Human-guided Flood Mapping on Satellite Images

Jiongqian Liang
Department of Computer Science and
Engineering
The Ohio State University
liangji@cse.ohio-state.edu

Peter Jacobs
Data Analytics
The Ohio State University
jacobs.269@osu.edu

Srinivasan Parthasarathy
Department of Computer Science and
Engineering
The Ohio State University
srini@cse.ohio-state.edu

ABSTRACT

Flooding is responsible for substantial loss of life and econ-
omy. Flood mapping, the process of distinguishing flooded
areas from non-flooded areas during and after a disaster, can
be very useful in guiding first response resources in a disas-
ter situation, and in assessing flood risk in future disaster
scenarios. This paper involves the use of image segmenta-
tion methods and human guidance to provide a mechanism
for lood mapping. Previous image segmentation methods
do not work well in flood mapping because they are de-
signed to segment objects out of an image, where there are
only a few objects, e.g., foreground-background segmenta-
tion. However, satellite images of flooded areas often contain
hundreds to thousands of large and small water areas that
need to be identified. Therefore, we design a semi-supervised
learning algorithm specifically to tackle the flood mapping
problem. We first divide the satellite image into patches
using a graph-based approach depending on the proximity
and intensity of pixels. We then classify each of the patches
in an interactive and incremental way, where each time the
user is asked to label a few patches and we learn a classi-
fier to automatically classify other patches into water area
or land area. We run our algorithm on satellite images of
Chennai, India during the 2015 Chennai flood period. The
results show that our algorithm can robustly and correctly
detect water areas compared to baseline methods. We com-
pare the segmentation results of post-flood with pre-flood
and conduct an effective flood evolution analysis.

Keywords

Flood mapping; Graph-based approach; Semi-supervised;
Image Segmentation

1. INTRODUCTION

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD 2016 Workshop on Interactive Data Exploration and Analytics
(IDEA’16) August 14th, 2016, San Francisco, CA, USA.

(© 2016 Copyright held by the owner/author(s).

76

According to Hallegatte et al. [11], if worldwide flood
probabilities remain constant over the next 35 years, ris-
ing sea levels, sinking land areas, and growing urban coastal
populations are expected to drive annual global flood losses
from 6 billion U.S. Dollars per year to upwards of 60 Billion
US Dollars per year by 2050.

It is of paramount importance to identify ways to reduce
the probability of flooding in coastal urban areas. A first
step in achieving this goal is the reliable identification of
regions in coastal cities that are most susceptible to flood-
ing. If these regions can be identified, action can be taken
to better protect these areas from flooding, and public pol-
icy can prevent development in areas that have a high risk
of flood damage. Flood mapping allows for identification of
areas of high, medium, and low risk of flooding, which can
help prevent serious flooding from happening. Another ap-
plication of flood mapping is the quick identification of areas
that have been severely flooded during or immediately af-
ter a storm. This information can be utilized to guide first
responders to where they are most needed.

In order to conduct flood mapping, satellite images promise
tremendous potential in monitoring flood disasters due to
their low cost and consistent and repetitive data acquisition
capability over large spatial areas [17, 20]. Compared to
the sparse in situ physical sensing data (e.g., river gauge
data and weather station records), satellite images offer a
synoptic view of the landscape and provide a comprehen-
sive geo-spatial perspective on flood events. The problem
here is how to correctly identify areas flooded areas given
high-resolution satellite images.

This problem can be regarded as an image segmentation
task, where one wants to segment flooded areas out of the
whole region. While image segmentation has been widely
studied in the image processing community [19, 7, 5, 1],
these approaches cannot directly be applied in flood map-
ping. On one hand, they mostly focus on background and
foreground segmentation and the total number of segments
is relatively small. On the other hand, these approaches
are usually not scalable on large datasets and cannot work
on high-resolution satellite images. Moreover, the difference
between flooded regions and other regions can be so subtle
that human guidance is required in order to correctly locate
floods. To address these difficulties, we propose a semi-

supervised learning method that can interact with humans
and incrementally conduct flood mapping efficiently.

