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ABSTRACT
Imagine data that contains a dense core with points sca�ered around

away from the core. An example would be data with outliers. A

�gure with a full view of a 2-dimensional projection of data then

typically shows the points in the core all close to each other. Due to

the fact that the visualization medium as well as our eyes have �nite

resolution, it may then not be possible to discern the location of the

points in the core. In that case it may be more interesting to show a

zoomed-in visualization that allows one to explore the structure of

the core, while providing only limited information about points that

are not part of the core. A trade-o� emerges between showing small

and large-scale structure, parametrized by the size of a bounding

box. �e quanti�cation of this trade-o� using Information �eory,

and the concurrent optimization of the size of a bounding box and

�nding informative linear projections are the topics of this paper.
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1 INTRODUCTION
Assume a data analyst wishes to glean insights into a 2-dimensional

data set by visualizing it. For real-valued data, the most straightfor-

ward technique for doing this would be by means of a sca�er plot.

However, when the data consists of a dense core, with additionally

a number of points sca�ered some distance around it, the dense

core tends to show up as a blob of partially occluding points; see

Figure 1(a) for an example.
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�e result of showing the far-away points is thus that the points

in the core become less discernible from each other (whether due

to limitations in the plot resolution or in human perception). �e

amount of information provided about them is e�ectively reduced

by having to zoom out, while the resolution remains constant.

Clipped scatter plots. In this paper we propose the notion of

a clipped sca�er plot. Informally speaking, it can be obtained by

overlaying a bounding box on the sca�er plot (red box in Figure 1a),

and clipping all points outside of this bounding box to the nearest

point on the boundary (as indicated by the blue dashed lines in

Figure 1a). A�er doing this, one can zoom in to ensure the bounding

box �lls the plo�ing area. �e clipped points are then shown with

a di�erent marker to distinguish them from points that appear near

the boundary, but are within the bounding box area (Figure 1b).

What a user learns from a clipped sca�er plot is this: For an

unclipped point, the user knows its location up to the resolution (of

the displayed plot or human perception, whichever is worse). For a

point clipped along a certain dimension, the user only learns that

it is further away from the origin than the size of the bounding box

along that dimension. Informally, the user learns that such points

are ‘far away’ (outside of the bounding box) in some direction, but

precisely how far is not revealed.

By varying the size of the bounding box and corresponding zoom

level, clipped sca�er plots thus allow one to trade-o� detail about

the points with small norms, with detail about the points with large

norms. In this paper, we discuss how to formalize and optimize this

trade-o� in a rigorous manner, relying on Information �eory. As

an illustration, the bounding box used in Figure 1 is optimal with

respect to this measure.

Clipped projections. Data is usually high-dimensional, and in

order to visualize it in a clipped sca�er plot, its dimensionality needs

to be reduced to 2, for example by means of a projection. We will call

a clipped sca�er plot of a projection of the data a clipped projection.

To most e�ciently inform the data analyst about the data, one

can then search for the most informative clipped projection. �is

amounts to a simultaneous optimization problem over all possible

2-dimensional projections
1

and all possible bounding box sizes (for

both dimensions).

We note that clipped projections are distinct from projections of

a data set a�er outlier removal, for several reasons. First, a point

that is outlying along one dimension may not be so along another

one, such that it may be clipped in one clipped projection but not

in another. It may also be clipped along just one dimension in the

clipped projection of the data. Second, determining which points

are outliers and which are not is o�en a hard call (Figure 1 is mis-

leading in this respect). Our approach does not require one to make

1
In fact, our work trivially extends to d -dimensional projections for arbitrary d .
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Figure 1: A scatter plot of a 2-dimensional data set (a) is not necessarily e�ective in revealing information about the data.
Indeed, the points with large norm necessitate zooming out to such an extent that the detail in the core set of points is lost
to the eye. By clipping points far away from the center to the boundaries of the red bounding box (blue dashed lines show
where these points are clipped to) and zooming in as much as possible, a clipped sca�er plot (b) is obtained. Here, we can
discern the dinosaur hidden in the data. (�e data consists of six arti�cial outliers plus Alberto Cairo’s �gure: http://www.
thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html.)

that call—our focus is merely on conveying as much information as

possible about the entire data set through an intuitive visualization.

