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ABSTRACT

How can we visualize, interact with, and ‘learn’ important struc-
tures of time-evolving networks? Given domain-speci�c a�ributes,
such as node membership of functional brain regions, how can we
use this domain knowledge to discover coherent structures and
track their evolution over time? In this demo paper, we introduce
ECOviz (for Evolving COmparative network visualization), a sys-
tem that enables pairwise comparison of temporal graph summaries
based on variations in data source and preprocessing parameters.
Our system further allows the user to perform structural and tempo-
ral analysis of a graph through e�cient querying and visualization
of its summarizing subgraphs.

ECOviz performs the following tasks: (a) It generates a set of
temporal structures for each graph of interest using a dynamic
graph summarization algorithm o�ine; (b) It supports contrasting
visual analysis of time-evolving network pairs by providing quan-
titative metrics on summary structure composition and temporal
graph statistics; (c) It interactively visualizes the induced subgraph
of each structure in a summary, at either a full time sequence or a
time interval speci�ed by the user.

In our demonstration, we invite the audience to use ECOviz to
make comparisons between a variety of time-evolving functional
human connectomes, and explore their salient temporal structures.
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1 INTRODUCTION

Given a set of nodes of interest, how can we improve the discov-
ery and visualization of salient structures in a time-evolving net-
work? �e objective of summarizing such networks is to identify
structures that are notable in their topology and/or recurrence
over time. Showing changes over time, however, demands further
knowledge of the graph’s underlying structure, and perhaps calls
for an application-driven approach. For visualization in particular,
preserving the mental map across snapshots is desirable when fol-
lowing groups of nodes [3]. �is is applicable when a user seeks to
�nd community-level pa�erns within a dynamic graph.
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Figure 1: Visualization of temporal summary structure: ranged full

clique (rfc). Resting-state sub-networks of interest are indicated by

node color (e.g., orange corresponds to the default mode network

‘DMN’, green to the sensorimotor network ‘SMN’).

Tracking evolution of communities in dynamic networks, rang-
ing from modules in protein-protein interaction networks [18] to
groups in scienti�c co-authorship networks [4], is of high relevance
for domain scientists. Especially in scienti�c �elds such as connec-
tomics, which explores the functional and structural connectivity
of the brain, visualization is a vital tool for pa�ern discovery [20].
Domain scientists may lack graph drawing skills, but their exper-
tise on the data at hand can be used to augment automatic graph
analysis and layout algorithms. How can we pair the speci�city
of domain expertise with the objectivity of graph summarization
output to depict the structure and evolution of dynamic graphs?
Instead of communicating results outside of the problem context,
we respond in the domain-speci�c ‘language’ of the user.

In this demo paper, we introduce ECOviz, a system that sup-
ports interactive, comparative analysis of time-evolving networks
by focusing on domain-speci�c summaries of their most salient
structures. For more holistic understanding, ECOviz also allows the
user to ‘zoom in’ on one time-evolving network and interactively
explore its discovered temporal pa�erns. Our system assimilates
domain knowledge in the following ways:

• Domain-speci�c Summarization: To assist the discov-
ery of coherent structures, we employ ‘semi-supervision’
that takes domain expertise into account early in the ex-
ploration process. �is is achieved using static graph de-
composition that is biased towards an egocentric view of
high-interest nodes. Figure 1 shows one temporal pa�ern
(full clique ranging time steps 11 and 12) in the summary
of a ‘mindful rest’ functional network of a human subject.
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• Preprocessing-dependent Analysis: While most real-
world graphs are directly observed, many scienti�c do-
mains (including neuroscience) infer graphs from measure-
ments that are o�en in time series form. In response to
the sheer volume of graph construction choices, we o�er
an interactive way to evaluate a comparison of preprocess-
ing parameters. �e contrasting data analysis interface
includes data source selection provides complete �exibility
in making inter- and intra-data comparisons.

• Visualization of Communities: To highlight communi-
ties of high-interest nodes (via domain-speci�c labels) and
enable the extraction of richer insights, we provide quanti-
tative meta-summaries of the structures and use colors to
visually distinguish communities.