In this paper, we explore novel ideas to integrate network-
analysis and human guidance for flood mapping, where we

use network clustering approaches to divide images into patches

and adopt human guidance to interactively label the patches
as water and land areas. The method for flood mapping
involves segmentation of satellite images of the given city
before and after a flood occurred to identify land and water
areas. This is followed by a comparison of these pre and post
disaster segmentations to identify flooded vs. non-flooded
areas. The experiments on satellite images of Chennai, India
during the 2015 floods show that our method can more ef-
fectively identify flooding areas compared to state-of-the-art
approaches. Our method is also much more efficient, which
enables real-time incremental learning and provides instant
information to help prioritize post disaster repair and relief
activities.

The rest of the paper is organized in the following way.
Section 2 reviews related literature. Section 3 presents our
methodology for flood mapping. Section 4 describes an ex-
tensive experiment conducted to show the efficiency and ef-
ficacy of our method. We describe ongoing and future work
in Section 5. Finally, we provide a summary in the last
section.

2. RELATED WORK

The problem of flood mapping satellite images is related
to the field of image segmentation while the incorporation of
human guidance is connected to semi-supervised clustering.
Therefore, we review some existing work on image segmen-
tation and semi-supervised clustering in this section. We
also discuss past work from the flood mapping domain.

Image segmentation is a long-standing problem and a wide
range of techniques has been developed to attempt to seg-
ment an image [19, 7, 1, 5, 3, 2]. Some classic methods
for image segmentation involve thresholding. Thresholding-
based techniques for grayscale image segmentation pick a
pixel intensity T and force all pixels with intensity above
T to be one color, while all pixels with intensity below T'
become another color [2]. Thresholding produces a binary
image, and if the threshold T is selected carefully, this bi-
nary image can isolate foreground objects from the image
background, which can be an effective mechanism for im-
age segmentation [2]. Picking the value of T' is the main
challenge in thresholding. Many methods have been devel-
oped for selecting the threshold pixel intensity 7" [1, 15, 18,
21, 13]. One common method for picking 7', known as Otsu
thresholding [1], involves finding the pixel intensity that cre-
ates the greatest separation and least overlap between the
modes in the pixel intensity histogram; this method works
best for images with bi-modal pixel intensity distributions.
However, Otsu thresholding is not robust when applied to
images with noise because the segmentation produced is
merely based on the intensity of each pixel without look-
ing at the pixels nearby. If applied to satellite images, it
will generate many tiny spots that do not represent relevant
higher level structure in the image.

Other methods of image segmentation include the region
merging technique proposed by Baatz et al. [3]. They treat
pixels as objects initially, and at each iteration, the two ob-
jects are merged that lead to the smallest increase in het-
erogeneity. More recently, graph-based methods have been

77

introduced for image segmentation. Graph-based techniques
formulate the image as a graph, and then use some form of
community detection to find a segmentation. Shi et al. [19]
create a graph with weighted edges and use the normalized
cut criterion to segment the image. Browet et al. [7] also
formulate the image as a graph; they use modularity as a
criterion to find a segmentation for the image. However,
these methods are computationally expensive and are not
scalable on large satellite images.

Furthermore, there are some semi-supervised learning ap-
proaches for image segmentation [5, 14, 4]. One influen-
tial semi-supervised method for image segmentation is the
watershed algorithm, developed by Beucher and Meyer [5].
The watershed algorithm allows the user to mark different
segments in the image. The algorithm then performs a re-
gion growing technique, starting from the user placed marks,
that operates on the gradient of the original image. While it
allows interaction with users and can conduct image segmen-
tation incrementally, the watershed algorithm requires the
user to place at least one marker for each segment, which
is inefficient in the scenario of flood mapping on satellite
images.

Beyond image segmentation, our problem is also relevant
to semi-supervised clustering [10]. Semi-supervised cluster-
ing involves the addition of “must-link” and “cannot-link”
information into the clustering process. “Must-link” infor-
mation indicates that two objects “must” be in the same
cluster. “Cannot-link” information indicates two objects
“cannot” be in the same cluster. Wagstaff et al. [22] show
that insertion of “must-link” and “cannot-link” information
into the clustering process can lead to improved accuracy
and efficiency in clustering. However, our problem on satel-
lite images is quite different from the traditional setting of
semi-supervised clustering and we need a more convenient
way than “must-link”/“cannot-link” for human to provide
supervision.