�ird, we never actually remove any points from the visualiza-

tion: we merely convey less information about those outside the

bounding box.

Contributions. In this work-in-progress paper, we report on

early results on the following aspects.

• We introduce the notion of a clipped sca�er plot and clipped
projection (Section 2.2).

• We quantify the amount of information a clipped projec-

tion conveys about the data (Section 2.3). �is quanti�ca-

tion is parameterized both by the projection and the size

of the bounding box.

• We introduce an algorithm that aims to optimize the infor-

mation content, searching for the most informative clipped

projection of a given data set (Section 3).

• We include some experiments that empirically analyse

the ability of the algorithm to �nd the most informative

clipped projection, the scalability of the algorithm, and the

usefulness of the approach (Section 4).

2 CLIPPED PROJECTIONS AND THEIR
INFORMATION CONTENT

In this section, we provide the formal de�nition of clipped projec-

tions and then discuss how to quantify their informativeness. First,

we have to introduce some notation.

2.1 Notation
We use upper case bold face le�ers to denote matrices, lower

case bold face le�ers for vectors, and normal lower case le�ers

for scalars. We denote a d-dimensional real-valued dataset as

X̂ , (x̂′
1
, x̂′

2
, . . . , x̂′n )′ ∈ Rn×d , and the corresponding random

variable as X. We will refer to Rn×d , the space the data is known

to belong to, as the data space. Dimensionality reduction meth-

ods search weight vectors w ∈ Rd of unit norm (i.e. w′w = 1)

onto which the data is projected by computing X̂w. If k vectors are

sought, they will be stored as columns of a matrix W ∈ Rd×k where

W′W = I. We will denote the projections of a data set X̂ onto the

column vectors of W as Π̂W ∈ R
n×k

, or formally: Π̂W , X̂W, and

analogously for the random variable counterpart ΠW , XW. We

will write I to denote the identity matrix of appropriate dimensions,

and 1n×d (or 1 for short if the dimensions are clear from the con-

text) to denote a n-by-d matrix with all elements 1i j = 1. We de�ne

An×m ∈ [Bn×m ,Cn×m] as ai, j ∈ [bi, j , ci, j ] for every ci, j ≥ bi, j ,
i = 1, 2, . . . ,n and j = 1, 2, . . . ,m.

2.2 Clipped projections
We de�ne a bounding box to be a centered k dimensional hyper-

rectangular region with range (−c, c) where c ∈ Rk+. Given a

bounding box de�ned by c and a projection zi = W′xi of a data

point xi , its j-th coordinate either:

• falls outside of (−cj , cj ). �en position of the point is

speci�ed within range zi j ∈ [cj ,∞) (or zi j ∈ (−∞,−cj ]).
• falls in (−cj , cj ). �e position of the point is speci�ed only

up to a pixel of size f · 2cj , i.e., zi j ∈ [zi j − f cj , zi j + f cj ],
where f is the resolution parameter.

In order to concisely de�ne a projection with respect to the

bounding box, we need to introduce a few concepts. Firstly, we

de�ne a mapping function that corresponds to the clipping proce-

dure: t (zi j , cj ) = max(−cj ,min(cj , zi j )). Now, we can express the
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lower and upper boundaries of the location of zi j , as conveyed by

the clipped sca�er plot:

lj (cj , t (zi j , cj )) =



−∞ : t (zi j , cj ) = −cj ,
zi j − f cj : −cj < t (zi j , cj ) < cj ,
cj : t (zi j , cj ) = cj .

uj (cj , t (zi j , cj )) =



−cj : t (zi j , cj ) = −cj ,
zi j + f cj : −cj < t (zi j , cj ) < cj ,
+∞ : t (zi j , cj ) = cj .

Collectively, we de�ne matrix L(Π̂W, c) as a n × k matrix where

each entry L(Π̂W, c)i j is the lower boundary of j-th coordinate of

the projection of i-th data point. �at is,

L
(
Π̂W, c

)
i j
= lj (c j , t (Π̂

(i j )
W , cj )). (1)

Similarly, U
(
Π̂W, c

)
is the n × k matrix where each entry

U
(
Π̂W, c

)
i j
= uj (c j , t (Π̂

(i j )
W , cj )). (2)

Finally, we can de�ne the syntax of a clipped projection as:

X̂W ∈
[
L

(
Π̂W, c

)
,U

(
Π̂W, c

)]
. (3)

2.3 Information content of clipped projections
Prior belief model. Our aim is to quantify the information con-

tent of a clipped projection. Just like statistics are computed in

comparison with a null model, in order to compute the information

content of information, we need to specify a background model.

