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ABSTRACT
Data discretization methods are usually evaluated in terms
of technical criteria that are related to some specific data
analysis goal like the preservation of variable interactions. In
this paper, we provide a different evaluation principle that
assesses the quality of a chosen discretization as the degree
to which it coincides with human intuition. This is moti-
vated from the setting of interactive exploratory data anal-
ysis where discretizations should be simple, self-explanatory,
and fix across results in order to reduce the cognitive load
on the user. We present a study design for measuring the in-
tuitive discretization choices of a general human population
for a set of discretization problems and present the results
of a study trial that we performed with 153 respondents
and four problem classes—each using the categories “low”,
“normal”, and “high”. Through this trial, we evaluated eight
discretization methods from three families: range-based dis-
cretization, count-based discretization, and clustering-based
discretization. Our results partially confirm results from
Cognitive Linguistics that assume prototype-based catego-
rization, which is most closely resembled by clustering-based
methods, as a predominant human discretization mecha-
nism. They also show, however, an affinity of participants
to sometimes compromise cluster quality in favor of approx-
imating certain category proportions.

1. INTRODUCTION
Metric measurements, i.e., numerical data adhering to

an interval or a ratio scale, are ubiquitous in real-world
data analysis. Yet, many analysis algorithms require at
least part of their input data in the form of simple binary
features (e.g., Subgroup Discovery [Atzmueller, 2015], Re-
description Mining [Parida and Ramakrishnan, 2005], and
various data summarization techniques [Wille, 2005, Vreeken
et al., 2011, Geerts et al., 2004]). This is why the data min-
ing and statistics literature provides a wide range of data
discretization techniques that can be used for producing
such features from metric input (see, e.g., Kontkanen and
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Myllymäki [2007], Chapeau-Blondeau and Rousseau [2009],
Nguyen et al. [2014]). Usually these techniques are evaluated
solely from the technical perspective of how well they retain
properties of the original data distribution and/or how they
affect the performance of specific data analysis algorithms.
In this paper we provide the complementing evaluation per-

Figure 1: Two data analysis results produced by
different algorithms in Creedo [Boley et al., 2015],
both of which use the self-explanatory symbol “un-
employed=high”; it is desirable that symbol has fix
definition across results and that this definition is
intuitive, i.e., approximately coinciding with user’s
category “high” (were she to know the distribution
of “unemployment”).

spective of intuitive linguistic discretization in which
one asks how well is a discretization enabling an effective
interaction between computer algorithms and human users
as well as facilitating a discussion of algorithmic findings
among humans.

This perspective is relevant whenever algorithmic results
are supposed to be interpreted by humans; especially when
there are many such results as it is characteristic for ex-
ploratory data analysis and pattern discovery tasks. For ex-
ample, consider a data scientist operating an interactive pat-
tern discovery suite (e.g., MIME [Goethals et al., 2011], Cor-
tana [Meeng and Knobbe, 2011], or VIKAMINE [Atzmueller
and Lemmerich, 2012]). Typically, the scientist would run a
number of data analysis algorithms with different parameter
settings, the results of each of which she would investigate
and compare with one another. Finally, she would distill
out the most important findings for further discussion with
her peers. From this scenario we can derive several desirable
properties for discretization:

1. Since the results of different methods and different pa-
rameters should be comparable to one another, we
want a stable and generic discretization that works
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reasonable well for various tasks and typical analysis
methods. This is in contrast to discretizations that are
optimized for one specific setting as it is the case for
supervised discretization techniques.

2. Moreover, the discretization should be self-explanatory
in order to reduce the cognitive load of the data scien-
tist. That is, we are looking for a discretization that
summarizes metric variables in a comprehensible way
through a small number of linguistic terms like “low”,
“normal”, and “high”.

3. Finally, the discrete symbols should be intuitive. That
is, ideally the symbols’ definitions approximately cor-
respond to those that humans would instinctively pick
themselves to talk about the data domain among each
other.

Fig. 1 summarizes these criteria for an exemplary result set
produced by different pattern discovery algorithms. Based
on requirements 1 and 2, we think of an abstract (exact) lin-
guistic discretization problem as: given a sample S of
values of a metric variable defined on a real interval X and
a set of k ordered linguistic quantification categories, find
k − 1 cut-off values in X that separate the given categories
for that variable. Based on requirement 3, we say that a
discretization given by a set of cut-off values is intuitive if
it tends to be close to the set of cut-off values that users of
a desired target audience would pick themselves had they
to make their choice purely based on the sample S (as op-
posed to concrete linguistic discretization tasks where prior
information about the variable is available). In this arti-
cle we investigate empirically the degree to which common
discretization approaches exhibit this form of intuitiveness.

