
A Visual Approach for Interactive Co-Training

Qi Han
Institute for Visualization and

Interactive Systems
University of Stuttgart

Germany
Qi.Han@vis.uni-

stuttgart.de

Weimeng Zhu
Institute for Natural Language

Processing
University of Stuttgart

Germany
st113027@stud.uni-

stuttgart.de

Florian Heimerl
Institute for Visualization and

Interactive Systems
University of Stuttgart

Germany
Florian.Heimerl@vis.uni-

stuttgart.de
Steffen Koch

Institute for Visualization and
Interactive Systems

University of Stuttgart
Germany

Steffen.Koch@vis.uni-
stuttgart.de

Thomas Ertl
Institute for Visualization and

Interactive Systems
University of Stuttgart

Germany
Thomas.Ertl@vis.uni-

stuttgart.de

ABSTRACT
Co-training is a popular semi-supervised method to build
classifiers by combining labeled and unlabeled data. It trains
two classifiers with a small amount of initially labeled data
and iteratively retrains them after exchanging their high
confidence instances. As the initial amount of labels is very
small, however, the performance can suffer from the la-
bel pollution problem. We therefore propose an interactive
visual approach that improves the stability of co-training
through user inspection of transferred instances. It includes
a visualization of classifier uncertainties and disagreement.
It further helps users to quickly identify possible mistakes of
the automatic approach by guiding user’s attention to the
instances which are labeled differently than the majority of
their nearest neighbors and instances which are labeled dif-
ferently by the two base classifiers. To help users examine
such instances, we also include a visual explanation which
shows important features of an instance along with its raw
data. We show the effectiveness of our approach with a
usage scenario and by comparing it with the classical co-
training approach through experiments. Finally, we discuss
limitations and propose several possibilities for future im-
provement.

Keywords
interactive machine learning, visualization, machine learn-
ing, semi-supervised learning, co-training, multi-view learn-
ing, bootstrapping

1. INTRODUCTION

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD 2016 Workshop on Interactive Data Exploration and Analytics
(IDEA’16) August 14th, 2016, San Francisco, CA, USA.
c© 2016 Copyright held by the owner/author(s).

Nowadays, a huge amount of text data are produced ev-
ery day. The number of emails received by individuals is
growing every minute. Documents produced by online com-
munities or other organizations are also increasing quickly.
This poses great challenges to human individuals as well as
organizations to manage and analyze this data to obtain in-
sights. To classify data into different categories is one of the
common methods to organize it. Automatic classification
can free humans from repeatedly doing the same classifica-
tion tasks, as they can learn classification rules from them.
However, to obtain a classifier with good performance, peo-
ple need to label many data points to feed into the clas-
sification algorithm, which is very time consuming. Semi-
supervised learning methods [7, 22] can reduce human effort
in labeling a lot of data. They combine information from
a small amount of labeled and a large amount of unlabeled
data to learn classification criteria. Clustering [12] can also
automatically assign documents into categories. However,
the natural clustering of the data does not necessarily in-
consistent with the intention of users. Recently, researchers
also suggest approaches to actively integrate human inten-
tion into the clustering results [4] . In this work, we focus
on improving semi-supervised learning methods through hu-
man interaction.

Co-training [5] is one of the most popular semi-supervised
learning methods. It starts by training two classifiers on two
different feature sets with an initial set of labeled data. It
proceeds by iteratively growing the set of labeled data and
retrain the classifiers on this new dataset. In each iteration,
it allows each of the two classifiers to label a few unlabeled
data instances, which they can classify with a high confi-
dence. These instances are added to the set of training data
for subsequent iterations. The two classifiers are retrained
on this new set and co-training can start a new iteration.
Zho and Li [21] use a flow-graph to explain the co-training
method. We add a visual element representing users into the
graph to clarify the role of users as can be seen in Figure 1.

However, as the initial amount of labeled instances is very

46



Figure 1: A graphical summarization of the classical
co-training method.