�e paper is organized as follows. In Section 2, we introduce
the application-speci�c data that motivated our system. �en in
Section 3 we present our domain-speci�c graph summarization
technique and in Section 4 we describe our system, ECOviz. Sec-
tions 5 and 6 give data analysis examples and our demonstration
plan, respectively. Finally, Sections 7 and 8 contain related work
and the conclusion.

2 CONNECTOMICS: DATA

While most real-world graphs are directly observed, functional
brain networks are inferred from biological signals. Namely, blood
oxygen level-dependent (BOLD) data from fMRI are a common
source to computational models [9]. Fully connected, undirected
graphs are typically constructed by computing the pairwise sta-
tistical dependence between all voxels (volume units of neurons).
�is step involves simulation over BOLD data to obtain per-voxel
time series. Pearson’s correlation coe�cient – or another measure
of association – is then computed pairwise between voxels. �ese
values (in absolute terms) are �ltered by a lower bound threshold,
forming an unweighted graph.

In this demonstration, we use a dataset that consists of fMRI
activity of 61 human subjects at both resting and mindful rest states.
During the regular resting state (8 minutes), the thoughts of the
subjects were allowed to wander about, while during the ‘mindful
rest’ state the subjects were instructed to focus on their breath and
actively not let their thoughts wander about.

Each fMRI session yields data using 100 ROI (region of interest)
parcellation, each of which is accompanied by time series of length
240 timeticks (30 measurements per minute). �roughout the paper,
we refer to ROIs as voxels or nodes. Out of the 100 voxels, 45 are part
of resting-state networks of interest and labeled accordingly. �e
seven sub-networks of interest are: dorsal a�ention (DAN), default
mode (DMN), fronto-parietal (FPN), language (LN), sensorimotor
(SMN), ventral a�ention (VAN), and primary visual (VN) networks.
Time-evolving Graph Construction. We convert the time series
per fMRI session to a time-evolving graph by extending the graph
generation procedure described above. Speci�cally, instead of gen-
erating one connectome for the whole duration of the session (8
minutes), we split the time series into non-overlapping intervals of
equal length and apply the generation process to each interval (i.e.,
each temporal snapshot is based on the statistical dependencies
between time series during the corresponding interval). A uniform

�ltering threshold is applied to all the resulting networks for pos-
itive correlation values only. �is leads to evolving snapshots of
functional connectivity and allows us to track changes in thoughts
(and their corresponding pa�erns) over time.

Two critical factors a�ect the construction of dynamic graphs:
time interval granularity of the per-voxel time series and threshold
value of the full association matrix. �ese choices can produce
drastically di�erent levels of sensitivity to noise for edge signi�-
cance and aggregation [27]. As such, poorly constructed graphs
can limit how well a summary captures true dynamics in the data.
For instance, the full clique ranging time steps 11 and 12 in Figure
1 was found in a network formed with a threshold of 0.30 (correla-
tion) and 12 time steps, yet its accuracy depends on how well the
graph represents the subject’s mindful rest state. We posit that prior
knowledge of the biological signals, in the form of sub-network
labels of voxels, can both indicate quality of graph construction
and bolster pa�ern discovery in fMRI data.

3 PROPOSED METHOD: DOMAIN-SPECIFIC

GRAPH SUMMARIZATION

Central to connectomics is �nding novel pa�erns of activity be-
tween functional regions of the brain, with the goal of elucidating
local and global organization. In contrast to the power law de-
gree distribution found in many large-scale networks, the brain
exhibits a small-world architecture, characterized by high local
clustering and short global path lengths [9]. Superimposed on the
structural tracts of the brain is a diverse, hierarchically organized
functional network [21], whose typical inference was described
in the introduction. We are particularly interested in mining the
relatively unknown dynamics within and between speci�c modules
(or sub-networks) of the functional network.

Current approaches in examining resting-state fMRI data include
model-dependent, or focused on a single seed region of interest that
is analyzed with respect to all other voxels, and model-free methods,
or unsupervised techniques that include independent component
analysis (ICA) [25]. While the former is simple and interpretable,
it lacks the exploration of global brain pa�erns that the la�er is
capable of. To gain bene�ts of both methods, we use labels from
resting-state networks, or functionally linked sub-networks that are
highly active during rest, to inform our summarization algorithm.