Ideally, such a background model would re�ect the actual prior

knowledge of the user, such that the information content is an ap-

propriate measure for the amount of information the visualization

provides to the speci�c user [2, 3].

We adopt the same approach: we encode these prior beliefs in a

probability density pX over the data space Rn×d . �e probability

it assigns to any measurable subset of Rn×d corresponds to the

probability that the data X̂ would belong to that subset under the

prior belief. �e density function pX can typically not be speci�ed

directly and instead we infer it from a given set of prior beliefs,

as the Maximum Entropy distribution subject to those beliefs. As

such, the notion of interestingness here is subjective, as the ranking

of pa�erns depends on the belief state of the user.

In this paper, we assume the user has prior beliefs about the scale

of a dataset.
2

�e user might believe that the average scale of the

data points, quanti�ed by their squared norms, is some constant

denoted as σ 2d and have no other knowledge. �is can be encoded

as a constraint on the second moment of the distribution pX:

EX∼pX

[
Tr(X′X)

]
= σ 2 · nd . (4)

�e MaxEnt distribution subject to this constraint is well known and

equal to a product distribution of multivariate Normal distributions

N (0,σ 2I), i.e.,

pX (X) =
1√

(2πσ 2)nd
exp(−

1

2σ 2
Tr[X′X]). (5)

2
�ere may be many other prior beliefs a user may have. Di�erent prior belief types

may result in background distributions of di�erent types (See e.g., [4]). As the goal

of this paper is to demonstrate the idea of the clipped projections, we leave the

investigation of di�erent prior beliefs as future work.

Given a projection matrix, the marginal distribution pΠW for pro-

jection ΠW = XW then reads:

pΠW (XW) =
1√

(2πσ 2)nk
exp(−

1

2σ 2
Tr[W′X′XW]). (6)

Probability of a clipped projection. If the projection zi of a

point xi falls on the inside of the bounding box in j-th dimension,

for small f its probability is well approximated by:

PrΠW (zi j ∈ [ẑi j − f cj , ẑi j + f cj ]) =
∫ ẑi j+f cj

ẑi j−f cj
pΠW (zi j )dzi j

≈
1

√
2πσ 2

exp(−
ẑ2

i j

2σ 2
) · 2f cj .

(7)

A point z that falls outside the bounding box on the j-th dimension

has probability

PrΠW (zi j ∈ [cj ,+∞)) = PrΠW (zi j ∈ (−∞,−cj ])

=

∫ +∞

c j

1

√
2πσ 2

exp(−
t2

2σ 2
)dt .

(8)

�e �rst equality follows the symmetricity of the bounding box.

Now, the probability of a clipped projection can be wri�en as,

Pr(Π̂W ∈
[
L

(
Π̂W, c

)
,U

(
Π̂W, c

)]
)

=

∫
ΠW∈

[
L
(
Π̂W,c

)
,U

(
Π̂W,c

)] pΠW (ΠW)dΠW

=
∏

i=1,2, ...,n




∫ u1 (c1,t (xiW1,c1 ))

l1 (c1,t (xiW1,c1 ))
. . .

∫ uk (ck ,t (xiWk ,ck ))

lk (ck ,t (xiWk ,ck ))
pΠW (zi )

dz1dz2 . . .dzk


.