Studying the precise mechanism of human discretization
is a profound topic with connections to Linguistics (where it
is referred to as categorization, see Taylor [2003] and refer-
ences therein) as well as Cognition and Neuroscience (e.g.,
Dehaene et al. [1998, 2008]). Here, we generally take on a
rather naive point of view and simply propose to test how
well algorithmic discretization of quantities aligns with hu-
man categorization while staying agnostic about the precise
mechanism that governs it. A particular interesting propo-
sition from Cognitive Linguistics [Evans, 2007], that we take
up here, is that the predominant mechanism for human lin-
guistic discretization is based on prototypes (going back to a
seminal work of Rosch [1973] in Cognitive Psychology). This
proposition says that categories are associated with typical
representative members (and that there can be values that
are not a real representative of any category). In Computer
Science this intuition was formalized as fuzzy linguistic dis-
cretization through fuzzy logic (see Ishibuchi et al. [2006]
and references therein). This approach, however, requires
specific analysis and model induction algorithms. Here we
are interested in a general purpose preprocessing method,
and, hence, we focus on traditional interval-based (or ex-
act) discretization methods. Among those, clustering-based
methods come closest to the idea of prototype-based cat-
egorization. Therefore we put a special emphasis on the
evaluation of those methods.

To summarize the contributions of this paper: firstly,
we develop a study design for measuring the intuitive dis-
cretization choices of a general target audience and that
therefore operationalizes all of the theoretical concepts men-
tioned above. Secondly, we report results that have been

generated with this design through an open study trial in-
volving 153 participants that was particularly targeting the
general categories “low”, “normal”, and “high”. Our findings
partially confirm the prototype-based proposition, but also
show that it is violated when the distribution of the input
sample is spread out too uniformly. In particular, we ob-
served an affinity of participants to sometimes compromise
cluster quality in favor of approximating certain category
proportions.

Figure 2: Cut-off values of geometric-width dis-
cretization for k = 7 and X = [0, 1] or the quantiles of
geometric-frequency labeling for k = 7.

2. FORMAL DISCRETIZATION
METHODS

In this section we define the formal discretization methods
that we want to evaluate. First, however, we need to fix some
basic notation. Let X = [a, b] ⊆ R be the real interval given
by the upper and lower bounds a, b ∈ R, respectively. We are
interested in categorizing elements of X into a fixed number
k of ordered discrete categories K = {1, . . . , k}. To a human
user these categories would be presented as interpretable
words like {extremely low, very low, . . . , extremely high}. A
discretization of X is a function c : X → {1, . . . , k} given
by k − 1 cut-off values c1 < c2 < . . . , ck−1 through c(x) =
min{i : ci ≥ x}. An (empirical) discretization method
maps finite samples S ⊆ X to a uniquely defined discretiza-
tion. As a convention we define as S = {s1, . . . , sn} with
si ≤ sj for i < j. Many discretization methods actually
only yield a labeling1 l : S → K of the given sample rather
than cut-off values on the real interval. For those cases, we
consider the canonical discretization of a labeling l as the
one given by the cut-off values

ci = (max{s ∈ S : l(s) = i}+ min{s ∈ S : l(s) = i+ 1})/2 ,

for i ∈ {1, . . . , k − 1}. That is, cut-off values are defined as
the arithmetic mean between the extreme values of adjacent
category labels.

The first and most simple family of discretization methods
that we consider are ranged-based methods that define
cut-off values as a simple function of the underlying interval
(sample-independent variant) or the range of the given data
sample (sample-dependent variant). The simplest member
of this family is sample-independent equal-width dis-
cretization, which is given by the cut-off values

ci = a+ i(b− a)/k

for i ∈ {1, . . . , k − 1}. For sample-dependent equal-
width discretization the smallest and the largest sam-
ple element are used in place of the interval boundaries a
and b, i.e., cut-off value i is defined as s1 + i(sn − s1)/k.
While these methods are very simple to define, depend-
ing on the given category names, both of these approaches

1Labelings resulting from discretization methods of course
must be monotone, i.e., l(s) ≤ l(s′) if s ≤ s′.
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(a)