We leverage TimeCrunch [22], a principled and parameter-free
dynamic graph summarization algorithm. �e algorithm (i) creates
a set of subgraphs per static snapshot in the temporal graph; (ii)
labels these subgraphs as structures based on the MDL principle
(e.g., star, full clique, bipartite core); (iii) stitches static into temporal
structures; and (iv) compiles a summary of top structures using
again the MDL principle at the graph level. �e resultant network
summary consists of temporal pa�erns from the cross product of
a static vocabulary that captures connectivity pa�erns (full clique,
near clique, full bipartite core, near bipartite core, star, chain) and
a temporal vocabulary that captures recurrence pa�erns (ranged,
periodic, constant, �ickering, oneshot). For instance, a graph may
have a summary with several oneshot stars, a �ickering bipartite
core, and a periodic full clique.

In order to bene�t from domain knowledge consisting of the
nodes of interest (i.e., those belonging to speci�c sub-networks,
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Figure 2: Full pipeline of graph summary visualization system. Major components include o�line preprocessing, ArangoDB & Flask API

back-end, and web interface (JavaScript) front-end.

such as the DMN in the brain), we propose a domain-speci�c sub-
graph extraction routine for the TimeCrunch [22] pipeline. Specif-
ically, instead of using the original clustering routine of Time-
Crunch, which is tailored towards real large-scale graphs with
power-law degree distribution, we extract labeled nodes’ egonets,
or induced subgraphs of an ego node and its neighbors, as subgraphs
for TimeCrunch and its static graph counterpart, VoG [15, 16]. We
mainly employ egonets to simulate the model-dependent approach
discussed previously, which uses seed ROIs for analysis of fMRI
functional networks. Egonets also provide natural communities
that partitioning algorithms targeting high-degree hub nodes – ill-
suited for the small-worldness of brain networks – may overlook.
�eir use in analysis of heterogeneous social networks, which also
have small-world properties, improved network abstraction [19].

4 SYSTEM OVERVIEW

In the following subsections, we discuss in detail the components
of ECOviz. A pictorial overview of our system and its various
components is given in Figure 2. Particular emphasis is placed on
how resting-state network labels are utilized across the length of
the entire pipeline.

4.1 Domain-speci�c Summarization

As described in Section 3, in place of the subgraph generation
in TimeCrunch and VoG, we utilize an egocentric approach to
partitioning the graph. �is is achieved by using voxels of par-
ticular interest to neuroscientists as seed nodes. Speci�cally, the
‘interesting’ voxels are the ones that participate in well-known
sub-networks, such as the default mode network (DMN) and other
networks presented in Section 2. Irrespective of the labeled node’s
network of origin, we use its egonet as a subgraph input to Time-
Crunch, resulting in a static total of 45 egonets per functional
network. �ese labeled nodes are indicated in the ‘labeled/total’
ratio and ‘entropy’ columns of the summary tables (see Figures 3,
4). �e former gives the number of labeled nodes per extracted
egonet, and the la�er is a measure of label diversity per egocentric
community (e.g., a value of 1 means that the nodes are uniformly
distributed among the sub-networks of interest).

For this demo, we extracted temporal summaries from 132 func-
tional brain networks spanning: 11 human subjects, two rest states
(resting and mindful rest state), and six combinations of prepro-
cessing parameters (thresholds of {0.30, 0.45} and time interval
granularity of {12, 16, 24}) for the time-evolving graph creation.

4.2 Interactive Visualization

To support divergent modes of data analysis, the system provides
two visualization views. ECOviz-Pair focuses on comparison be-
tween pairs of summaries di�ering in data source (i.e., subject and
rest state) or preprocessing method (i.e., threshold value and time
interval granularity). ECOviz-Time gives the user a more detailed
narrative of how each structure evolves over time. While the views
share a protocol for fetching structure connectivity, they di�er
in their interactivity and set of supporting features. Users inter-
act with both views through selection of drop-down menus, each
controlling a single parameter, at the top of the screen.
Preprocessing-dependent Analysis: A key feature of the system
is to enable scientists to not only make inter-data comparisons,
but also explore how tuning preprocessing parameters a�ects the
summary structures found. As graph generation depends on these
hyperparameters, we treat them as a set of se�ings that the user
may toggle at will. �us, the summarization results serve as implicit
feedback about graph generation quality.