Figure 2: A graphical summarization of the interac-
tive co-training approach proposed in this work.

small, the two base classifiers do typically not have a high
classification performance at the beginning. They can thus
potentially introduce labeling mistakes into the training set
used to train new classifiers in the following iterations. This
makes the performance of the co-training method unstable,
especially when used on noisy data [9, 18]. In this paper,
we propose an interactive visual approach for co-training.
Our approach improves the stability of co-training through
user inspection of the transferred instances. It includes a
visualization based on Parallel Coordinates [11] to depict
the uncertainties of the two base classifiers and the dis-
agreement between them. Furthermore, it encodes the la-
bel distribution of the nearest neighbors of the instances.
The visualization guides users’ attention to the instances
which are labeled differently than the majority of their near-
est neighbors or the instances which are labeled differently
by the two base classifiers. In doing so, it helps users to
quickly identify possible mistakes of the automatic approach.
Correcting those mistakes will likely boost the performance
of the co-training algorithm. To help users examine these
mistakes more closely, we also include a visual explanation
which shows important features of an instance along with
its raw data. Figure 2 depicts the main components of our
approach.

2. RELATED WORK

In this section we discuss approaches that are related to
ours. They can be broadly divided into two groups. The
first one address machine learning in semi-supervised set-
tings. The second group of approaches focuses on integrating
interactive visualizations and machine learning to improve
performance of automatic algorithms, or provide explana-
tion for their decisions.

Blum et al. [5] suggest co-training to combine informa-
tion form labeled and unlabeled data to train classifiers.
They also show the effectiveness of co-training under the
assumption that the two views on the data are conditionally
independent. Since then, co-training has been applied in
many domains, for example, to classify emails [14], or to la-
bel roles of named entities [9]. Additional research provides
more insight about why and in which settings the co-training
method works well [3]. In addition, limitations of the classi-
cal co-training method have been identified, such as its dif-
ficulties with noisy or unbalanced data [16, 18]. Muslea et
al. [17] suggest to combine active learning and co-training to
obtain a more stable and effective semi-supervised method.
Our approach also tries to improve on the classical co-training
method. However, we achieve this by letting users actively
inspect or correct the automatic method through interactive
visualizations.

Recently, there has also been many research efforts that
aim to bring visual interaction and machine learning to-
gether to allow users to guide and steer machine learning
methods [1, 13]. ModelTracker [2] is a visual approach for
analyzing performance of machine learning models. Fea-
tureInsight [6] and FeatureForge [10] propose visual approaches
for feature engineering. Ribeiro et al. [15] propose a method
for explaining the reasons behind predictions made by ma-
chine learning methods. They suggest a method to derive
important features by each prediction. We propose a visual
approach for classifier building in a semi-supervised way to
reduce human effort and increase the trust of users in the
resulting classification model.

3. APPROACH
In this section, we first describe the data processing work

flow of our approach. Along with that, we also describe the
reasons why we have chosen some algorithms over the others.
We then highlight the tasks that we intend to support and
introduce visualizations to address these challenges.

3.1 Data Processing
Our approach is based on the idea that we first build two

classifiers based on two views of the data with just a few
labels. These two classifiers are then utilized to label addi-
tional instances so that a high performance classifier can be
obtained.

The first step in our workflow is to construct two different
feature sets or so-called views from the datasets. In many
cases, the dataset has a natural split of views. For example,
for images with additional text descriptions we can construct
one view from the image data and the other one from the
textual data. For email data, we can construct one view from
email meta data, like the header or sender of the emails and
obtain the other view from the textual data. For datasets
without a natural split, a simple procedure to acquire two
views is to randomly assign features to one of the two views.
Several other methods have been suggested to split a single
set of features into two views, which are more suitable for

47



Figure 3: A screenshot of our system. It includes: a) the Control Panel comprising several control buttons
b) the Instance Table view showing the instances of the dataset and classification states; c) the Overview
view depicting the classification confidence of the two classifiers about the instances and d) the Explainer
view showing the evidence of the classification decisions made by a classifier.

co-training algorithms than random split. Our approach can
work with both types of datasets.

In the second step, we choose a classification algorithm for
the base classifiers. As opposed to the original co-training
paper, that proposes Naive Bayes [20], we have decided to
use linear SVMs from the Liblinear package [8] in this work.
SVM is a fast and robust classification algorithm that has
been shown [14] to be more suitable than Naive Bayes for
text classification tasks in co-training settings. In addition,
we use Platt-scaling [19] to obtain a calibrated confident
score of the classifications made by the SVM classifiers. This
way, we can compare classification confidences of different
SVM classifiers.

As mentioned in the introduction, our approach offers a
view to visually explain the classification decisions. For this
purpose, we need to identify the relevant features and their
importance for the instances under inspection. Depending
on the type of classifier, different measures of feature impor-
tance can be used for this. In this work, we use the feature
weights of the linear SVM classifier.

