
Learning Strategies in Game-theoretic Data Interaction*

Ben McCamish
Oregon State University

mccamisb@oregonstate.edu

Arash Termehchy
Oregon State University

termehca@oregonstate.edu

Behrouz Touri
University of Colorado Boulder

touri@colorado.edu

Liang Huang
Oregon State University

liang.huang@oregonstate.edu

ABSTRACT
As most database users cannot precisely express their information
needs in the form of database queries, it is challenging for database
query interfaces to understand and satisfy their intents. Database
systems usually improve their understanding of users’ intents by
collecting their feedback on the answers to the users’ imprecise and
ill-specified queries. Users may also learn to express their queries
precisely during their interactions with the database system. In this
paper, we report our progress on developing a formal framework
for representing and understanding information needs in database
querying and exploration. Our framework considers querying as a
collaboration between the user and the database system to establish
a mutual language for representing information needs. We formal-
ize this collaboration as a signaling game between two potentially
rational agents: the user and the database system. We empirically
analyze the users’ learning mechanisms using a real-world query
workload. Given the users’ learning mechanisms, we extend and
evaluate some reinforcement learning mechanisms for the database
system to establish effectively a mutual language between with
adapting users. We believe that this framework naturally models the
long-term interaction of users and database systems.

KEYWORDS
Usable query interfaces, Interactive query interfaces, Game theory,
Rational agents, Reinforcement Learning, Intents and Queries

ACM Reference format:
Ben McCamish, Arash Termehchy, Behrouz Touri, and Liang Huang. 2017.
Learning Strategies in Game-theoretic Data Interaction. In Proceedings of ,
Halifax, Nova Scotia, Canada, August 14th, 2017 (KDD 2017 Workshop on
Interactive Data Exploration and Analytics (IDEA’17)), 9 pages.
DOI:

1 INTRODUCTION
Because most users do not know database query languages, such
as SQL, the structure, and/or the content of their databases, they
cannot precisely express their queries [10, 11, 20, 21]. Hence, it
is challenging for database query interfaces to understand and sat-
isfy users’ information needs, i.e., intents. Developing usable query
interfaces that can effectively answer imprecise and ill-specified

*A portion of this work was been previously published in HILDA titled A Game-
theoretic Approach to Data Interaction: A Progress Report

KDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA’17), Halifax,
Nova Scotia, Canada
2017. .
DOI:

queries has attracted a great deal of attention in the last decade
[6, 10, 11, 18, 19, 23]. Ideally, we would like the user and query
interface to establish a mutual understanding where the query inter-
face understands how the user expresses her intents and/or the user
learns to formulate her queries precisely.

Researchers have proposed several techniques in which a database
system may improve its understanding of the true information need
behind a query [10, 11, 18, 19]. These methods generally assume
that the way a user expresses her intents remains generally intact
over her course of interaction with the database. However, users
may leverage their experience from previous interactions with the
database to express their future intents more precisely. For example,
the more a user interacts with a relational database, the more familiar
she may become with the important and relevant attributes and
relations in the database, and therefore, the more precisely she may
express her queries over the database. Moreover, current methods
mainly improve the mutual understanding of a user and a database
for a single information need. Nevertheless, many users explore a
database to find answers for various information needs potentially
over a long period of time. For example, a biologist may query a
reference database that contains information about certain genes and
proteins for several years. Thus, a natural and realistic model for
database interaction should consider the long-term adaptation for
both users and database systems during their interactions.

To address the aforementioned shortcomings, we have recently
proposed a novel framework that models database querying as a col-
laborative game between two active and potentially rational agents:
the user and query interface [26]. The common goal of the players
is to reach a mutual understanding on expressing intents in the form
of queries. The players may reach this goal through communication:
the user informs the database system of her intents by submitting
queries, the database system returns some results for the queries,
and user provides some feedback on how much the returned results
match her intents, e.g., by clicking on some desired answer(s). The
user may also modify her query to better reflect her intent after
exploring the returned answers. Both players receive some reward
based on the degree by which the returned answers satisfy the intents
behind queries. We believe that this framework naturally models the
long-term data interaction between humans and database systems.

In this paper, we provide an overview of our proposed frame-
work. Also, using a real-world query workload, we investigate how
users learn to map their intents to queries. We analyze various rein-
forcement learning strategies for users and whether users frequently
explore various alternatives of expressing a certain intent, or pre-
serve relatively successful strategies. Our analysis indicate that while
users show some exploration behavior, they mainly reuse successful

69

methods of expressing intents. Furthermore, we extend two rein-
forcement learning strategies, namely UCB-1 [2] and Roth and Erv
[29] algorithms for the database system learning. UCB-1 is a pop-
ular choice for on-line and reinforcement learning in information
retrieval systems as these systems model the interaction between the
user and the information system as a Multi Armed Bandit problem
[28, 33]. Our empirical results show that Roth and Erv algorithm of-
ten outperforms UCB-1 where users learn to modify their strategies.

2 SIGNALING GAME FRAMEWORK
Next, we present an overview of the components of our model from
[26].

2.1 Intent
An intent e represents an information need sought after by a user.
We assume that each intent is a query in a fixed query language, e.g.,
SQL. The set of possible intents is infinite. However, in practice a
user has only a finite number of information needs in a finite period
of time. Hence, we assume the number of intents for a particular
user is finite. We index each intent over a database instance by
1 ≤ i ≤ m.