Flood mapping itself has been the subject of previous
work. Wang et al. [23] use Thematic Mapping, a type of
earth observing sensor, to identify land and water areas be-
fore and after flooding, followed by the use of a classification
algorithm to identify flooded and non-flooded areas. Henry
et al. [12] use Advanced Synthetic Aperture Radar (ASAR)
data for flood mapping. These methods both rely on data
sources from earth-observing satellites (landsat 7 and En-
visat respectively). These data sources are not always avail-
able at the time of a disaster. For example, Envisat, the
satellite that provided the ASAR data used in the paper
by Henry et al., is no longer in operation. Moreover, these
methods do not support interactions with ordinary users and
cannot update the results incrementally.

3. METHODOLOGY

To effectively solve our problem and overcome limitations
in prior work, we state the following desiderata:

e Fast flood mapping: Conduct efficient/scalable flood
mapping for large satellite images. Efficiency is nec-
essary to facilitate interactive learning and it is also
vital if the method is used to help guide emergency
first responders in a flood disaster.

e Guided by human: Incorporate guidance from hu-
mans to achieve better results.

e Easy to use: Ordinary users can easily use the method
and conveniently provide supervision.

e High quality results: Generate effective flood map-
pings that can be easily interpreted.

Building on these desiderata, we propose a novel method
for lood mapping. Our method first preprocesses the satel-
lite images and then detects water areas from satellite im-
ages in an interactive fashion using human guidance. Then
by comparing the water areas pre and post disaster, it can
identify the flood areas. We describe the method in detail
below.

3.1 Preprocessing

To label areas of a satellite image as either land or wa-
ter, we need to decide on a primary unit for labeling. A
straightforward way is to treat each pixel as a unit and con-
duct pixel-based labeling. The drawback is that we lose
the information derived from geographic correlations, and
the results will tend to be noisy. The labeling results will
involve fuzzy and blurring boundaries, and there might be
many small spots. Also, it is difficult to label one pixel man-
ually. Another alternative is to conduct uniform grouping,
which involves treating the image as a grid with squares of
uniform size. However, without using the intensity informa-
tion of the image, this grouping can go across boundaries
(many patches include both water and land), which is not
desirable. In this paper, we adopt a graph-based approach
for patch generation, which is efficient and can not only ef-
fectively detect regions of different sizes, but can also avoid
generating regions across land-water boundaries.

3.1.1 Graph Construction

Graph-based segmentation has been widely studied in the
literature [19, 9, 6, 7]. In this paper, we convert the image
into an undirected graph following the approach proposed
by Cour et al. [8]. Each pixel of the image is treated as one
node and each pixel has edges to nearby pixels within the
distance of dyaz, Where dpmas is a user-defined parameter.
The weight of the edge between pixel ¢ and pixel j is defined
using the following approach.

_d(,)2 _ |[F()-F()|?

o3 o

wi; =€ if d(4,7) < dmae
0 otherwise.

(1)

where d(i, j) is the Euclidean distance between pixels ¢ and j
and F'(4) is a feature vector evaluated at pixel i. The feature
vector can be the scalar intensity value or the RGB values
of an image. 04, 0; and dmaex are parameters controlled by
the user.

Note that the number of nodes in the constructed graph
n is equal to the number of pixels in the image, and the
number of edges is m = k * n, where k is a small constant
factor depending on the setting of dpaz-

3.1.2 Graph Clustering to Generate Patches

After we construct the graph from the image, we cluster
the graph. Since the satellite image usually contains hun-
dreds of millions of pixels, we need a highly scalable graph
clustering algorithm. In this paper, we leverage the off-the-
shelf tool Multi-level Regularized Markov Clustering (MLR-
MCL) [16], which is an efficient multi-level graph clustering
software.

78

Since the goal of graph clustering is to generate basic units
for labeling, we tend to produce a large number of clusters.
Empirically, we find the method works well when the aver-
age size of clusters is a few hundred pixels. Once we have
the graph clustering results, pixels in the same cluster are
considered to be in the same patch.

There are many advantages to producing patches using
this graph-based approach. This approach can avoid the
edges/boundaries of a segment being in a patch (e.g. land
and water areas being in the same patch). Also, it be-
comes very easy to control the number of patches using
MLR-MCL. Moreover, MLR-MCL has time complexity lin-
ear to the number of edges and is very efficient to run in our
graph (the number of edges is proportional to the number
of nodes).

3.2 Human-guided Labeling

After generating patches, the next step is to ask the user
for a couple of labels. The user will place a few markers
in the image to label a few patches that they identify as
land/water. To utilize this user-provided supervision, a bi-
nary classifier is learnt and then applied to the rest of the
unlabeled patches.