3.2 Visual Approach
In this section we describe different views of our approach

and introduce the interactions supported by them. We build
interactive visualizations to help users quickly identify pos-
sibly mislabeled instances, obtain insights about the clas-
sification uncertainty of the classifiers, understand reasons
behind decisions made by the classifiers, and maintain a sta-
ble mental map of all the instances.

3.2.1 Overview visualization
The overview visualization is updated after each round

of co-training. All instances labeled in the last round of co-
training are visualized in this view. Small squared glyphs are
used to represent the instances. As each instance is given
two different confidence scores by the two base classifiers,
we depict each one of the instances as two glyphs. They are
placed along two axes according to their confidence scores
by the two classifiers. As the amount of instances labeled in
one round of co-training can be large, we divide the whole
range of the axes into bins. We then assign the instances to
these bins. When more than one instance is placed into one
bin, we stack them on top of each other. This way, users can
identify individual instances easily and gain an impression
of the distribution of classifier confidence scores (see Fig. 4).
ModelTracker [2] uses a similar design to depict the test
instances of one classifier. We aim to display disagreement
between two classifiers and the mislabel possibility of the
instances.

We assign colors to the instances to encode the label dis-
tributions of their neighboring instances. The similarity is
measured according to the Euclidean distance in the fea-
ture space of the classifiers. For each instance in the visu-
alization, we count how many of its neighbors are labeled
as positive and how many of them are labeled as negative.
The ratio of these two counts is mapped to color between
positive color and negative color with linear interpolation.
Thus, the more neighbors of an instance are labeled as pos-
itive, the more similar its color is to the positive color. As

48



Figure 4: In the overview visualization, the in-
stances are placed according to the confidence score
of the classifiers. The colors of the instances encode
the label distributions of their neighboring instances
in the feature space of the classifiers.

distinct colors can be perceived in a pre-attentive way, users
can quickly see instances that are classified as positive but
have more negative neighbors or vice versa.

When users hover over one of the squares, it is highlighted
by a halo around it (see Fig. 5). The color of the halo
is identical to that of the square representing the same in-
stances in the second classifier. We also show a spline con-
necting those two squares representing the same instance.
By comparing the information from two views of the same
instance, users can more easily decide whether it is worth to
inspect the instance more closely.

3.2.2 Interactive explainer view
The explainer view is located directly below the overview

visualization. It consists of one view depicting the impor-
tant features along with their importance rating, and an-
other view showing the raw data of an instance (see Fig. 6).
When users hover over an instance, the explainer shows more
detailed information about the instance and the classifica-
tion.

On top of the explainer view, we use a bar chart starting at
the center line of the view to depict classification confidence.
When an instance is classified as positive, the bar grows to
the right, when it is classified as negative, the bar grows to
the left. Colors of the bars are consistent with the overview
visualization. Features are sorted according to their impor-
tance and the bar charts are placed accordingly from top
to bottom. This visualization allows users to see the most
important features for the classification of an instance. This
gives users cues about how the classification decision about
that instance is made. To get additional information about
the features influencing the classification decision, users can
turn to the raw data view. The raw data view highlights
highly weighted features by coloring the background of the
features in the raw data. The highlights guide the attention
of users during inspection of the raw data.

Additional interactions are implemented in the view to
further improve the usefulness of the explainer view. Users
can click on the bars depicting the features, which causes
the raw data view to scroll to the position where the feature
appears for the first time. If they click the bar once more,

Figure 5: This figure shows the highlighting effect.
The instance was positioned at the lower part of the
overview view which means the instance was labeled
as irrelevant. However, on the left side, the color of
this instance is blue. It shows that the neighbors of
the instance were labeled mostly as relevant. This
inconsistence suggests that the instance might be
labeled incorrectly.

the raw data view scrolls to the next appearance of that fea-
ture. This interaction further helps users to efficiently pick
important information from the raw data. If they press the
shift-key while clicking on the feature bar, all the instances
containing this feature will be highlighted in the overview
visualization and the instance table view. When users find
a feature which is responsible for a erroneous label, they can
use this interaction to find out how the feature is distributed
over the labels. This gives users hints on explanations of fea-
ture importance.

3.2.3 Control panel and instances table
The instance table (Fig. 7) works as a notebook for the

users. It maintains a table of all the instances in the dataset
and uses the third column of the table to depict if that in-
stance is labeled as positive, negative, or not labeled at all.
Users can sort the instances according to their ids or the
status of their labels. The control panel consists a group of
controls for users to interact with the co-training process.
For example, they can change the labels of the instances
manually using the controls in this panel. We highlight the
instances which have been manually labeled by the users
during the current round in the instance table.

