Distributed counting

	5 Properties
	6 Asymptotic consistency
	6.1 Approximate PPS Sample
	6.2 Pathological sequences
	6.3 Running time and space complexity

	7 Experiments
	8 Conclusion
	References