(b)

Figure 3: Example populations of cups (a) and sun-
glasses (b) for the prize narrative in the study trial.

can be counter-intuitive: for example for “high”, “normal”,
and “low” they set the normal range to be of equal size as
the two extreme ranges. Therefore, for an odd number of
categories k > 2, we define sample-dependent and sample-
independent geometric-width discretization as alterna-
tive range-based approaches that cut the range into increas-
ingly fine pieces when approaching the interval (or sample)
borders. That is, for the sample-independent variant, the
cut-off values are defined as

ci =


b− (b− a)g(k−1)/2−i+2, for i ≤ k/2
a+ gi−(k−1)/2+1, for k/2 < i < k

1, for i = k

with the geometric sums gm =
∑m

j=1 2−j , and for the sample-
independent variant, a and b are again replaced by s1 and
sn, respectively. See Fig. 2 for an illustration.

As a second family of discretization methods we consider
frequency-based discretizations. Those methods deter-
mine labelings based on desired counts of data values per
category and are indifferent to the metric proximity between
values. Technically, these labelings are most conveniently
defined through the sample quantiles q(α) = min{si ∈
S : i/n ≥ α} for α ∈ [0, 1]. A sequence of fractions α1 <
α2 < · · · < αk = 1 gives rise to a labeling l(s) = min{i ∈
K : p(αi) ≥ s}. The most well-known instantiation of this
scheme is equal-frequency labeling, which uses the set of
equidistant quantiles given by αi = i/k for i ∈ K. Again
it can be linguistically somewhat counter-intuitive when all
categories contain an equal number of sample values. For
“low”, “normal”, and“high”, this would imply that only a mi-
nority of data-values is considered “normal” and two third
are either “high” or “low”. To address this issues, for odd
k > 2 we again define a variant based on increasingly re-
fined categories (this time in terms of the quantiles), that
we refer to here as geometric-frequency labeling. It is
given by the fractions

αi =


1− g(k−1)/2−i+2, for i ≤ k/2
gi−(k−1)/2+1, for k/2 < i < k

1, for i = k

where gm denotes the geometric sum as above.
As a final family of discretization methods we consider

clustering-based methods. These methods determine a
labeling based on a set of k reference values R ⊂ X, each
of which is the representative for one of the categories. As-
suming that R consists of the elements r1 < r2 < · · · < rk,
the resulting labeling is then defined by l(s) = i where ri is

a reference value that minimizes |s − r| with r ∈ R (break-
ing ties, e.g., by using the minimal such value). Naturally,
one wants to use the set of reference values that are closest
to their associated sample values. If one uses the sum of
squared differences,

∑
s∈S(rl(s) − s)2, to measure this close-

ness, this approach yields k-means-based labeling (the
mean of a set of values minimizes the sum of the squared
distances). Since the reference values in this approach can
be arbitrary elements of the underlying interval X they are
susceptible to outlying sample values, which can lead to
counter-intuitive discretizations. This can be addressed by
using the reference values that minimize the sum of absolute
errors,

∑
s∈S |rl(s) − s|. Since, the sum of absolute errors of

a set of values is minimized by any median value of that set,
this variant is called k-medians-based labeling.

3. EMPIRICAL DESIGN
In this section we develop the study design (empirical

method) for comparing formal discretization methods to dis-
cretization performed by humans. This includes a question-
naire for posing abstract discretization tasks to a general
audience, a set of discretization tasks as re-usable test cases
for the given as well as for follow-up studies, and measures
for the quantification of the similarity of human and formal
discretization results.

3.1 Questionnaire
The purpose of the questionnaire is to gather data from

members of a general target audience on how they intuitively
perform abstract linguistic discretization tasks. This mea-
surement problem entails a central difficulty. While poten-
tial participants are used to perform intuitive discretization
for concrete variables, it is likely to not work as intended to
directly pose to them an abstract task about an unknown
variable: it would trigger a formal approach to the problem
and/or possibly yield a low engagement with the task and
consequently relatively arbitrary answers.

Therefore, the key idea of our questionnaire design is to
decorate the abstract tasks with concrete narratives of tan-
gible variables from everyday life. The trick is that we use
variables that have a value distribution which greatly de-
pends on the specific sub-population they are defined on,
and then to leave the sub-population ambiguous—with the
given sample as the only means to infer it. This way the
task has to be solved factually with the same information as
the underlying abstract task. Of course, the given narrative
might still influence the responses. It is therefore advisable
to use multiple narratives so that their effects cancel out
when averages over the whole result set are taken.