2.2 Query
Because a user may not be able to precisely formulate her intent e,
she may submit query q 6= e to the database instead. Of course, the
user still expects that the DBMS returns the answers of intent e for
query q. Queries may be formulated in the same language used the
represent intents. For example, one may submit an ill-specified SQL
query, e.g., do not use the right joins, to express her intent which is
also a SQL query. But, it may be sometimes hard for users to express
their queries using formal query languages [20]. For instance, some
users may prefer to use languages that are easier to use, e.g., keyword
or natural language queries, to express their intents. Our model does
not require the language that describes intents and the language
used to specify queries to be the same. Hence, the intent of a query
over a relational database may be precisely formulated by a SQL
query, but users may use keyword queries to express that intent. A
user in practice submits a finite number of queries in a finite time
period. Hence, we assume that the set of all queries submitted by
a user is finite. We index each query over a database instance by
1 ≤ j ≤ n. Table 1 shows a fragment of a database with relation
Grade that contains information about students and their grades. A
user may want to find the grade for student Sarah Smith, which can
be represented as (Keyword) query ‘Sarah Smith CS’. But, since she
does not know the content of the database, she may submit the under
specified query ‘Smith’.

2.3 Result
Given a query q over a database instance I , the database system
returns a set of tuples in I as the response to q. Because the database
system knows that the input query may not precisely specify the
user’s intent, it considers various methods to find answers that satisfy
the information need behind the query [11]. It often uses a scoring
function that scores all candidate tuples according to their degree of
relevance to the input query and return the ones with higher scores,
i.e., most relevant tuples [11].

2.4 Strategies
The user strategy indicates the likelihood by which the user submits
query qj given that her intent is ei. Hence, a user strategy, U , is
a m × n row-stochastic matrix from the set of intents to queries.
Similarly, the database system strategy shows the result returned by
the database system in the response of the input query qj . In other
words, the database strategy is an n× o row-stochastic matrix from
queries to the set of possible results. We note that our model does not
require the database system to materialize and maintain its strategy
as an n× o matrix. A database system may implement its strategy
using a function over some finite set of queries and tuples [11, 25].
Each pair (U,D) is called a strategy profile. Consider again the
university database shown in Table 1. Tables 1(a) and 1(b) show a
user’s intents and the queries they submit to the database system
to express these intents, respectively. Table (c) illustrates a strategy
profile for these sets of intents and queries.

2.5 Stochastic Strategies
Normally, database systems adapt strategies with only 0/1 entries [11].
For example, given the input query qj , they may return a set of tuples
whose scores according to a fixed and deterministic scoring func-
tion is above some given threshold. Hence, their query answering
algorithms are usually deterministic and do not involve any random-
ization. Nevertheless, it has been shown that this approach does not
allow the database system to collect feedback from the users on
sufficiently diverse set of tuples because users can provide feedback
only on tuples that have a relatively high score according the scoring
function. Since the users’ feedback will remain biased toward those
tuples, the database system will gain only a limited insight about the
intents behind the query. This is particularly important in long-term
interactions because the database system has more opportunities to
communicate and learn about users’ preferences. Hence, researchers
propose adapting a more probabilistic strategy in which the database
system with some probability may deviate from its scoring function
and present other tuples to the user to collect their feedback. Of
course, if the database system shows too many non-relevant tuples to
the user, the user may give up using the system. Thus, it is necessary
to have a trade-off between showing the tuples which the database
system deems relevant to the input query and the ones that it is not
sure to be relevant but interested to see users’ feedback for them to
balance the usability of the system in the short-term and improve
its effectiveness in the long run. Empirical studies over large doc-
ument collections show that it is possible to find such a trade-off
and significantly improve the effectiveness of answering ill-specified
queries [32]. We follow these results and assume that the database
may adapt a probabilistic strategy.

2.6 Reward
After the user submits a query to the database system and is pre-
sented by a set ot tuples, she will provide some feedback on the
returned results. This feedback may be implicit, e.g., click-through
information or the amount of time spent on reading the information
of a tuple, or explicit by marking some tuples as relevant and others
as non-relevant. Obviously, the goal of both the user and the database
system is to see as many relevant answers as possible in the returned
results. Hence, we assume that both the user and the database system

70

receive some reward according to the effectiveness of the returned
results after each interaction. We use standard effectiveness metric
NDCG to measure the reward for the user and database system given
a returned set of tuples [25]. The value of NDCG is between 0-1
and roughly speaking it is higher for the results with more rele-
vant answers. Our framework can be extended for other standard
effectiveness metrics, such as precision at k.

2.7 Signaling Game
We model the long-term interaction of the user and the database
system as a repeated game with identical interests played between
the user and the database system. At each round of the game, the
user wants to receive information about a randomly selected intent
ei. She picks query qj with probability Uij according to her strategy
to convey this intent to the database system. The database system
receives the query and returns a result l` to the user with probability
Dj`. The user provides some implicit or explicit feedback on l` and
both players receive reward of r(ei, l`) at the end of this interaction.
Each player may modify its strategy according to the reward it
receives at the end of each round. For example, the database system
may reduce the probability of returning the results without positive
feedback for the same query.

u(U,D) =

m∑
i=1

πi

n∑
j=1

Uij

o∑
`=1

Dj` r(ei, l`). (1)

where π is the prior probability of choosing an intent by the user
and r is the NDCG score. Neither of the players knows the other
player’s strategy. The players communicate only by sending queries,
results, and feedback on the results. In this paper, we focus on an
important question: how do users learn and update their strategies.

First_Name Last_Name Dept Grade
Sarah Smith CS A
John Smith EE B
Hayden Smith ME C
Kerry Smith CE D

Table 1: A database instance of relation Grade

(a) Intents

Intent# Intent
e1 John Smith in EE
e2 Kerry Smith in CE
e3 Sarah Smith in CS

(b) Queries

Query# Query
q1 ‘Kerry Smith’
q2 ‘Smith’

(c) A strategy profile

q1 q2
e1 0 1
e2 1 0
e3 0 1

l1 l2 l3
q1 0 1 0
q2 0.5 0 0.5

Table 2: Intents, queries, and a strategy over the DB in Table 1.