4. EVALUATION
In this section, we first demonstrate how users can interact

with the system through a detailed description of a usage
scenario. We then go on to show the effectiveness of our
system by comparing our approach with the classical co-
training algorithms.

4.1 Usage Scenario
At the beginning, all instances are displayed within the

instance list view 7. Users can label a few instances by
clicking on them and reading through the raw data within
the explanation panel. Once they have decided on the label
of the instance, they can use the buttons in the control panel
to label the instance as positive or negative.

49



Figure 6: The explainer view shows most important features for the classification of an instance and the raw
data of it.

Figure 7: The list view shows the instances of the
dataset and their current labeling status. Dark red
indicates that the instance is labeled as irrelevant.
Light red means that the instance has not been la-
beled yet but it is predicted by the classifiers as ir-
relevant. Similarly, dark blue and light blue means
the instance is labeled or classified as relevant. User
labeled instances are highlighted.

Then they can set the number of instances they wish the
co-training algorithm to label in the next round and press
the start button. The system iteratively labels more in-
stances by choosing those instances rated most confidently
by the classifiers.

Those newly labeled instances are depicted in the overview
visualization. Users can identify the label given by the clas-
sifiers at the transfer time by observing the position of the
instance squares. If the instance is positioned in the top
half of the visualization, it is labeled as positive. The other
way around, it is labeled as negative. They can also get
an impression of how the labels of the nearest neighbors
are distributed for each instance, by observing the color of
squares representing the instances. Instances with more pos-
itive nearest neighbors are colored blue. Instances with more
negative nearest neighbors are colored red. Seeing this can
help them to quickly pick those instances, which have been
labeled as positive but have a neighborhood which is labeled
mostly as negative, or vice versa. Because disagreement to
the majority of the labels of the nearest neighbors indicates
a possible labeling error. If at least one of the classifiers has
given high confidence to this label, users should be more mo-

tivated to check it, because it could have been mislabeled
with a high probability. Correcting this will likely give a
boost to the performance of the learned classifier.

Once they have identified one possible mistake of the clas-
sifier, they probably want to check if it is really mislabeled
or not. By clicking on the instance, the explainer view shows
the decisions of the classifiers and the important features on
which the decision is based. Clicking on one of the shown
features, the text panel will scroll to the position where that
feature shows up in the text for the first time. This way users
can quickly skim through long documents and concentrate
only on information which is important for the classifica-
tion. By clicking on one of the features, the instances which
contain this feature will be also highlighted in the overview
view.

Once users find a mislabeled instance, they can relabel
it, and continue to examine other instances until they are
satisfied with these set of newly labeled instances. They can
then continue the co-training by clicking on the next button
in the control panel. The system will use all the instances
that were newly labeled in the subsequent co-training step,
by letting the two classifiers retrain themselves based on
the updated labeled set and further iteratively label more
instances.

4.2 Comparison to Classical Co-Training
In this subsection, we describe the experiments to compare

our approach and the classical co-training approach.

4.2.1 Experimental setup
The WebKB-Course dataset is composed by Blum et al. [5]

to demonstrate the effectiveness of the co-training approach
and has been subsequently used in several other works. We
conduct our experiments on this dataset to compare our
approach with the classical co-training algorithm.

This dataset contains data of 1051 web pages. For each
web page we can construct two views/feature sets. One of
them is based on the text on the web page. The other one is
based on the anchor text of the links pointing to the page.
The whole dataset can be divided into two parts: web pages
of courses from a university or web pages of researchers in
the university.

In the first step, we do experiments to obtain a estimation
of error rate that we can obtain from the specific combina-
tion of the two views and the base classifier we use, which
is a Support Vector Machine (SVM). For each experiment,
we randomly choose 263 (25%) pages as test documents.
From the rest of the 788 pages, we further randomly choose

50



Figure 8: This figure shows the error curve of SVM
compared to Naive Bayes.

3 positive and 9 negative documents as seeds, as suggested
by Blum et.al in their work. The rest of the 776 pages are
treated as unlabeled data. We then train the SVM classifier
with default parameter setting with the classical co-training
algorithm and calculate the error rate of the obtained model
on test data. We repeat the experiments 10 times and report
the average of the results.

Fig. 8 shows that SVM achieves lower or comparable error
rates as Naive Bayes Classifier in this setting. The results is
in consistent with the suggestion of [14] and confirms that
our choice of base classifier is reasonable.