3.2.1 Learning the Binary Classifier

In this paper, we use k-NN as the classifier since there are
only a few features and they are interpretable. In particular,
we define the distance function between two patches ¢ and
j as follows.

D(i,§) = ||[F(i) = F(j)||, * log (dist(i, j)) (2)
Eq. 2 contains two factors. The first factor compares the fea-
tures of the two patches while the second factor calculates
the Euclidean distance between the two patches. Specifi-
cally, to calculate the first factor, we average the feature
vectors of the two patches respectively and compute the L2-
norm of their difference. For the second factor, we compute
the centroids of both patches and compute the Euclidean
distance between the centroids. To decrease the effect of ge-
ographical distance, we take the logarithm of the Euclidean
distance.

To classify an unlabeled patch, we find the k most similar
labeled patches based on the distance function in Eq. 2.
The classification of the patch is then decided by a vote
conducted using the labels of these k& most similar labeled
patches.

3.2.2 Interactive Labeling And Incremental Update

Instead of asking the user to label the patches at one time,
we create an interactive environment for labeling. The user
is asked to label one patch at one time and our method
generates classification results based on the labels currently
available. The results are presented to the user in real-time
and the user decides whether to label more patches or not.
If/when the user provides a new label, the method will incre-
mentally update the results. Our algorithm terminates only
when the user does not plan to label more patches; at this
point, the result is saved. In practice, we find out that the
user usually only needs to mark 2 to 6 patches to generate
reasonably good results.

Image Date | Size of Image | 0y | 07 | dmaez | # patches
11/24/2015 800x444 3 16 2 12946
10/19/2015 4500x2500 2 |16 2 69674
10/31/2015 4500x2500 2 |16 2 69674
11/12/2015 4500x2500 2 16 2 69674
11/24/2015 4500x2500 2 16 2 69674
12/06/2015 4500x2500 2 16 2 69674
12/18/2015 4500x2500 2 16 2 69674

Table 1: Parameter settings used to construct the graph and
generate patches

3.3 Flood Mapping

After obtaining segmentations of an urban area before and
after a flood, flood mapping can be performed through com-
parison of the segmentations. We treat the satellite images
before the flood as a baseline and compare satellite images
during and after the flood with this baseline. Areas that are
not segmented as water before the flood, but are segmented
as water after the flood are considered flooded areas.

4. EXPERIMENTS AND ANALYSIS

We run our algorithm on real-world satellite images and
conduct analysis in this section.

4.1 Dataset and Baseline

We use satellite images of Chennai, India during the 2015
South Indian Floods . In total, we collect six satellite im-
ages during the flood, one for every twelve days, shown in
Figure 1.

We compare our algorithm with some state-of-the-art al-
gorithms for image segmentation: 1) Watershed algorithm [5];
2) Normalized cut algorithm [19]; 3) Graph-based image seg-
mentation with post-processing. The method for generating
patches in the 3rd baseline is the same method used to gen-
erate patches in our method. However, the second step of
the 3rd baseline method is purely unsupervised; the step
involves continued merging of nearby patches based on the
similarity of pairs of patches until the designated number of
patches has been generated.

Considering the fact that some baselines (e.g., Normalized
cut algorithm and Watershed algorithm) are very computa-
tionally expensive and cannot finish on the large satellite
images in a reasonable amount of time, we divide our ex-
periment into two parts. In the first part, we downscale the
satellite images and run our method and baselines on them
for comparison. As an example, we run all the algorithms
on the satellite image of Chennai on 11/24/2015, which is
re-sized from 4,500%x2,500 to 800x444. We then run our
method on the full-size satellite images and conduct further
performance analysis.

For the experiments, we implement our algorithm using
Python. We use the OpenCV API for the Watershed algo-
rithm. For the Normalized cut, we obtain the source code
from authors 2. We also implement the graph-based method
with post-processing. Basic information about the datasets
and parameter settings for our algorithm are displayed in
Table 1.

4.2 Comparing Different Methods

"https://en.wikipedia.org/wiki/2015_South_ Indian_floods
Zhttps:/ /www.cis.upenn.edu/~jshi/software/

79

Method # Markers | Total Interactive

Time | Labeling

(s) Time (s)
Our Approach 2 30.551 | 0.057
Watershed Algorithm 11 0.225 0.225
N-cuts Algorithm 0 538.615 | 0.000
Graph method w. post- | 0 558.220 | 0.000
process

Table 2: Running time comparisons of different methods. #
markers is the number of markers the human provides for
the algorithm.