3 OPEN PROBLEMS
Traditionally, usable query interfaces, e.g., keyword query interfaces,
aim at improving users’ satisfaction by optimizing some effective-
ness metrics, e.g., p@k, for their input queries [11]. In our game-
theoretic formalization, however, the goal of the DBMS should be to
guide the interaction to a desired and stable state, i.e., equilibrium,
in which, roughly speaking, both players do not have any motivation
to change their strategies and they both get the maximum possible
reward. There are three important questions regarding this game.

• What are the desired and undesired equilibria of the game? It is
important to identify the non-optimal equilibria of the game as
the interaction may stabilize in these equilibria.

• What are the reasonable assumptions on the behavior and the
degree of rationality of the user? (Section 4)

• Given the answers to the previous two questions, what strategy
adaptation mechanism(s) should the DBMS use to guide and
converge the interaction to a desired equilibrium fast? At the
first glance, it may seem that if the DBMS adapts a reasonable
learning mechanism, the user’s adaptation can only help further
the DBMS to reach an optimal state as both players have identical
interest. Nevertheless, in some collaborative two-player games in
which both players adapt their strategies to improve their payoff,
the learning may not converge to any (desired) equilibrium and
cycle among several unstable states [30, 35]. More importantly,
the DBMS should use an adaptation strategy that keeps users
engaged [17]. In other words, the adaptation mechanism may
not significantly reduce the payoff of the user for too many
subsequent sessions. (Section 5)

We present some preliminary results on the last two aforementioned
questions in the following sections. In this work we do not address
the first one.

4 HOW DO USERS ADAPT?
Listed below are the equations for the reinforcement learning al-
gorithms that we used. This section also contains details on the
empirical analysis that we performed.

4.1 Bush and Mosteller’s
Bush and Mosteller’s model increases the probability that a user
will choose a given query when searching for a specific intent by
an amount proportional based on the reward of using that query
and the current probability of using this query for the intent in the
strategy [7]. It also decreases the probabilities of queries not used
in a successful interaction. This method updates the probabilities of
using queries for the intent ei after an interaction using the following
formulas.

Uij(t+1) =

{
Uij(t) + αBM · (1− Uij(t)) qj = q(t) ∧ r ≥ 0

Uij(t)− βBM · Uij(t) qj = q(t) ∧ r < 0

(2)

Uij(t+ 1) =

{
Uij(t)− αBM · Uij(t) qj 6= q(t) ∧ r ≥ 0

Uij(t) + βBM · (1− Uij(t) qj 6= q(t) ∧ r < 0

(3)
In the aforementioned formulas, αBM ∈ [0, 1] and βBM ∈ [0, 1]

are parameters of the model, q(t) denotes the query picked by the

71

user at time t, and r is the reward of the interaction. If query qj is
equal to the query chosen by the user to represent intent ei, then
Equation 2 is used. For all other queries qj for the intent ei at time t,
Equation 3 is used. The probabilities of using queries for intents
other than ei remains unchanged. Since the value of NDCG is always
greater than zero, i.e., r > 0, the parameter βBM is never used nor
trained.

4.2 Cross’s Model
Cross’s model modifies the user’s strategy similar to Bush and
Mosteller’s model [14]. However, it uses the amount of the received
reward to update the user strategy. There are two parameters in this
model, αC and βC that influence the rate of reinforcement

Uij(t+ 1) =

{
Uij(t) +R(r) · (1− Uij(t)) qj = q(t)

Uij(t)−R(r) · Uij(t) qj 6= q(t)
(4)

R(r) = αC · r + βC (5)

In the above formulas, αC ∈ [0, 1] and βC ∈ [0, 1] are the
parameters used compute the adjusted reward R(r) based on the
value of actual reward r. The parameter βC is a static increment
of the adjusted reward. Similar to Bush and Mosteller’s model, the
aforementioned formulas are used to update the probabilities of
using queries for the intent ei in the current interaction. Other entries
in the user’s strategy are remained unchanged.

4.3 Roth and Erev’s Model
Roth and Erev’s model reinforces the probabilities directly from the
reward value r that is received when the user enters query q(t) [29].
Its most important difference with other models is that it explicitly
accumulates all the rewards gained by using a query to express an
intent. The primary differences of this model and the previous two
models are that 1) it does not have any parameter to train and 2) there
is not an explicit penalization of queries that are not used. Sij(t) in
matrix S(t) maintains the accumulated reward of using query qj to
express intent ei over the course of the user and database system
interactions up to round (time) t.

Sij(t+ 1) =

{
Sij(t) + r qj = q(t)

Sij(t) qj 6= q(t)
(6)

Uij(t+ 1) =
Sij(t+ 1)

n∑
j′
Sij′(t+ 1)

(7)

Roth and Erev’s model increases the probability of using a query
to express an intent based on the accumulated rewards of using that
query over the long-term interaction of the user and data manage-
ment system. It does not explicitly penalize other queries. Of course,
because the user strategy U is row-stochastic, each query not used
in a successful interaction, i.e., an interaction with r > 0, will be
implicitly penalized as when the probability of a query increases, all
others will decrease to keep U row-stochastic.

4.4 Roth and Erev’s Modified Model
Roth and Erev’s modified model is similar to the original Roth and
Erev’s model, but it has an additional parameter that determines to
what extent the user takes in to account the outcomes of her past

interactions with the system [15]. It is reasonable to assume that the
user may forget the results of her much earlier interactions with the
system. User’s memory is imperfect which means that over time the
strategy may change merely due to the forgetful nature of the user.
This is accounted for by the forget parameter σ ∈ [0, 1]. Matrix S(t)
has the same role it has for the Roth and Erev’s model.