In the second step, we conduct experiments to compare
our approach with the classical co-training approach. In
these experiments, we follow the same process to divide the
dataset into test data, seeds and unlabeled data.

We repeat the experiment 10 times with two master stu-
dents of computer science and set a time limitation of 10
minutes in total to finish each experiment. We set the num-
ber of newly labeled instances in each round to be 70, which
means users have to manually inspect the instances labeled
by the classifiers for about 6 times during each experiment.
In average, users only read the raw data for examining pos-
sible errors about 20 times in one experiment session, most
of which are mislabeled.

To enable a fair comparison with our approach, we ran-
domly choose 20 more documents as extra seeds, to feed
into the classical co-training algorithm, which does not re-
ceive further interaction during co-training. We also run
ten times of the experiment on the classical co-training al-
gorithm, and report the average performance.

4.2.2 Experiment results
The average error rate of the iterations during the exper-

iment session is shown in Fig. 9.
It is obvious that error rate of both approaches decreases

along with the iterations, showing that co-training is effec-
tive for such classification task. It is also reasonable that our
approach makes more errors comparing to the classical co-
training at the beginning, because our approach only uses
12 seeds, and the classical co-training uses 32 seeds. But
the error rate decreases faster than the classical co-training,
with the help of user’s reviewing labels and is more stable
in the later part of the co-training process. But in fact, our
approach beats the classical co-training quite fast, far before
the end, and keeps the advantage all the time.

During the experiments, we also notice that with the help

Figure 9: This figure shows the error curve of our
approach compared with classical co-training ap-
proach with additional initial labels.

of our visualization users tend to put less effort in manu-
ally reviewing the labels by reading the raw document text.
Usually, users only checked suspicious instances obvious to
them within the overview visualization, then they quickly
view some information provided by the explainer view. If
they keep the doubt regarding the label, they can go on to
read the raw text and manually label them as a fall-back
strategy. Even when they have to read the raw text, they
say, the highlights made it easier for them to grasp impor-
tant information from the text.

5. DISCUSSIONS AND FUTURE WORK
The result of our experiment indicates that users’ inter-

action is effective in improving the co-training, as well as
that we require less user effort in labeling the documents
to achieve better performance. The latter may be due to
the benefits of our visualization that helps users to identify
mislabeled documents, with much less effort. Even through,
our approach achieves a relatively lower error rate (5%) on
WebKB-Course dataset, the improvement over the classi-
cal co-training algorithm is not very significant. The reason
might be that the dataset with which we conduct our exper-
iments is highly suitable for the co-training algorithm, so
that both our approach and the classical co-training algo-
rithm can obtain a low error rate with relatively few initial
labeled data. More experiments on other datasets with dif-
ferent levels of difficulty for co-training algorithm will bring
more insight about this aspect.

One limitation of our experiments is that we repeat the
experiment with our approach 5 times for each of the two
users. Although we did not observe significant learning effect
between different runs of the experiments, due to the random
assignment of the initial set of labeled data, an experiment
with more users would be necessary to increase the validity
of the results.

As we have mentioned in the data processing section, our
approach needs to identify the relevant features and their im-
portance for the instances under inspection. For some type
of classifiers, it is straight forward to rate the importance of
their features. With linear classifiers, such as linear SVMs,
we can use the feature weights of the trained model as fea-
ture importance. For Naive Bayes classifier, we could use the
probabilities of the features conditioned on the classes as a
measure of their importance. For other types of classifiers,
like kernel SVMs, there is research that proposes ways to

51



derive feature importance for individual test instances [15]
for general type of classifiers. In this regard, our approach
is quite general.

In this work we focus on using interactive visualizations to
improve the performance of the co-training method. In the
future we also want to investigate how to depict the changes
of the classifiers during the co-training process. This could
further increase users’ trust in the resulting classifiers. In
addition, we only handle binary classification problems, so
far. In the future, we aim to extend the approach to multi-
class classification problems. One way to achieve that is to
divide multi-class classification problems into several binary
problems using a 1 vs n strategy or n vs n strategies. Fur-
ther, in this work, we only deal with one specific multi-view
learning algorithm: the co-training algorithm. We could also
extend our approach to work with general type of multi-view
algorithms.