(9)

�e information content. Relying on the background distribu-

tion (Eq. 9), we can now quantify the information content (IC) of a

clipped projection as the negative log probability of the projection

under the distribution. Denote the index set of the projection of

points on j-th dimension fall into (−cj , cj ) as Ij , then the number

of points falls outside of the bounding box is n − |Ij |. Formally, we

have the information content:

IC(W, Π̂W, c) = − log Pr

(
Π̂W ∈

[
L

(
Π̂W, c

)
,U

(
Π̂W, c

)] )
= − log



k∏
j=1

*
,

∏
i ∈Ij

1

√
2πσ 2

exp
*
,
−

z2

i j

2σ 2

+
-
· 2f cj

·
∏
i<Ij

∫ +∞

cj

1

√
2πσ 2

exp(−
t2

2σ 2
)dt+

-


(10)

Now our goal of �nding the most informative clipped projection

can be formalized as an optimization problem:

argmax

W,c
IC(W, Π̂W, c) (11)

s.t. W′W = I
c > 0.
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In general, the solution of problem (11) corresponds to clipped

projections that include as much information as possible comple-

mentary to the prior beliefs. Notice that given the prior belief stated

above, if we ignore clipping—i.e., if the optimal clipped projection

includes all points inside the bounding box—, the optimal solution

is equivalent to PCA [3]. However, with clipping also the optimal

W is typically di�erent. In the next section, we analyze problem

(11) and propose an approximation scheme to approach it.

3 FINDING THE MOST INFORMATIVE
CLIPPED PROJECTION

Solving the optimization problem (11) requires to evaluate the ob-

jective function e�ciently. However, the integral function (tail

probability of normal distribution) in Equation (10) does not have a

closed form of elementary functions hence can only be computed

approximately. Moreover, note that for di�erent projection matrix

W, the positions of points in the projection are di�erent, hence

the optimal c may change. �is means the optimal bounding box

(half size c) and the number of points falling into the bounding box

(i.e., |I|) both depend on the projection matrix W. Such dependency

makes the optimization problem di�cult to solve.

In this section, we �rst approximate the tail probability of a nor-

mal distribution by an upper bound and obtain an objective function

consisting only elementary functions. We then propose an e�cient

optimization strategy that relies on automatic di�erentiation and

gradient manifold optimization.

3.1 Bounding the tail probabilities
To obtain a closed form representation of (Eq. 10) with elementary

functions we approximate the tail probability of a normal distribu-

tion as follows
3
:∫ +∞

cj

1

√
2πσ 2

e−t
2/(2σ 2 )dt ≤

∫ +∞

cj

t

cj
1

√
2πσ 2

e−t
2/(2σ 2 )dt

=
σe−c2

j /(2σ
2 )

cj
√

2π
.

(12)

�e �rst inequality follows the fact that
t
cj ≥ 1.

Now the objective function in (Eq. 10) can be re-wri�en as:

IC(W, Π̂W, c)

≈ − log



k∏
j=1

*
,

∏
i ∈Ij

1

√
2πσ 2

e−(z
2

i j )/(2σ
2 )
· 2f cj ·

∏
i<Ij

σ

cj
e−c2

j /(2σ
2 )

√
2π

+
-



=

k∑
j=1



∑
i ∈Ij

z2

i j

2σ 2
+ (n − |Ij |)

c2

j

2σ 2
+ (n − 2|Ij |) log(cj )

|Ij |
1

2

log(2πσ 2) − |Ij | log(2f ) + (n − |Ij |) log(

√
2π

σ
)

. (13)

Notice the parameter c and I both depend on W. �at is, for every

W we need to search for an c that maximizes the IC. Once c is

computed, then the point sets within bounding box I with respect

to each dimension are determined.

3
A more detailed discussion can be found at h�ps://mikespivey.wordpress.com/2011/

10/21/normaltails/

3.2 Optimization strategy
�e dependency of parameters c and I on W as well as the con-

straint W′W = I make objective (Eq. 13) di�cult to be optimized

simultaneously over all three parameters. Nevertheless, we propose

a gradient method to perform the simultaneous optimization. Ob-

serve the orthonormality constraint posed on W leads to problem

(13) being a Stiefel manifold optimization problem
4
. �is can be

addressed fairly e�ciently with a standard toolbox. We use the

pyManopt toolbox [5] to obtain an approximate solution.

In order to apply gradient based solver in pyManopt, we need

to further compute the gradient of problem (13) with respect to

variable W. By encoding the objective function using TensorFlow,

pyManopt can use TensorFlow’s to calculate the gradient automati-

cally.