In ECOviz-Pair, we focus on the notion of summary diversity as
an informal benchmark. To this end, three meta-summary charts
are shown to the user: percentage of structures by structure type,
node count by structure participation count, and top 10 node IDs by
structure participation count (see Figure 3). �e charts are displayed
in a two-column format – users may either compare rest with
mindful rest state of a single subject (Figure 5), or independently
select parameters for each column (Figure 3).

As ECOviz-Time (Figure 4) o�ers a sequential view of how tem-
poral structures evolve, we also display a chart that captures the
sparsity of each functional network over time. �is is intended to
provide context to whether temporal changes in structure density
are due to preexisting network structure. More concretely, a struc-
ture becoming denser over time could be due to preprocessing –
the chosen time interval granularity may have produced networks
with skewed temporal distributions of edges. For example, the
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Figure 3: ECOviz-Pair contrasting data analysis view.

series of graph snapshots in Figure 4 appear to reach peak density
at time step 11 (bo�om-right cell), yet the network-wide sparsity
chart above suggests that it is a global trend. �is illustrates how

Figure 4: ECOviz-Time graph sequence of temporal summary struc-

ture: �ickering full clique (�c). Chart depicting graph sparsity over

time is positioned above structure visualizations.

the temporal summary chart can highlight local, structure-speci�c
trends in sparsity from those in the background.
Visualization of Communities: �e main component of the sys-
tem is a visualization of the summary structures, either at a particu-
lar time interval or a full time sequence. Since TimeCrunch mines
for a prede�ned vocabulary of static structures, which includes
cliques, bipartite cores, stars, and chains, we use this base repre-
sentation of the labeled structure in the visualization. Doing so
also allows the user to evaluate how well a structure’s connectivity
aligns with its label.

Most apparent in the visualization is the colored node represen-
tation of resting-state network labels. As the nodes within each
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structure are ordered primarily by label and secondarily by node ID,
ordering across time intervals is maintained. �is enables the user
to track a static map of the nodes across multiple time intervals,
aiding in detecting edge evolution within the structure. We further
apply these resting-state network labels to the adjacency matrix
view of ECOviz-Time by grouping rows and columns by node label
to highlight community dynamics.

4.3 System: End-to-End

Following o�ine execution of TimeCrunch on all functional net-
works, each of the summaries contains a list of structures, which
describes the temporal structure type (e.g., full clique), node partic-
ipation (i.e., of which nodes the structure contains), and time step
participation of each structure. To depict the structure’s connectiv-
ity, the system pairs node data from the summary with edge data
from the original functional network. Providing real-time access to
this data requires e�cient storage and traversal of user-requested
graphs. We chose ArangoDB, a multi-modal NoSQL database, as a
solution to scalably ful�ll these needs.

Once the system has stored network edge lists into ArangoDB
and processed TimeCrunch output into JSON, the web server may
begin receiving user queries. As structure visualization must sup-
port single and sequential time step requests (for the two views), a
dedicated graph traversal API is utilized. �e user chooses from a
list of summary structures – fetched from the TimeCrunch JSON
shown in Figure 2 – with their spatial and temporal properties. For
each requested structure-time step pair, the graph traversal API
fetches the participating node IDs from the TimeCrunch JSON
(step 1 in back-end section of Figure 2). Next, the ArangoDB data-
base is queried for the induced subgraph of these nodes (step 2 in
back-end section of Figure 2). As the graph visualization JavaScript
depends on this connectivity data, it makes either a single or mul-
tiple asynchronous requests (per visualization reload) to this API,
depending on the front-end view.