We now compare the performance of our algorithm with
the baselines on the downscaled image as shown in Figure 2
(Chennai area on 11/24/2015). The results of segmenting
water areas are shown in Figure 3 while the execution time
is listed in Table 2. We hereby highlight the following ob-
servations:

e Among all the approaches, our method is apparently
the best. Our method can clearly identify most of the
water areas and even long thin rivers while all other
methods fail to do this. Particularly, our method is
good at identifying regions of arbitrary shape and it
does not limit the size of each segment. We notice
that Otsu thresholding [1] might also have similar ad-
vantages, but it tends to generate more tiny partitions
because its segmentation results only depend on the
intensity of each pixel and one pixel can be an individ-
ual partition if its pixel intensity is far different from
its neighboring pixels *.

e Compared to the Watershed algorithm, our method
produces better results while requiring less effort from
humans. The Watershed algorithm seems to correctly
capture some boundaries but could not segment out
small water areas, including the long thin rivers. In
the example shown in Figure 3, we place nine mark-
ers in different water areas and two markers in the
land areas (see Figure 4). But the segmentation re-
sults are still not desirable. On the other hand, using
our method, we only need to place one marker in wa-
ter and one in land respectively (see Figure 4) and the
results are much better than the Watershed algorithm.
One of the reasons for this difference is that labeling of
the Watershed Algorithm grows from the user marked
regions in a local fashion and therefore requires much
more manual labels for it to work reasonably well.

e The Normalized Cut algorithm tends to generate over-
balanced segments and cannot extract segments of long
thin shape (shown in Figure 3(c)). Though it performs
well in detecting most of the boundaries, it breaks large
areas into pieces that should be in one partition. This
can be seen from the split of some large lakes. As a
whole, the results are much worse than our algorithm.

e Graph-based segmentation with post-processing in gen-
eral works well in detecting some large areas (see Fig-
ure 3(d)). However, similar to the Normalized Cut
algorithm, it cannot detect small water regions, espe-
cially those long thin rivers.

3Further investigation shows that Otsu generates two times
as many segments as our method on the image.

a) 10/19 b) 10/31
c) 11/12 d) 11/24
e) 12/06 (f) 12/18

Figure 1: Satellite images of Chennai from 10/19/2015 to 12/18/2015. One image for every 12 days.

80

Figure 2: Down-scaled satellite image of Chennai area on 11/24/2015.

(a) Our Method (b) Watershed Algorithm

(¢) Normalized Cuts Algorithm (100 partitions) (d) Graph-based Clustering with Post-processing (100 par-
titions)

Figure 3: Image segmentation results of different approaches on satellite images of 11/24/2015 (down-scaled). (a) is the result
of our algorithm, where blue color indicates water areas while green represents land areas. (b) is the result of Watershed
algorithm, where blue color indicates water areas and green represents land areas. (c) is the result of Normalized Cut
method, where red line marks out the boundaries between land and water areas. (d) is the result of graph-based method with
post-processing, where red line also highlights the boundaries between land and water areas.

81

(a) Two markers provided by the user to our method

(b) Eleven markers provided to Watershed algorithm

Figure 4: Labels that the user provided for the algorithm to learn labeling. Blue points label the areas as water while green

points label them as land.

e As shown in Table 2, our method is very fast during
interactive labeling and with regard to overall time, it
outperforms 2 of the other 3 algorithms. The Normal-
ized Cut algorithm is very slow because it uses spectral
clustering and requires computation of the eigenvec-
tors of the Laplacian matrix, which is very compu-
tationally expensive. The Graph-based segmentation
with post-processing method requires a great deal of
computation at the stage of hierarchical merging and
is also much slower. Even considering the time of
preprocessing for patch generation (30.494 seconds),
our method is still much more efficient than the two
just mentioned algorithms. Due to the length of patch
generation preprocessing, the Watershed algorithm is
faster than our method, but our method requires less
time during the stage of interactive labeling, which is
an important convenience for human users. For ex-
ample, for one image, we only need to conduct pre-
processing once; then, as a result of the efficiency in
interactive labeling, the preprocessed image can be in-
teractively labeled by many human users many times
easily. This process allows users to find what they con-
sider the ’best’ segmentation through trial and error,
without long wait times.