In our study trial, we opted for two narratives: prices of
products and ages of humans. For both variables, one is used
to heavily alter the usage of quantification terms across dif-
ferent classes of products and groups of people, respectively.
For instance, even a “very low” price for a TV set is likely
to be considered “high” if it were the price of a light bulb.
Similarly, the age of a “young” high-school teacher would be
considered “older” for a college student. The questionnaire
design emphasizes this sub-population dependency by intro-
ducing the narrative with two named and labeled example
populations that show a contrasting variable distribution.
In our study trial, we used for the prize narrative the ex-
amples of cups and sunglasses (see Fig. 3) and for the age
narrative the examples of members of a fencing team and
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In different contexts numbers can have different interpretations.
What you consider [example category 1] in one case, you might
consider [example category 2], or [example category 3] in
another. Consider the image below of a set of [example popu-
lation 1]. The number underneath each [population member]
shows [variable] in [unit]. The labels below the picture show
an exemplary categorization of the numbers into [category list]
that you perhaps would roughly agree to in the context of this
set.

[image of population 1 with variable labels]
[example cut-off points 1]

Now compare this categorization into [category list] to the next
categorization for [variable] of [example population 2]. De-
spite being different, each of the categorizations make sense in
their respective set.

[image of population 2 with variable labels]
[example cut-off points 2]

Text 1: Leading text of questionnaire, which introduces
narrative along with example populations.

the inhabitants of an elderly housing facility. In the ques-
tionnaire, images of the example populations are embedded
into an introductory text that explains the sub-population
dependence of the linguistic terms. The verbatim text-frame
is given in Text 1.

Following this introductory passage, a number of actual
discretization tasks is presented to the participant. In order
to support the narrative, the sample values are embedded
into images that depict anonymous populations for the vari-
able. For the two narratives in our trial those images are
given in Figs. 4 and 5, respectively. The tasks are intro-
duced with the instruction text given in Text 2. Note that
we do explicitly mention the possibility of choosing cut-off
values that are not part of the given sample itself. This pos-
sibility can be further emphasized by using this option in
the example discretizations.

In summary the proposed questionnaire design allows to
pose a number of abstract linguistic discretization tasks to
participants from a general population by decorating them
with a concrete narrative. It is required that all tasks on one
instance of the questionnaire use the same linguistic cate-
gories and that their sample ranges match the chosen nar-
rative. This might require to rescale some of them. In the
next subsection, we discuss these and other issues abounding
when creating a full study design around this questionnaire.

Figure 4: Task image for age narrative.

In this short survey, we ask for your opinion on what means [cat-
egory list] in the context of three anonymous groups of [pop-
ulation type]. Underneath each of the images below, please
fill into the designated boxes what you consider [category list].
Note that you can fill in numbers that do not occur in the sample
itself. When you are done, please do not forget to click the submit
button. Thanks a lot for your participation.

[image of task 1]
[input fields for cut-off values]

. . .
[image of task z]

[input fields for cut-off values]

Text 2: Instructions and task part of questionnaire.

3.2 Discretization tasks
When setting the discretization tasks for the study, there

are two components that have to be defined more or less
independently: the linguistic categories to be used as well
as the actual numerical samples. Regarding the first com-
ponent it is important to note that the validity of any re-
sults of the study, when interpreted strictly, is tied to the
specific quantifiers used. Although certain insights can ar-
guably be transferred between different category sets, it is
generally unclear whether the human expectation for appro-
priate interval sizes varies depending on if they are called
“low”, “normal”, and “high” or, e.g., “reduced”, “moderate”,
and “increased”. Similarly, quantifiers for specific kinds of
variables, e.g., “long” for length, might carry their own ex-
pectational bias and may be not fully compatible to their
generic counter-parts.

In the given instantiation of the study design we choose
to focus only on categorization into

K = {“low”,“normal”,“high”} .

The rational for this choice was that these are the per-
haps most widely applicable quantifiers for numerical val-
ues. Moreover, using three categories arguably constitutes a
pareto-optimal choice when trading off the interpretability
of the categories (individually and jointly) and their accu-
racy in representing the underlying numerical range.