Sij(t+ 1) = (1− σ) · Sij(t) + E(j, R(r)) (8)

E(j, R(r)) =

{
R(r) · (1− ε) qj = q(t)

R(r) · (ε) qj 6= q(t)
(9)

R(r) = r − rmin (10)

Uij(t+ 1) =
Sij(t+ 1)

n∑
j′
Sij′(t+ 1)

(11)

In the aforementioned formulas, ε ∈ [0, 1] is a parameter that
weights the reward that the user receives, n is the maximum number
of possible queries for a given intent ei, and rmin is the minimum
expected reward that the user wants to receive. The intuition behind
this parameter is that the user often assumes some minimum amount
of reward is guaranteed when she queries the database. The model
uses this minimum amount to discount the received reward. We set
rmin to 0 in our analysis, representing that there is no expected
reward in an interaction. Therefor the model uses the total received
reward to reinforce a strategy.

4.5 Empirical Results Methods
We detail how the empirical work is setup and the parameters used
in this section.

4.5.1 Query Workload. We have used a subsample of a Ya-
hoo! query log for our empirical study [34]. The Yahoo! query log
consists of queries submitted to a Yahoo! search engine over a period
of time in July 2010. Each record in the query log consists of a time
stamp, user cookie, query submitted, the 10 results displayed to the
user, and the positions of the user clicks. All the record logs are
anonymized such that each time stamp, query, and returned result
are saved as a unique identifier. Accompanying the query log is
a set of relevance judgment scores for each query and result pair.
The relevance judgment scores determine user satisfaction with that
result. The score has the possible values of 0,1,2,3,4, with 0 mean-
ing not relevant at all and 4 meaning the most relevant result. For
our analysis we sorted the query log by the time stamp attribute
to simulate the time line of the users interaction with the Yahoo!
search engine. We determine the intent behind each query by using
the relevance judgment scores for the results for each query. We
consider the intent behind each query to be the set of results, i.e.,
URLs, with non-zero relevance scores.

4.5.2 Reinforcement Learning Methods. We have used and
adapted six different reinforcement learning methods to model users’
strategy in interaction with data systems. These models mainly vary
based on 1) the degree by which the user considers past interactions
when computing future strategies, 2) how they update the user strat-
egy, and 3) the rate by which they update the user strategy. Some
models assume that the user leverages outcomes of her past inter-
actions when she updates her current strategy. Other models allow

72

the user to forget older interactions. These methods also differ in
how they use the value of reward to update the user’s strategy. Some
reinforce a behavior, e.g., using a certain query to convey an intent,
after a successful attempt by a fixed value independent of the amount
of reward. Others use the value of received reward to reinforce a
behavior. Finally, a model may have some discounting factors to
control the rate by which a behavior is reinforced. In this study, we
have used the value of NDCG for the returned results of a query as
the reward in each interaction. Since NDCG models different levels
of relevance, it provides a more exact estimate of the true reward in
an interaction than other metrics that measure the quality of a ranked
list, such as precision at k.

The six models we have adapted to model users’ strategy in inter-
action with database systems are Bush and Mosteller’s model [7],
Cross’s Model [14], Roth and Erev’s Model [29], Roth and Erev’s
Modified Model [15], Win-Stay/Lose-Randomize [4], and Latest
Reward. The last method simply using the most recent reward as the
new probability for that query intent.

4.5.3 Comparing the Methods. Next, we compare the afore-
mentioned models in terms of their use of past interaction and their
update rules. Bush and Mosteller’s, Cross’s, and both Roth and
Erev’s models use information from the past to compute the future
strategies. The Roth and Erev’s models use the information about the
past interactions more than others. Win-Stay/Lose-Randomize and
Latest-Reward models do not rely as much as the first four methods
on the outcomes of the previous interactions. Cross’s, both Roth and
Erev’s, and the Latest-Reward models use the value of the reward
that is received after entering a query to update the strategy. Bush
and Mosteller’s and Win-Stay/Lose-Randomize models change their
strategies based on a fixed amount independent of the reward.

4.5.4 Training and Testing. Some models, e.g., Cross’s model,
have some parameters that need to be trained. We have used 5,000
records in the query workload and found the optimal values for
those parameters using a grid search and the sum of squared errors.
Each strategy has been initialized with an uniform distribution of
probabilities, so that all queries are likely to be used for a given intent
at the initial strategy. Once we had the parameters estimated for each
model, we let each model to run over 300,000 and 500,000 records
that follow the initial 5,000 records in the query log to compute a
user strategy. We have evaluated the accuracy of the trained user
strategies in predicting the future strategies of the users using the
interaction records for 2,000 unique intents in the query log that
follow the 300,000 records used in training. For each intent, we have
found its first log record that immediately follows the records used in
training and compared the predication of the strategy with the query
actually used in this log record to express the intent. To compare
the prediction accuracies of the strategies, we calculated the mean
squared distance between what a given strategy predicted and what
the user actually did.