Data �ow of ECOviz-Pair and ECOviz-Time separates within
JavaScript, with the links between the back-end APIs and front-
end views diverging (front-end portion of Figure 2). �e induced
subgraph traversal API is shared among both views, while the meta-
summary statistics and temporal graph statistics APIs are exclusive
to ECOviz-Pair and ECOviz-Time, respectively.

5 DATA ANALYSIS: EXAMPLES

Here, we showcase the di�ering functions supported by the con-
trasting (ECOviz-Pair) and temporal (ECOviz-Time) data analysis
views in terms of their functional network visualizations. �e two
views provide a more comprehensive glimpse at the data at hand,
speci�c to the user’s chosen purpose.

5.1 Contrasting Data Analysis

Within the ECOviz-Pair interface, there are two modes of data
selection: a single set of drop-down menus controlling subject,
threshold, and number of time steps, as well as a double set of
menus each with an additional option for rest state (see Figure 3).
�e former automatically displays rest state on the le� column and
mindful rest on the right. �e la�er gives the user total control
over the combinations of parameters to compare on either column.

In the remainder of this subsection, we describe example use cases
speci�c to each drop-down mode.

In the single set drop-down mode, the user is only concerned
with making comparisons between resting and mindful rest states
within the same subject. We demonstrate this in the pair of one-shot
bipartite cores (obc) selected in Figure 5, with resting state on the
le� visualization and mindful rest on the right. In the resting state,
there is an evident division between the SMN and other functional
brain regions on either side of the bipartite core. �ere appears to
be less segregation among nodes of the same label in the mindful
rest state, which applies to both unlabeled nodes – which do not
belong to sub-networks of interest – and labeled nodes in the DMN,
LN, and VN. Interestingly, both rest states feature a relatively high-
degree unlabeled node on the le� side linking to nodes on the right.
�is observation could lead to further exploration of the unlabeled
nodes by domain experts. As the TimeCrunch summarization al-
gorithm is parameter-free, interpretation of trends in the summary
structures depends on the user’s application context.

Figure 5: ECOviz-Pair temporal data analysis view of two one-time

bipartite cores (obc). For the selected subject, the le� structure cor-

responds to resting state and the right structure to mindful rest.

�e double set drop-down mode, which is shown in Figure 3,
o�ers full �exibility to the user in terms of variable(s) to compare,
making it possible isolate e�ects of preprocessing method. �e
three meta-summary charts in ECOviz-Pair provide high-level in-
sight on the structure and node composition of the TimeCrunch
summaries. In Figure 3, we compare the e�ects of modifying tem-
poral granularity within a single subject. On the le� column, each
voxel’s time series is partitioned into 12 equal intervals, while the
right uses 16. From the summary item proportion chart, coarser
granularity results in a more temporally diverse summary – with
the majority of the summary containing ranged, periodic, or �ick-
ering structures. �e node count chart is more skewed right for
coarser granularity, indicating more node overlap in structures.
�ere is li�le variation in the top 10 node IDs, which suggests that
temporal granularity has limited e�ect on the summary’s most
active nodes.
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5.2 Temporal Data Analysis

As discussed in Section 4, ECOviz-Time focuses on temporal ex-
ploration of structures, showing the full sequence of time intervals
that a structure appears in. Below, we detail two types of analyses
that this view supports: inter- and intra-structure pa�erns.

�e static layout of nodes across time intervals directs users’
a�ention to trends in connectivity between structures. �is is
especially evident in Figure 1, where unlabeled nodes (colored in
gray) shi� from high intra-label connectivity to high inter-label
connectivity between time steps 11 and 12. At time step 11, these
unlabeled nodes are almost exclusively connected to each other,
as the paucity of edges connecting them to nodes of other colors
indicates. However, by time step 12, they have become heavily
connected with nodes of dissimilar labels (including those within
the DAN, DMN, SMN, VAN, and VN). �is trend in connectivity
may have been obscured in graph layouts that modify the layout
of nodes between temporal structure snapshots.