Turning to the samples, the goal is to have a diverse set
of tasks which is likely to allow to differentiate between the
different discretization methods even with a relatively small
number of values. On the one hand, for the aim to have
a consistently high response quality it is desirable to work
with small samples. The larger the sample size the more
variation is likely to occur among participants in the degree
to which they fully process individual sample values. On the
other hand, the smaller the sample the lesser the results are
likely to generalize to realistic sample sizes in Data Analysis.
In particular, seven plus/minus two apparently constitutes a
phase transition between the usage of different mental pro-
cessing mechanisms according to the classic result of Miller
[1956]. Therefore, in the given study we use the sample
size |S| = 12 throughout all discretization tasks. Moreover,

Figure 5: Task image for prize narrative.
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Task Class Sample c1 c2

a) Uniform {5, 18, 24}, {30, 32, 32, 50}, {70, 75, 87, 91, 95} 25 70
b) Normal {1, 7, 21}, {39, 42, 50, 53, 54, 60}, {76, 85, 97} 25 65
c) Exponential {40, 42, 42, 43}, {47, 47, 48, 48, 53}, {62, 70, 74} 45 60
d) Mix {4, 6, 8, 10}, {22, 23, 24, 25, 28}, {37, 49, 56} 11 35

e) Uniform {15, 27, 27}, {31, 35, 37, 51, 53, 54}, {80, 81, 90} 30 70
f) Normal {31, 31, 35, 39}, {77, 79, 82, 82, 82}, {93, 93, 98} 40 90
g) Exponential {24, 24, 34}, {41, 43, 46, 49, 56}, {63, 64, 65, 81} 35 63
h) Mix {1, 3, 7}, {20, 30, 37, 37, 38, 39, 44}, {55, 68} 18 46

Table 1: First two group of samples generated for task classes in study trial with median cut-off values of
respondents. Underlined sample elements show discrepancy of resulting labeling with k-medoids.

in order to fit our narratives, we scale the variable range to
X = [0, 100] but, again in order to reduce the cognitive bur-
den of the participants (and thus reduce variation in result
quality) we work with rounded samples S ∈ {1, . . . , 100}∗.
In particular, we remove 0 from the sampling range in order
to maintain the intuition of the price narrative.

For generating the samples, we define four classes of
discretization tasks—uniform, normal, exponential, and
mixture—based on four continuous random variables with
probability density functions puni, pnrm, pexp, and pmxt, re-
spectively. A discretization task for a class with pdf p is
then generated by drawing a sample of 12 independent re-
alizations of the rounded and truncated version of the cor-
responding random variable, i.e., using the probability mass
function

f(n) =

∫ n

n−1

p(x)/Z dx

for n ∈ {1, . . . , 100} with Z =
∫ 100

0
p(x) dx. The formal

definitions of the continuous pdfs are as follows.
Uniform is simply defined by the uniform pdf puni(x) = 1

for x ∈ [0, 100]. For a task from this class we do not expect
significant value clusters to appear. Hence, there might be a
tendency among participants to resort to simpler principles
than clustering-based discretization.

Normal is defined through pnrm(x) = φM,S(x), i.e., the
Gaussian pdf with uniform random mean M and standard
deviation S drawn from [0, 100]. Tasks from this class are
likely to show a central tendency towards a random mean.
Hence, it can be expected that human assignment of “nor-
mal” will reflect that tendency in contrast to the sample
independent range-based discretization methods.

Exponential is defined by p(x) = O +R exp(−Rx) with
a uniform random offset term O from [0, 50] and a uni-
form random rate parameter R from [0.2, 0.8]. Tasks from
this class are expected to have a highly skewed distribution,
which should render symmetric range-based discretizations
counter-intuitive.

Mixture is defined by p(x) = φM1,S1(x) + φM2,S2(x) as
the mixture of two Gaussians with uniform random means
and standard deviations as defined for the class normal.
Samples from this class are expected to be bi-modal with
a high, a low, and normal range around each mode. This
is generally hard to reflect adequately with three categories
only, but it is to be expected that count-based and clustering-
based approaches can find reasonably intuitive compromises.

3.3 Evaluation measures
After designing the test discretization tasks as well as a

questionnaire for querying human solutions to these tasks,
it remains to define how we want to compare the discretiza-
tions produced by formal methods with those of the study
participants. We will do this on two levels of resolution: on
the first, we just compare the discretizations in terms of how
they label the given sample; on the second, we measure the
difference of the actual cut-off points.