4.6 Empirical Results
Tables 3 and 4 shows the results from the tests that we performed
as well as the estimated parameters. A lower mean squared distance
implies that the model more accurately represents the users’ learning
method. Roth and Erev’s and Roth and Erev’s modified models both

Method Mean
Squared
Distance

Standard
Deviation

Parameters

Bush and
Mosteller

0.01252 0.0785 αBM = 0.14

Cross 0.01261 0.07875 αC = 0.06
βC = 0.11

Roth and Erev 0.00993 0.05949
Roth and Erev
modified

0.00994 0.05954 σ = 0
ε = 0.18

Win-Stay/Lose-
Randomize

0.01747 0.06451 π = 0.01

Latest-Reward 0.12384 0.17118
Table 3: The accuracies of learning algorithms - 300,000 queries

Method Mean
Squared
Distance

Standard
Deviation

Parameters

Bush and
Mosteller

0.0112 0.07161 αBM = 0.14

Cross 0.01131 0.07207 αC = 0.06
βC = 0.11

Roth and Erev 0.00993 0.07326
Roth and Erev
modified

0.00994 0.0733 σ = 0
ε = 0.18

Win-Stay/Lose-
Randomize

0.01752 0.06388 π = 0.01

Latest-Reward 0.15167 0.19614
Table 4: The accuracies of learning algorithms - 500,000 queries

perform the best out of all the tested models. Because both Roth
and Erev models update the users strategies using the information
of the previous strategies and interactions, users use their previous
strategies and the outcomes of their previous interactions with the
system when they pick a query to express their current intent. This
result also indicates that the value of received reward should be
considered when reinforcing a strategy. From our analysis it appears
that users show a substantially intelligent behavior when adopting
and modifying their strategies.

Bush and Mosteller’s, Cross’s, and Win-Stay/Lose-Randomize
models perform worse than either of Roth and Erev’s models. Bush
and Mosteller’s model has a relatively low value of α. Therefore,
the rate of reinforcement is quite slow as the lower α is, the less a
successful strategy is reinforced. With an α of 0 for example, there
would be no reinforcement at all. Bush and Mosteller’s model also
does not consider the reward when reinforcing and therefor cannot
reinforce queries that get effective results more than others that
receive a smaller reward. Cross’s model suffers from the same lack
of reinforcement rate as Bush and Mosteller’s but has an additional
downfall. If the reward is extremely low, almost zero, the query will
still be reinforced as β is a constant value independent of the reward.
This means that queries with higher reward will be reinforced more,

73

but also means that queries with an extremely low reward will still
be reinforced when they probably should be left alone.

Win-Stay/Lose-Randomize does not provide an accurate predi-
cation because it does not consider the entire history of strategies
that the user has used. It also does not explore the space of possible
queries to improve the effectiveness of the interaction. Hence, it
seems that the users keep exploring possible queries to express an
intent more effectively, although they may already know a query that
conveys the intent quite successfully. Also, by only considering the
previous reward, Win-Stay/Lose-Randomize cannot make robust ad-
justments and instead makes fixed changes in the model that are quite
drastic. Finally, Latest-Reward performs the worst when compared
to all models by an order of magnitude. This is because not only
does this method have not memory like Win-Stay/Lose-Randomize,
but it also reinforcing the strategy too drastically.

They leverage all most of their past interactions and their out-
comes, i.e., have an effective long-term memory. This is specially
interesting as the results of previous lab studies have indicated that
mostly only proficient subjects rely on the accumulated rewards of
the past interactions and use Roth and Erev’s model for learning.
Those studies show that non-proficient users tend to use models that
do not leverage the information about the past interactions, such as
Cross’s model [8]. Also, the reward they receive directly impacts
how they reinforce their strategy and will dictate what queries are
used to represent intents in the future.

5 HOW SHOULD THE DBMS ADAPT?
This section looks at the third open problem we have listed in Sec-
tion 3. To compare the effectiveness of our model with those cur-
rently employed, we conduct the following experiments. One of the
popular models that is used during interaction with a database is the
Multi Armed Bandit, which models whether to return a result or not
as the pulling of an arm and ranking them based on some score. The
multi armed bandit model does not consider the user as an intelligent
agent that can possibly learn or adapt their strategies. A common
and effective algorithm used in the multi armed bandit model is the
UCB-1 algorithm [2, 27, 28, 33]. We construct the strategies of the
user and our model using a collection of queries and URLs from the
same Yahoo! dataset used earlier in Section 4. UCB-1 also uses this
collection of URLs as its corpus of documents to rank and return to
the user. The two algorithms are compared for some period of time
using the effectiveness metric Mean Reciprocal Rank (MRR) [13].

5.1 UCB-1
We compare our model against the multi armed bandit model using
the state of the art algorithm UCB-1 [2]. It has been used in many
different studies and often out performs its competitors [27, 28, 28,
31]. The algorithm uses a mixture of exploitation and exploration
combined into a single ranking function, shown in Equation 12.

Rankt(q, e) =
Wq,e,t

γq,e,t
+ α

√
2ln t

γq,e,t
(12)

In Equation 12, t is the current time during the interaction. UCB-1
calculates a score for a document, or intent, e given a query sent by
the user q. Exploitation in the algorithm comes from the first portion
of the equation where γ is how many times an intent was shown

to the user and W represents many times the user clicked on the
returned intent. The second portion of the equation represents the
exploration of the equation where α is an exploration weight value
set between [0, 1].

5.2 Roth and Erev in our model
In our model we use Roth and Erev’s adaptation method, illustrated
in Equations 13 and 14. After each round of the game, this method
updates the DBMS’s strategy according to the reward received in
the previous rounds, i.e., r(t).

Sji(t+ 1) =

{
Sji(t) + r(t) li = e(t)

Sji(t) li 6= e(t)
(13)

Dji(t+ 1) =
Sji(t+ 1)

m∑
i′
Sji′(t+ 1)

(14)

Roth and Erev’s model reinforces the probabilities directly from
the reward value r(t) that is received when the user queries for intent
e(t). Sji(t) in matrix S(t) maintains the accumulated reward of
returning result li to satisfy intent ei over the course of the user and
database system interactions up to round (time) t. Of course, because
the DBMS strategy D is row-stochastic, each result not returned
in a successful interaction, i.e., an interaction with r > 0, will be
implicitly penalized as when the probability of a result increases, all
others will decrease to keep D row-stochastic.