Grouping nodes by label also facilitates more complex analysis of
dynamics within resting-state network communities. �e sequence
of matrices in Figure 6 reveals how the adjacency matrix draws
a�ention to intra-community pa�erns. We restrict our analysis
on the four nodes within the DMN (colored in dark blue), which
encompass nodes 26, 56, 75, and 91. At time steps 3 and 17, these
nodes form stars centered around nodes 26 and 91, respectively. At
time step 7 – between the two appearances of stars – the structure
breaks into two sets of pairs (between nodes 91-26, 56-75). Finally,
the DMN structure becomes a triangle at time step 19 (between
nodes 75, 26, 91) and continues as a triangle at time step 20, though
with a voxel replacement (between nodes 56, 26, 91). Without the
sequential matrix view, this �ne of a granularity in pa�ern detection
would likely be di�cult to detect.

Figure 6: ECOviz-Time matrix sequence of temporal summary

structure: periodic full clique (pfc). �e DMN resting-state network

re�ects temporal patterns across the displayed time steps.

6 DEMONSTRATION PLAN

Prior to the demo, the system only requires an edge list of the
dynamic or static network in question. Although this demo is
specialized for functional brain network data and the preprocess-
ing complexities that neuroscientists face, the system accepts any
dynamic graph with a subset of nodes labeled by some criterion.
Time-evolving networks must be partitioned into t edge lists, such
that the ith edge list contains edges present at time interval i ∈ [1, t].
Following data storage and TimeCrunch processing, the contrast-
ing and temporal data analysis views are immediately available.

Contrasting Data Analysis: Regardless of single or double set
drop-down mode, users interact with data source by modifying
values of the desired drop-down menus. �is automatically up-
dates all supporting charts and the structure visualizations with
the user’s selections. In the case of double set drop-down mode,
the system only updates the column referred to by the selected
drop-down menu. To interact with the structure visualizations,
users click on the bu�on corresponding to the desired time step in
the TimeCrunch summary table for the desired structure row. �is
updates the visualization with the chosen structure-time step pair.

Temporal Data Analysis: Users may visualize the full tempo-
ral sequence of a structure through two ways: graph visualization or
adjacency matrix. To toggle each format, the user can click the but-
ton under the ‘Graphs’ and ‘Matrices’ column in the TimeCrunch
summary table for the desired structure row (Figure 4). �is re-
freshes the current visualization sequence with that of the structure
selected by the user. In the adjacency matrix view, users may re-
order the matrix by clicking, dragging, and dropping rows/columns
– allowing for sorting criteria �exibility.

In both types of analyses, the user may hover over nodes in the
structure visualizations to view node IDs. Proportion and entropy
of resting-state region labels are also shown in the table underneath.
We invite our audience to explore the spatial and temporal dynamics
of their data through the interface.

7 RELATEDWORK

Our work is related to visual graph analytics, and visualization
techniques for temporal graphs.

Several graph visualization frameworks, including Apolo [10],
OPAvion [1], and NetRay [14] focus on anomaly detection at the
node level, while others [7, 23] visualize the pa�erns in the adja-
cency matrices. Apolo [10] is a graph tool that supports a�ention
routing. �e user picks a few seed nodes and Apolo interactively
expands their vicinities to enable sense-making. OPAvion [1] is
an anomaly detection system for large graphs that mines graph
features on Hadoop, spots anomalies o�ine by leveraging anomaly
detection techniques, and interactively visualizes the anomalous
nodes via Apolo. Shneiderman proposes simply scaled density plots
to visualize sca�er plots in [23], [7] presents random and density
sampling techniques for datasets with several thousands of points,
while NetRay [14] focuses on informative visualizations of the spy
(distribution and correlation plots of web-scale graphs). Unlike
these works, the system in this paper visualizes domain-speci�c
summaries of time-evolving networks and supports pairwise com-
parison of the extracted summary structures.
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Limiting node movement between temporal snapshots, or pre-
serving the mental map, has long been believed to bene�t dynamic
graph visualization [6]. Early methods targeting this constraint
include supergraph creation that encodes node layouts in all time
steps [11], and simulated annealing that minimizes the cost func-
tion of inter-timeslice node movement [17]. Since our method aims
to provide responsive user interaction through fast graph drawing,
these solutions do not provide the necessary speed.