�e remaining question is: how to encode the step of searching

optimal c (hence I) into an objective function which then can be

e�ciently evaluated in a single step? �e answer relies on the

observation that for a speci�c W we only need to evaluate for

each dimension O (n) number of c (hence O (kn) in total) to �nd

the optimal c. Without losing generality, we formally state the

observation for j-th dimension as:

Proposition 1. �e optimal c∗j that maximizes objective function
(Eq. 13) coincides with the j-th absolute coordinate value of some
projected point zi , namely, c∗j = |zi j | for some i = 1, . . . ,n.

Proof. To prove the proposition, it is equivalent to show that

the objective function between the two neighboring coordinates

(i.e., cj ∈ [|zm, j |, |zm+1, j |]) tends to be either monotonically in-

creasing or convex.

�e monotonic increase case can be easily identi�ed by comput-

ing the �rst derivative of IC(c) with respect to cj , which is

d

dcj
IC(c) =

n − |Ij |
σ 2

cj +
n − 2|Ij |

cj

=
(n − |Ij |)c2

j + (n − 2|Ij |)σ 2

cjσ 2
.

(14)

When n − 2|Ij | > 0, since (n − |Ij |) > 0, it is straightforward that

d
dcj

IC(c) ≥ 0. �is implies that IC(c) monotonically increases as

cj increases, and the local maximum occurs at the right boundary,

i.e., |zm+1, j |].

�e other case is n − 2|Ij | ≤ 0. To show this gives a convex

piecewise IC(c). Let us look at the second derivative of IC(c) w.r.t c

d2

dc2

j
IC(c) =

n − |Ij |
σ 2

+
2|Ij | − n

c2

j

=
(n − |Ij |)c2

j + (2|Ij | − n)σ 2

c2

jσ
2

(15)

Since 2|Ij | −n ≥ 0, we can easily notice
d2

dc2

j
IC(c) is always positive,

which essentially implies convexity. �is means the largest function

value is obtained on the boundary of interval [|zm, j |, |zm+1, j |].

�us, in call cases, the local maximum of IC(c) lies either at the

le� boundary or the right one. �is observation allows us to search

for an optimal c in the set {|z1 |, |z2 |, ..|zn |}. �

4
A Stiefel manifold Vk (Rn ) is the set of ordered k -tuples of othornomal vetors in Rn .
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�e proposition allows us to restrict the search space from R
to n points. A naive strategy of searching optimal c would be to

enumerate all points (set cj = |zi j | for i = 1, . . . ,n) and �nd |zi j |
that gives the best objective value. For each |zi j |, evaluating the

point set that fall in a bounding box (i.e., Ij ) requires time O (n).

Hence, the naive search strategy has complexity O (n2).
By a more careful thinking, the search can be improved to

O (n log(n)). �e idea is as follows:

• sort |zi j |, i = 1, . . . ,n in ascending order, O (n log(n)). In

TensorFlow, sorting can be encoded as a node in computa-

tional graph using function tf.nn.top k5
.

• search the zi j using the new order, O (n). For each cj =
|zi j |, we compare the objective values obtained by either

containing zi in the bounding box (i.e., zi ∈ Ij ) or without

(i.e., zi < Ij ), and keep the larger value of two,O (1). As the

points are sorted, |Ij | is simply the number of the evaluated

points, O (1).
• to e�ciently evaluate the �rst term (summation) in objec-

tive function (Eq.13), we accumulate the sum along the

search of new |zi j |. �is step costs O (n). In TensorFlow,

this can be encoded using function tf.cumsum6
.

Based on the above discussion, we can now evaluate objective func-

tion (13) by summing over the objective value over k dimensions.

For each dimension j, we evaluate the summand (in rectangular

brackets of Equation. 13) on a vector of cj s ({|z1j |, |z2j |, ..|znj |}) and

�nd the c∗j that maximizes the summand. �us, the evaluation of

the objective function costs O (n log(n) + kn).

4 EMPIRICAL EVALUATION
In this section, we present two case studies which demonstrate

how clipped projections may help users to explore data. Note that

the purpose of our experiments is not to investigate superiority

of clipped projections over existing methods for dimensionality

reduction. Instead, we aim to investigate whether and to which

extent the clipped projections usefully depend on the prior beliefs,

in highlighting information that is complementary to them. Because

the optimal solution for the speci�c prior belief assumed above

without clipping is equivalent to PCA [3], we indeed compare the

results from the method with projections corresponding to the

principal components of the data.