5.3 Comparing UCB-1 and Roth and Erev
There are multiple scenarios that occur in real world interactions
that UCB-1 does not consider. Here we list a few of them that we
have tested and compared with our model that handles these specific
scenarios.

5.3.1 Pooling of Intents. Often in practice the user does not
have access or the knowledge to use a unique query for every intent
they wish to express. This leads to a strategy on the user side that
we refer to as pooling. Pooling is a user strategy that has more
intents than queries, where there exists some ambiguity as to which
query should be used for each intent on the user side and which
intent should be returned on the database side, as a single query
could be used to represent multiple intents from the user. UCB-1
ranks returned results based on how often the user clicks on them
with some exploration, which may not provide the best answers
in some ranked K returned results if many intents are conveyed
using a single query. Our model uses probabilistic reinforcement
algorithms, however, which can reflect the frequency that users
query for a specific intent and return the desired result more often on
average. Our earlier example illustrated in Tables 1 and 2 shows a
user strategy where some amount of pooling takes place which leads
to a degree of ambiguity.

5.3.2 Probabilistic vs. Deterministic. In our model we can
employ some reinforcement learning algorithm that reflects its strat-
egy as some set of probabilities on which results to return to the user.
By using a probabilistic method of returning results we are able to
quickly determine which results the user is not interested in for a
received query. This probability can later adapt and change if the

74

user’s interests change over time. UCB-1, however, uses a determin-
istic ranking algorithm, which means that if the algorithm learns that
a specific intent is queried often with a certain query, then that result
will be ranked at the top consistently. It has to instead rely on the
exploration portion of the equation to explore other possible results
if the user’s interests change. This may be slow as the only time
exploration takes place is after some extended period of interaction
with that query. Deterministic methods have the problem of showing
the most frequently queried result near the top at all times and may
take some time to adapt to the user changing their strategy. This
slows down learning and adaptation to the user, whom may change
their strategy due to learning on their own part.

5.3.3 User Learning. Users learn when interacting with databases,
either from outside factors outside of our control or due to the in-
formation received through interaction. It is through this learning
that users may adapt their strategies to the interaction with the data-
base system. Our model considers interaction as a collaborative
game between two rational agents that are constantly learning about
one another. UCB-1, however, does not consider whether the user
changes their strategies or not and simply reacts to the user’s current
actions. After some extended period of interaction, the user may
settle on a pooled strategy. If the user has learned a pooled strategy,
then UCB-1 may struggle to satisfy the user’s information needs
as it will constantly be switching between which results to return
for a received query. UCB-1 relies on getting ’lucky’ with some
amount of exploration to show these results to the user. Our model,
however, considers the results to return with probabilities that reflect
the frequency of how often they are queried.

5.4 Experimental Setup
We compared UCB-1 with our model using Roth and Erev’s rein-
forcement learning algorithm. Our simulations were performed over
a Yahoo! dataset of queries and URLs, the same dataset that was
used in Section 4. We construct two identical user strategies, one
to interact with each database learning algorithm. Each learning
algorithm operates over the same set of possible intents to return.
Roth and Erev’s reinforcement model uses Reciprocal Rank as the
satisfaction metric when reinforcing and UCB-1 uses a click model.

5.4.1 User Strategy Initialization. The user strategies are ini-
tialized such that they both start out identical. Using the Yahoo!
query workload the user strategies start with some strategy already
based on the attractiveness scores provided in the dataset. Attractive-
ness is a value between [0-1] calculated as in Algorithm 1 from the
research in [9]. Using this attractiveness value, the user strategy is
initialized such that the intents and query pairs that have a higher
attractiveness start with a larger probability. The intent query pairs
that do not have any score or there are not enough clicks in the query
log to compute an attractiveness score have 0 probability.

One of the key differences between UCB-1 and our model is that
our model takes into account the user learning, which happens in
real world scenarios. The user strategy is updated using Roth and
Erev’s reinforcement learning model, which was determined to best
represent how the user adapts from Section 4. The satisfaction metric
for the reinforcement is Reciprocal Rank. Users will update their

strategy after every interaction. Intents to be queried are picked at
random with an even distribution.

Another difference between UCB-1 and our model is that often in
real life users tend to pool their intents to a single query. UCB-1 has
difficulty learning this kind of behavior. To simulate this type of real
world scenario, we construct the user strategies with some degree
of ambiguity. Ambiguity in the user strategy indicates how much
pooling takes place. We say that a user strategy has a high degree
of ambiguity if the user represents many intents with a single query.
Of course, the user may not represent these intents with the same
query all the time. For example, if the user strategy consists of 50
intents, then a strategy having a high degree of ambiguity may have
all queries share 50% of the intents.

5.4.2 Database Strategy Initialization. The database algo-
rithms and their weights are initialized the same for both algorithms.
Roth and Erev in our model is initialized with a purely random strat-
egy, with the same number of queries as the user strategy and a much
larger number of intents then the user is looking for. UCB-1 starts
with all of the values at 1, with the same set of possible documents to
rank as the Roth and Erev strategy in our model. The exploration rate,
α is initialized at 0.5, to allow for sufficient amount of exploration
during the simulation.

5.5 Results
First we compare the MRR that each strategy receives over time.
The user strategy has a high degree of ambiguity with 33 intents
and 2 queries. Each query is used for at least 12 of the other intents
query. Thus, each query will be sent for the same intent for at least
15 of the intents. The results from this comparison are illustrated in
Figure 1.