6. CONCLUSION
In this work we proposed a visual approach for co-training.

It includes several visualizations to help users interact with
the co-training process. The overview visualization depicts
classification uncertainty and disagreement between two clas-
sifiers, and enables users to spot possible mislabels. The ex-
plainer view shows important features for an instance along
with its raw data, and allows users to examine the classifica-
tion of an instance more closely. The instance list view shows
all the instances and their labeling status. The control panel
lets user correct the mislabeled instance manually and start
a next round of co-training iteration. Together they present
an effective way for building classifiers in a human steered
semi-supervised way. We showed the effectiveness of our ap-
proach through detailed description of a usage scenario and
by comparing it to the classical co-training approach.

7. ACKNOWLEDGMENTS
We would like to thank the two master students for testing

our approach, the reviewers for their valuable feedback, and
our colleagues for the insightful discussions.

8. REFERENCES
[1] J. Allen, C. I. Guinn, and E. Horvtz. Mixed-initiative

interaction. IEEE Intelligent Systems and their
Applications, 14(5):14–23, 1999.

[2] S. Amershi, M. Chickering, S. M. Drucker, B. Lee,
P. Simard, and J. Suh. Modeltracker: Redesigning
performance analysis tools for machine learning. In
Proc. ACM CHI, CHI ’15, pages 337–346. ACM, 2015.

[3] M.-F. Balcan, A. Blum, and K. Yang. Co-training and
expansion: Towards bridging theory and practice. In
Advances in neural information processing systems,
pages 89–96, 2004.

[4] A. Biswas and D. Jacobs. Active image clustering with
pairwise constraints from humans. Int. J. Comput.
Vision, 108(1-2):133–147, May 2014.

[5] A. Blum and T. Mitchell. Combining labeled and
unlabeled data with co-training. In Proc. ACM COLT,
COLT’ 98, pages 92–100. ACM, 1998.

[6] M. Brooks, S. Amershi, B. Lee, S. M. Drucker,
A. Kapoor, and P. Simard. FeatureInsight: Visual
support for error-driven feature ideation in text

classification. In Proc. IEEE VAST, pages 105–112.
IEEE, 2015.

[7] O. Chapelle, B. Schölkopf, and A. Zien.
Semi-Supervised Learning. The MIT Press, 1st edition,
2010.

[8] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. Liblinear: A library for large linear
classification. The Journal of Machine Learning
Research, 9:1871–1874, 2008.

[9] S. He and D. Gildea. Self-training and co-training for
semantic role labeling: Primary report. Technical
report, Technical Report 891, University of Rochester,
2006.

[10] F. Heimerl, C. Jochim, S. Koch, and T. Ertl.
FeatureForge: A novel tool for visually supported
feature engineering and corpus revision. In COLING
(Posters), pages 461–470. Citeseer, 2012.

[11] A. Inselberg. The plane with parallel coordinates. The
Visual Computer, 1(2):69–91, 1985.

[12] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: a review. ACM computing surveys
(CSUR), 31(3):264–323, 1999.

[13] A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Interactive
optimization for steering machine classification. In
Proc. ACM CHI, pages 1343–1352. ACM, 2010.

[14] S. Kiritchenko and S. Matwin. Email classification
with co-training. In Proc. CASCON, CASCON ’01,
pages 8–. IBM Press, 2001.

[15] C. G. Marco Tulio Ribeiro, Sameer Singh. “why
should i trust you?”: Explaining the predictions of any
classifier. Proc. ACM SIGKDD, 2016.

[16] E. T. Matsubara, M. C. Monard, and R. C. Prati. On
the class distribution labelling step sensitivity of
co-training. In Artificial Intelligence in Theory and
Practice, pages 199–208. Springer, 2006.

[17] I. Muslea, S. Minton, and C. Knoblock. Selective
sampling with naive cotesting: preliminary results. In
The ECAI 2000 workshop on Machine Learning for
information extraction, 2000.

[18] D. Pierce and C. Cardie. Limitations of co-training for
natural language learning from large datasets. In Proc.
EMNLP, pages 1–9, 2001.

[19] J. Platt et al. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. Advances in large margin classifiers,
10(3):61–74, 1999.

[20] I. Rish. An empirical study of the naive bayes
classifier. In IJCAI 2001 workshop on empirical
methods in artificial intelligence, volume 3, pages
41–46. IBM New York, 2001.

[21] Z.-H. Zhou and M. Li. Semi-supervised learning by
disagreement. Knowl. Inf. Syst., 24(3):415–439, Sept.
2010.

[22] X. Zhu. Semi-supervised learning literature survey.
Technical report, Department of Computer Sciences,
University of Wisconsin, Madison, 2005.

52