4.1 UCI image segmentation dataset
�e UCI Image segmentation dataset

7
consists of 210 data points.

Each data point corresponds to an small 3 × 3 region (9 pixels) and

was drawn randomly from a database of 7 outdoor images. �e im-

ages were hand-segmented to create a classi�cation for every pixel.

�e data points are described by 19 image features (e.g., centroid-

row-position, hue-mean, intensity-mean). Each data points is classi-

�ed as one of the following 7 classes: brickface, sky, foliage, cement,

window, path, grass. As preprocessing, we centered the data.

We computed a visualization using f = 0.01, meaning that we

expect to be able to e�ectively discern 100 points along one axis.

We set the variance of the background distribution is to be the

5
see TensorFlow API h�ps://www.tensor�ow.org/api docs/python/tf/nn/top k

6
see TensorFlow API h�ps://www.tensor�ow.org/api docs/python/tf/cumsum

7
h�p://archive.ics.uci.edu/ml/datasets/image+segmentation, ’segmentation.data’

Figure 2: Objective values obtained from 100 random starts
on the UCI Segmentation data. Blue lines connect the ob-
jective value (green circle) obtained at the initial step (W0)
and the �nal step (Wopt) of each random start. �e red line
shows the average initial and �nal score.

average variance of the data, namely σ 2 = Tr(X′X)/nd . To �nd an

informative projection, we tried 100 random starts and used the

best scoring result.

We found that each random start took 0.21 seconds on aver-

age. In order to understand something about the di�culty of the

optimization problem, and to �nd whether the gradient descent

manages to �nd a good result, we plo�ed the objective scores of

the initial random w with optimized c and the corresponding �nal

objective scores in Figure 2. �e red line shows how the objective

value improves on average. We �nd that the quality indeed varies.

�e best clipped sca�er plot is shown in Figure. 3c. As a com-

parison, we consider the sca�er plot of the projection against �rst

(x-axis) and second (y-axis) principal component of the full data

(3a). �e principal components are dominated by a single point

that has statistics much unlike the rest of the data. In contrast,

our method indeed presents a quite di�erent view. �e projection

is somewhat di�erent (Figure. 3b) and the information content is

greatly increased by clipping several points (3d). We can see the

clipped sca�er plot shows variation in the center of the data. It also

gives the information about direction of the clipped points (points

corresponding to the triangular markers on the edges).

Note that in Figure. 3c, the bounding box does not tightly �t the

sca�ered points on the right side. �is is due to the constraint that

the bounding box is centered, i.e., the distances from origin to the

bounding box boundaries are the same in both directions of each

dimension. We plan to remove this assumption in the future and

have a more �exible bounding box with the location of its center

being optimized together with the box size.

4.2 UCI shuttle dataset
�e UCI Shu�le dataset

8
consists of 14500 data points and 9 integer

features. Each data point belongs to one of the 7 classes: ’Rad

Flow’, ’Fpv Close’, ’Fpv Open’, ’High’, ’Bypass’, ’Bpv Close’, ’Bpv

Open’. Similar to the case described in the previous section, we set

8
h�ps://archive.ics.uci.edu/ml/datasets/Statlog+(Shu�le), ’shu�le.tst’
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Figure 3: Results on the UCI Segmentation data. (a) �e full data projected onto PCA �rst and second components. (b) �e
full data projected a�er optimization but without clipping. �e seven class labels are indicated with colors and the red box
gives the bounding box. (c) �e end-result of our method. Round dots here correspond to data points that are fully inside the
box, while triangles correspond to points (partially) outside the bounding box. (d) �e objective values obtained for di�erent
bounding box sizes cx , cy along the directions of W. �e PCA projection scores 2050.15 for the two dimensions combined.

f = 0.01. �e variance of the background distribution is also set

to be the average variance of the data, namely σ 2 = Tr(X′X)/nd .

�e dataset is centered. Same as the previous experiment, we tried

100 random starts. Each random start take on average 0.51 seconds.

�is may illustrate that the optimization strategy scales well, since

the size of shu�le data is ten times larger as the segment data, yet

the average time per random start only doubled.