0 20000 40000 60000 80000 100000
of queries

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
e
a
n
 R

e
ci

p
ri

co
l
R

a
n
k

Roth and Erev Score
UCB-1 Score

Figure 1: MRR for 100,000 interactions

Second, we look at the average Reciprocal Rank over all the
intents. The user strategy again has a high degree of ambiguity with
30 intents and 2 queries, where each query needs to share at least 15
intents with the other query. These results are illustrated in Figure 2.

Both of these results show that the Roth and Erev reinforcement
algorithm when used with our model takes into account the user

75

0 20000 40000 60000 80000 100000
of queries

0.0

0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e
 R

e
ci

p
ro

ca
l
R

a
n
k

Roth and Erev Score
UCB-1 Score

Figure 2: Average Reciprocal Rank over intents for 100,000 in-
teractions

learning and the ambiguity that takes place in real world situations.
Looking at Figure 1 we can see that the average reward is increasing
faster. When running the simulation for a much longer period of
time, we actually notice that our model converges on a strategy
that has a consistently higher MRR value than UCB-1. Figure 2
sheds more light on why this is as we see that the reciprocal rank is
consistently at a rather low value. This is due to the fact that UCB-1
has a deterministic strategy and cannot return versatile results to the
user accounting for all the intents that they are querying for with a
limited number of queries.

Another interesting fact is that UCB-1 performs better in the
beginning of the simulation. This is because not all of the intents
have been queried much yet and it is still able to satisfy the user
for the small amount of intents it has learned. As the interaction
continues and more intents are used near the same frequency we see
that UCB-1 cannot satisfy the user as often as our model.

6 RELATED WORK
Researchers have proposed querying and exploration interfaces over
structured and semi-structured databases that help users to express
their information needs and find reasonably accurate results [1, 5, 6,
11, 16, 18, 19, 21, 23]. We extend this body of work by considering
users as active and potentially rational agents whose decisions and
strategies impact the effectiveness of database exploration. We also
go beyond effectively answering a single query and aim at improving
the effectiveness of overall interaction of users and database systems.

Researchers in other scientific disciplines, such as economics and
sociology, have used signaling games to formally model and explore
communications between multiple rational agents [12, 22]. Avestani
et al. have used signaling games to create a shared lexicon between
multiple autonomous systems [3]. We, however, focus on modeling
users’ information needs and emergence of mutual language between
users and database systems. In particular, database systems and users
may update their information about the interaction in different time
scales. Researchers have modeled the decision of a user to continue

or stop searching a certain topic over a collection of documents using
stochastic games [24].

We, however, seek a deeper understanding of information need
representations and the emergence of a common query language
between the user and the database system during their interactions.
Further, we investigate the interactions that may span over multi-
ple sessions. Of course, a relatively precise mutual understanding
between the user and the database system also improves the effec-
tiveness of ad-hoc and single-session querying.

Concurrent to our effort, Zhang et al.have proposed a model to
optimize the navigational search interfaces over document retrieval
systems such that a user finds her desired document(s) by performing
the fewest possible actions, e.g., clicking on links [36]. Our goal,
however, is to model and improve the mutual understanding of
intents and their articulations between the user and the database
system. Since data querying and exploration are performed over
series of interactions between two potentially rational agents, if one
agent unilaterally optimizes its reward without any regard to the
strategies of the other agent, the collaboration may not lead to a
desired outcome for any of the agents. Thus, instead of unilateral
optimization, our goal is to find a desired equilibrium for the game by
considering possible strategies and strategy adaptation mechanisms
for both users and database systems.

7 CONCLUSION
Most users are not able to express precisely their intents in the form
of database queries so the database systems understands them. Thus,
users’ queries do not often reflect their true information needs. The
users and database system may be able to establish a mutual language
of representing information needs through interaction. We described
our framework that models the interaction between the user and the
database system as a collaborative game of two potentially rational
agents in which the players would like reach a common method
of representing information needs. We empirically investigated the
exploration behavior of users using a real-world query workload.
Our results show that users typically use some degree of rationality
when interacting with the database system, remembering previous
interactions and adapting their strategy to them. We also compared
our model versus another popular model used, the multi armed bandit
with the UCB-1 algorithm. Our results show that correctly modeling
the interaction by considering the user and database as both rational
agents improves user satisfaction.

8 ACKNOWLEDGEMENTS
Arash Termehchy is supported in part by the National Science Foun-
dation under grant IIS-1423238. Liang Huang is supported in part by
the National Science Foundation under grant IIS-1656051, DARPA
N66001-17-2-4030 (XAI), and an HP Gift.

REFERENCES
[1] Azza Abouzied, Dana Angluin, Christos H. Papadimitriou, Joseph M. Hellerstein,

and Avi Silberschatz. 2013. Learning and verifying quantified boolean queries by
example. In PODS.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[3] Paolo Avesani and Marco Cova. 2005. Shared lexicon for distributed annotations
on the Web. In WWW.

76

[4] J. A. Barrett and K. Zollman. 2008. The Role of Forgetting in the Evolution
and Learning of Language. Journal of Experimental and Theoretical Artificial
Intelligence 21, 4 (2008), 293–309.

[5] Thomas Beckers and others. 2010. Report on INEX 2009. SIGIR Forum 44, 1
(2010).

[6] Angela Bonifati, Radu Ciucanu, and Slawomir Staworko. 2015. Learning Join
Queries from User Examples. TODS 40, 4 (2015).

[7] Robert R Bush and Frederick Mosteller. 1953. A stochastic model with applica-
tions to learning. The Annals of Mathematical Statistics (1953), 559–585.