4.3 Segmenting out Water Areas on Original
Satellite Image

We have shown the advantages of our method compared
to other baselines above. Now, we further show the results
of our method on all the full-size satellite images in Fig-
ure 1. Basic information about the datasets and parameter
settings for our algorithm are displayed in Table 1. The seg-
mentation results are shown in Figure 5. From Figure 5, we
can observe that our algorithm consistently generates high
quality segmentations and is capable of correctly detecting
the arbitrary boundaries between land and water. Most long
thin rivers, small irregular water bodies, and large wide lakes
are correctly extracted.

4.4 Dynamic Analysis for Flood Mapping

While we mainly focus on image segmentation as a method
for distinguishing water from land in satellite images above,
we now discuss how we adopt the image segmentation method
developed to detect flood areas. To this end, we refer to the

historical satellite image from before the flood and conduct
dynamic analysis.

By simply looking at Figure 5, which shows images of
Chennai from 10/19 to 12/18, we can see the water areas
greatly increase between 10/31 and 11/12. The water areas
start decreasing from 12/06 onward.

To create a flood map, we use the segmentation result
from 10/31/2015 as the baseline and compare this segmenta-
tion to the segmentations from later dates. Figure 6 presents
the dynamic changes of water areas. Red color indicates the
areas that change from land into water while yellow color in-
dicates the opposite change. From Figure 6, we can clearly
observe that 11/24 and 12/06 have the largest number of
water areas; water areas seem to decrease following 12/06.
Red areas are likely regions affected by the flood. The flood
maps are quite consistent with the fact that the South In-
dian floods lasted from 11/08/2015 to 12/14/2015.

In addition, we generate two animated gifs and put them
on our website *. The changes of water areas can be more
clearly seen on the animated gifs, revealing the flood surges
and recessions.

S. ONGOING AND FUTURE WORK

In this section, we discuss some of the directions that we
are working on.

e Improve the learning models. While we use very
simple k-NN method for classification in this paper, we
would like to adopt more advanced classifiers to label
patches, such as SVM and neural networks. Mean-
while, more features for each pixel can be leveraged,
such as RGB values instead of just intensity. We also
want to design an active learning mechanism so that
the user will be encouraged to label patches that our
algorithm is most uncertain about. This will further
reduce the efforts of humans and also improve the flood
mapping quality.

e Crowd Sourcing Experiments. Some satellite im-
ages might be difficult for one person to label and there
might be uncertainties and confusions at some parts
of images (water or land) due to various reasons, such

“http://web.cse.ohio-state.edu/~liangji/floodmap.html

(a) 10/19 (b) 10/31

(c) 11/12 (d) 11/24

(e) 12/06 (f) 12/18

Figure 5: Results of our segmentation algorithm on satellite images from 10/19/2015 to 12/18/2015. One image for every 12
days.

83

c) 12/06 ‘ d) 12/18

Figure 6: Water area changes from 11/12/2015 to 12/18/2015 using 10/31/2015 as the baseline. One image for every 12 days.
Red color indicates areas that were land on 10/30/2015 but were water on the given date, while yellow color indicates areas
that were water on 10/30/2015 but were land on the given date. Blue and green represent areas that were originally water or
land on 10/30/2015 and remain so on the given date.

84

as the limitation of resolution. Motivated by this, we
plan to lauch a crowd sourcing experiment at platform
such as Amazon Mechanical Turk, where we ask dif-
ferent people to help interactively label the satellite
images. The segmentation results on the same image
are then aggregated. We employ more humans to label
those images that involve more conflicts.

e Incorporating Social Media Information. Dur-
ing the flood, social media users might publish use-
ful information on social media, which can potentially
provide supervision to our method. For example, users
might publish tweets on Twitter about the flood in a
specific region, and this information can be used as
a marker in our method. This means that the infor-
mation on flood from social media can be used as su-
pervision and labeled markers for the flood mapping
approach.

6. CONCLUSION

In this paper, we provide an effective and efficient so-
lution to the flood mapping problem by leveraging human
guidance. We generate patches using a graph-based ap-
proach and adopt a semi-supervised algorithm involving hu-
man guidance to label the patches. Our results show that
our algorithm can correctly segment out water and land ar-
eas with less noise, compared to other baselines. Further
dynamic analysis reveals that it can effectively detect the
flooded areas.