Figure 4 contains the same plots as Figure 3 but for the Shu�le

data. �e PCA result (4a) shows the variance structure dominated

by a set of points with large norms. �e bounding box found a�er

optimization is so small in this case, that it is not even visible on the

non-clipped sca�er plot (4b). �e clipped sca�er plot (4c) shows

that the majority of the data points form a layered structure on

a small scale. �e layered structure may partially be due to the

discreteness of the data. 4d shows the objective values for various

c along the �nal two projection direction.

For both dimensions, the objective increased very fast initially.

�is is because the projection most of the points lies close to the ori-

gin. When the size of bounding box increase the objective function

also increase linearly. �e objective function starts to drop rapidly

at the end, when the points with large magnitude are included.

4.3 Runtime
Table 1 summarizes the runtime of our method in all experiments

presented in this paper. In all cases, we used the solver o�ered

by pyManopt to perform gradient descent (with automatic di�er-

entiation provided by TensorFlow) over the Stiefel manifold. We

tried ten random starts in all three cases and picked the projection

that gives the best objective. Note in the �rst row of the table, our

optimization strategy scales gracefully when the data size increases

from Synthetic dataset (148 × 2) to UCI Segment (210 × 9) and then

UCI Shu�le (14500 × 9). Although evaluating the objective func-

tion involves optimizing the bounding box size, the costs (second

row) remain almost constant for increasing data size; the constant

overheads from pyManopt and TensorFlow dominate this step.

5 CONCLUSION
A sca�er plot of a projection is arguably the most basic way of

conveying complete information about a high-dimensional numer-

ical data set. If suitable projections can be found, it promises to

empower human data analysts by allowing them to use the remark-

able pa�ern recognition capabilities of human perception: clusters,

(local) correlations, outliers, etc. are readily noticed without e�ort.

Yet, o�en the scale of a sca�er plot is too strongly in�uenced

by a possibly small set of points that are farther than usual from
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Figure 4: Equivalent to Figure 3, for the UCI Shuttle data. (a) �e full data projected onto PCA �rst and second components.
(b)�e full data projected a�er optimization without clipping. �e seven class labels are indicated with colors and the red box
gives the bounding box. (c) �e end-result of our method. Round dots here correspond to data points that are fully inside the
bounding box, while triangles correspond to points (partially) outside the bounding box. (d) �e objective values obtained for
di�erent bounding box sizes cx , cy along the directions of W. �e PCA projection scores only 69366.9 for the two dimensions
combined, against 226630.0 for our method.

synthetic UCI Segment UCI Shu�le

Optimization 0.9717 1.5268 8.2443

Evaluation 0.1307 0.1316 0.1344

Table 1: Runtime (in seconds) of our method for all experi-
ments (§4.3). Each measurement of optimization (�rst row)
is an average over ten runs, where each run consists of ten
random start of the gradient based solver from pyManopt
and TensorFlow. We also measured the cost of evaluating
the objective function (second row). Each measurement is
an average over ten evaluations. We used a machine with
Intel�ad Core 2.7 GHz CPU and 16 GB RAM.

the centre of the data. As a result, the amount of detail that can

be shown for the points closer to the centre is reduced, which is

problematic if such points are numerous and the variation among

them important. As a result, the overall information conveyed by a

sca�er plot can be disappointing.

To address this issue, we proposed the notion of a clipped pro-
jection, which clips the farthest points in a data projection to a

bounding box, and subsequently zooms in to let the bounding box

�ll the plo�ing area. We then quanti�ed the amount of information

a clipped projection conveys about the data, and proposed an al-

gorithm for maximizing this information content over all possible

projections and bounding box sizes.

�e information content of a clipped projection is formalized

by relying on the FORSIED
9

framework [1]. �is framework aims

to formalize the information content of data mining pa�erns in

a subjective manner: considering the data analyst’s prior beliefs

about the data. In the current work-in-progress report, we assumed

that the user has no prior idea about the data other than its overall

scale (which can be easily computed). Our ongoing work, which

also builds and improves on previous applications of the FORSIED

framework to dimensionality reduction [3], focuses on deploying

these principles for other prior beliefs as well, as well as to visual-

izations of high-dimensional data other than clipped projections.
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