[8] Yonghua Cen, Liren Gan, and Chen Bai. 2013. Reinforcement Learning in Infor-
mation Searching. Information Research: An International Electronic Journal 18,
1 (2013), n1.

[9] Olivier Chapelle and Ya Zhang. 2009. A dynamic bayesian network click model
for web search ranking. In Proceedings of the 18th international conference on
World wide web. ACM, 1–10.

[10] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum. 2006.
Probabilistic Information Retrieval Approach for Ranking of Database Query
Results. TODS 31, 3 (2006).

[11] Yi Chen, Wei Wang, Ziyang Liu, and Xuemin Lin. 2009. Keyword Search on
Structured and Semi-structured Data. In SIGMOD.

[12] I. Cho and D. Kreps. 1987. Signaling games and stable equilibria. Quarterly
Journal of Economics 102 (1987).

[13] Nick Craswell. 2009. Mean reciprocal rank. In Encyclopedia of Database Systems.
Springer, 1703–1703.

[14] John G Cross. 1973. A stochastic learning model of economic behavior. The
Quarterly Journal of Economics 87, 2 (1973), 239–266.

[15] Ido Erev and Alvin E Roth. 1995. On the Need for Low Rationality, Gognitive
Game Theory: Reinforcement Learning in Experimental Games with Unique,
Mixed Strategy Equilibria.

[16] Norbert Fuhr and Thomas Rolleke. 1997. A Probabilistic Relational Algebra for
the Integration of Information Retrieval and Database Systems. TOIS 15 (1997).

[17] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2013. Balancing
exploration and exploitation in listwise and pairwise online learning to rank for
information retrieval. Information Retrieval 16, 1 (2013).

[18] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient IR-Style
Keyword Search over Relational Databases. In VLDB 2003.

[19] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. 2015. Overview of
Data Exploration Techniques. In SIGMOD.

[20] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao
Li, Arnab Nandi, and Cong Yu. 2007. Making Database Systems Usable. In
SIGMOD.

[21] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Suciu.
2010. SnipSuggest: Context-aware Autocompletion for SQL. PVLDB 4, 1 (2010).

[22] David Lewis. 1969. Convention. Cambridge: Harvard University Press.
[23] Hao Li, Chee-Yong Chan, and David Maier. 2015. Query From Examples: An

Iterative, Data-Driven Approach to Query Construction. PVLDB 8, 13 (2015).
[24] Jiyun Luo, Sicong Zhang, and Hui Yang. 2014. Win-Win Search: Dual-Agent

Stochastic Game in Session Search. In SIGIR.
[25] Christopher Manning, Prabhakar Raghavan, and Hinrich Schutze. 2008. An

Introduction to Information Retrieval. Cambridge University Press.
[26] Ben McCamish, Arash Termehchy, Behrouz Touri, and Eduardo Cotilla Sanchez.

2016. A Signaling Game Approach to Databases Querying. In AMW.
[27] Taesup Moon, Wei Chu, Lihong Li, Zhaohui Zheng, and Yi Chang. 2012. An

online learning framework for refining recency search results with user click
feedback. ACM Transactions on Information Systems (TOIS) 30, 4 (2012), 20.

[28] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse
rankings with multi-armed bandits. In Proceedings of the 25th international
conference on Machine learning. ACM, 784–791.

[29] Alvin E Roth and Ido Erev. 1995. Learning in extensive-form games: Experimental
data and simple dynamic models in the intermediate term. Games and economic
behavior 8, 1 (1995), 164–212.

[30] Lloyd S Shapley and others. 1964. Some topics in two-person games. Advances
in game theory 52, 1-29 (1964), 1–2.

[31] Marc Sloan and Jun Wang. 2013. Iterative expectation for multi period information
retrieval. arXiv preprint arXiv:1303.5250 (2013).

[32] Aleksandr Vorobev, Damien Lefortier, Gleb Gusev, and Pavel Serdyukov. 2015.
Gathering Additional Feedback on Search Results by Multi-Armed Bandits with
Respect to Production Ranking. In WWW.

[33] Aleksandr Vorobev, Damien Lefortier, Gleb Gusev, and Pavel Serdyukov. 2015.
Gathering additional feedback on search results by multi-armed bandits with
respect to production ranking. In Proceedings of the 24th international confer-
ence on World wide web. International World Wide Web Conferences Steering
Committee, 1177–1187.

[34] Yahoo! 2011. Yahoo! webscope dataset anonymized Yahoo! search logs with
relevance judgments version 1.0. http://labs.yahoo.com/Academic_Relations.
(2011). [Online; accessed 5-January-2017].

[35] H Peyton Young. 2004. Strategic learning and its limits. OUP Oxford.

[36] Yinan Zhang and Chengxiang Zhai. 2015. Information Retrieval as Card Playing:
A Formal Model for Optimizing Interactive Retrieval Interface. In SIGIR.

77

http://labs.yahoo.com/Academic_Relations

	Abstract
	1 Introduction
	2 Signaling Game Framework
	2.1 Intent
	2.2 Query
	2.3 Result
	2.4 Strategies
	2.5 Stochastic Strategies
	2.6 Reward
	2.7 Signaling Game

	3 Open Problems
	4 How Do Users Adapt?
	4.1 Bush and Mosteller's
	4.2 Cross's Model
	4.3 Roth and Erev's Model
	4.4 Roth and Erev's Modified Model
	4.5 Empirical Results Methods
	4.6 Empirical Results

	5 How should the DBMS adapt?
	5.1 UCB-1
	5.2 Roth and Erev in our model
	5.3 Comparing UCB-1 and Roth and Erev
	5.4 Experimental Setup
	5.5 Results

	6 Related Work
	7 conclusion
	References