Acknowledgements. This work is supported by NSF Award
NSF-EAR-1520870 and NSF-DMS-1418265. We also thank
Desheng Liu and Jiayong Liang for useful discussions and
help with data collection.

7. REFERENCES

[1] A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1):62-66, Jan 1979.

[2] S.S. Al-Amri, N. V. Kalyankar, et al. Image
segmentation by using threshold techniques. arXiv
preprint arXiv:1005.4020, 2010.

[3] M. Baatz and A. Schipe. Multiresolution
segmentation: an optimization approach for high
quality multi-scale image segmentation, 2000.

[4] A. M. Bensaid, L. O. Hall, J. C. Bezdek, and L. P.
Clarke. Partially supervised clustering for image
segmentation. Pattern Recognition, 29(5):859-871,
1996.

[5] S. Beucher and F. Meyer. The morphological approach
to segmentation: the watershed transformation.
OPTICAL ENGINEERING-NEW YORK-MARCEL
DEKKER INCORPORATED-, 34:433-433, 1992.

[6] Y. Boykov and G. Funka-Lea. Graph cuts and efficient
nd image segmentation. International journal of
computer vision, 70(2):109-131, 2006.

[7] A. Browet, P. A. Absil, and P. Van Dooren.
Combinatorial Image Analysis: 14th International
Workshop, IWCIA 2011, Madrid, Spain, May 23-25,
2011. Proceedings, chapter Community Detection for
Hierarchical Image Segmentation, pages 358-371.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

85

8]

(11]

(12]

(14]

(15]

(17]

[20]

(21]

(22]

23]

T. Cour, F. Benezit, and J. Shi. Spectral segmentation
with multiscale graph decomposition. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 2,
pages 1124-1131. IEEE, 2005.

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
graph-based image segmentation. International
Journal of Computer Vision, 59(2):167-181, 2004.

N. Grira, M. Crucianu, and N. Boujemaa.
Unsupervised and semi-supervised clustering: a brief
survey. A review of machine learning techniques for
processing multimedia content, Report of the MUSCLE
European Network of Excellence (FP6), 2004.

S. Hallegatte, C. Green, R. J. Nicholls, and

J. Corfee-Morlot. Future flood losses in major coastal
cities. Nature climate change, 3(9):802-806, 2013.
J.-B. Henry, P. Chastanet, K. Fellah, and Y.-L.
Desnos. Envisat multi-polarized asar data for flood
mapping. International Journal of Remote Sensing,
27(10):1921-1929, 2006.

J. N. Kapur, P. K. Sahoo, and A. K. Wong. A new
method for gray-level picture thresholding using the
entropy of the histogram. Computer vision, graphics,
and image processing, 29(3):273-285, 1985.

G. A. Lazarova. Semi-supervised image segmentation.
In Artificial Intelligence: Methodology, Systems, and
Applications, pages 59-68. Springer, 2014.

A. Rosenfeld and P. De La Torre. Histogram concavity
analysis as an aid in threshold selection. Systems, Man
and Cybernetics, IEEE Transactions on, (2):231-235,
1983.

V. Satuluri and S. Parthasarathy. Scalable graph
clustering using stochastic flows: applications to
community discovery. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 737-746. ACM,
2009.

S. B. Serpico, S. Dellepiane, G. Boni, G. Moser,

E. Angiati, and R. Rudari. Information extraction
from remote sensing images for flood monitoring and
damage evaluation. Proceedings of the IEEE,
100(10):2946-2970, 2012.

M. I. Sezan. A peak detection algorithm and its
application to histogram-based image data reduction.
Computer vision, graphics, and image processing,
49(1):36-51, 1990.

J. Shi and J. Malik. Normalized cuts and image
segmentation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 22(8):888-905,
2000.

S. P. Simonovic and P. Eng. Role of remote sensing in
disaster management. 2002.

D.-M. Tsai. A fast thresholding selection procedure for
multimodal and unimodal histograms. Pattern
Recognition Letters, 16(6):653—-666, 1995.

K. Wagstaff and C. Cardie. Clustering with
instance-level constraints. AAAI/IAAI 1097, 2000.
Y. Wang, J. Colby, and K. Mulcahy. An efficient
method for mapping flood extent in a coastal
floodplain using landsat tm and dem data.
International Journal of Remote Sensing,
23(18):3681-3696, 2002.