Despite consensus that temporal transitions should be inter-
pretable, choice of presentation mode (i.e., animation vs. small
multiples) is still under debate. Small multiples, a timeline-based
display, result in faster response times among participants of dy-
namic graph analysis tasks [2, 12]. �alitative responses also in-
dicate that animation between frames leads to higher cognitive
load when tracking multiple, simultaneous community transitions.
However, accuracy in tasks that involved following speci�c nodes
and edges improved in the animation case. Another experiment
found that participants detected pa�erns across a wider window
of time steps using small multiples as compared to animation [8].
Results show that the best approach depends on the user’s task:
global topological and temporal trends are easier to detect using
small multiples; local ones are be�er suited for animation.

In giving users the ability to detect community dynamics, a
major challenge lies in the display of both the node and community
topology of dynamic graphs. Vehlow et. al [26] developed a method
with node-link diagrams that overlay ribbons linking communities
across adjacent time steps. �is elegantly avoids the issue of edge
overdraw by only displaying node-link diagrams at the junction of
time steps. �e animated radial layout proposed by Yee et. al [28]
relies on polar projection of nodes in a radial layout to reduce
low-level edge crossings, and animation between focal nodes to
show high-level trends. �ese approaches o�er principled ways to
navigate the trade-o� between showing detail and abstraction.

Apart from community and node-level dynamics, ECOviz must
also show context from a known set of static structures. We choose
radial and spine drawings [5] to re�ect the respective forms of
cliques and bipartite cores. To convey community dynamics within
these structures, we also stratify nodes by domain-speci�c label,
a user-de�ned semantic substrate [24]. �ese layout restrictions
make previously discussed approaches of [26] and [28] unsuitable
for ECOviz. Since our work uses small multiples for its more
global community-level task, the edge crossings present in clique
structures could bene�t from a static layout such as hierarchical
edge bundling [13].

8 CONCLUSION

In this paper, we leverage domain-speci�c insight in partially la-
beled data to produce interpretable summaries of dynamic graphs.
Speci�cally, we propose a summary generation process that uses
an egocentric view of labeled nodes to direct TimeCrunch towards
exploring existing functional communities in the connectome. We
also introduce a visualization-based system, ECOviz, to allow users
to interact with the generated summaries and compare the results of
di�erent data sources. Via ECOviz-Pair we o�er contrasting anal-
ysis between dynamic graphs’ data source (e.g., resting vs. mindful
rest state) and preprocessing methods for ease of evaluation, as well

as more detailed exploration of a network’s temporal pa�erns via
ECOviz-Time. To be�er express structure connectivity over time,
we maintain a static node layout according to the TimeCrunch
encoded structure and node labels, producing a clearer visualization
of dynamics within and between nodes of the same community.

Future steps include quantifying summary quality to automate
the selection of preprocessing parameters for dynamic graph con-
struction, assisting the user in detecting time interval granularity
(instead of keeping intervals of equal length), and allowing the
user to customize the summarization routine by allowing for intro-
duction of new static graph vocabulary pa�erns (beyond cliques,
bipartite cores, etc.). �ough the task of exploring dynamic graphs
for structures is largely unsupervised, the previous modi�cations
would adapt to the user’s data, creating a domain-speci�c graph
summary that more e�ectively communicates �ndings to the user.

9 ACKNOWLEDGEMENTS

�e authors thank Chandra Sripada, M.D., for sharing the fMRI
data that inspired this system. �is material is based upon work
supported by the University of Michigan.

REFERENCES

[1] L. Akoglu, D. H. Chau, U. Kang, D. Koutra, and C. Faloutsos. OPAvion: Mining
and visualization in large graphs. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 717–720. ACM, 2012.

[2] D. Archambault, H. Purchase, and B. Pinaud. Animation, small multiples, and
the e�ect of mental map preservation in dynamic graphs. IEEE Transactions on
Visualization and Computer Graphics, 17(4):539–552, 2011.

[3] D. Archambault and H. C. Purchase. �e mental map and memorability in
dynamic graphs. In Paci�c Visualization Symposium (Paci�cVis), 2012 IEEE, pages
89–96. IEEE, 2012.
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