Figure 6: Sample displacement risk per method over
all tasks in study with 95%-confidence intervals.

Let c and d be two discretizations of the range X = [a, b]
using the categories K = {1, . . . , k} and S ∈ X∗ be a finite
sample of X. Independent of whether we want to quantify
the difference between c and d through their cut-off values
on the whole range X or just in terms of how they label
the elements of S, we first have to fix the displacement
loss between two categories, i.e., how much we consider it
harmful to use a category j in place of the true category
i. For that we propose to use the relative difference of the
category numbers l(i, j) = |i− j|/(k−1) (we normalize here
with k − 1 rather than k so that l reduces to the 0/1-loss
when k = 2).

When evaluated on all category pairs abounding from ap-
plying c and d to the sample S, this loss function leads to
the sample displacement loss for discretizations defined
by

lS(c, d) =
1

|S|
∑
x∈S

l(c(x), d(x)) .

As described above, this measure considers the categoriza-
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Figure 7: Interval displacement risk per method
over all tasks in study with 95%-confidence inter-
vals.

tions as mere labelings of the data sample and, beyond that,
does not reflect how the discretizations differ when viewed
as linguistic categorizations of the underlying domain. For
that purpose we define the interval displacement loss

lX(c, d) =
1

b− a

∫
x∈X

l(c(x), d(x)) dx

which quantifies disagreement between the discretizations
in terms of the size of the underlying domain-pieces with a
certain displacement. This integral can be simply computed
as the sum of the piece-wise constant losses on the intervals
resulting from cutting X with all cut-off values in c and d.

Now assume we have a bag of study results R consisting of
pairs of samples and discretizations {(S1, d1), . . . , (Sm, dm)}
where discretization di is the result of a respondent for the
task involving sample Si. For a discretization method m :
X∗ → (X → K) we can then determine its empirical sam-
ple displacement risk as

rR =
1

R

∑
(S,d)∈R

lS(m(S), d) .

Given that the set of respondents and the set of tasks is rep-
resentative for some larger population of tasks and users of
interest, this empirical risk will approximate the real popu-
lation displacement risk (defined through the expected loss-
value over this population) for the method m. Switching to
the interval displacement loss, we can define similarly the
empirical interval displacement risk based on a set of study
results as well as the underlying population displacement
risk.

4. RESULTS
In this section we report the results of an open online

study trial2 using the design developed in Sec. 3. The trial
was conducted over the course of 10 days with a total of
153 respondents. We advertised the study through a call for

2All results can be downloaded from http:
//www.realkd.org/wp-content/uploads/2016/05/
discretization-study-results.csv

participation that was published via internal mailing lists of
6 academic institutions from 4 different countries (UK, Ger-
many, Finland, and Israel) as well as through social media
in 3 different networks (Facebook, LinkedIn, and Google+).
The call encouraged participants to re-share the invitation
for participation with potentially interested colleagues and
friends. Hence it was a convenience- and snow-ball sam-
pling scheme of participants with the goal to maximize the
number of responses—sacrificing control over the participant
demographics.

For the same purpose and also to ensure an as high as pos-
sible quality of responses, we intended to keep the expected
time and attention for participation low. Hence, we settled
to issue only 3 discretization tasks per participant. More-
over, since this was the first study of this kind, we wanted
to be able to meaningfully inspect the results, in particular,
the chosen cut-off values for each of the generated tasks. For
that reason we opted for a task sampling scheme that gen-
erates a certain number of repetitions per sample (for each
narrative). In more detail, we iteratively fixed groups of 4
random tasks (one per task class). Three tasks of a group
were then issued to each requested questionnaire uniformly
at random (decorated by a random narrative) until each
task in the group (for each narrative) received at least 25
responses. Only then a new group was generated. Thus, we
traded off representativeness for the individual task classes
for an attempt to acquire confident estimates of preferred
cut-off values per sample. See Tab. 1 for a list of all samples
for which the full number of responses was reached along
with the median respondents’ cut-off values.

4.1 Overall Outcome
Aggregating over all trial results, i.e, all responses for all

discretization problems, the following picture emerges for
the empirical sample displacement risk (see Fig. 6 and also
Tab. 2, upper portion, row “all”). There are three meth-
ods leading the field: k-medoids-based labeling (risk3 of
apprixmately 0.0839 ± 0.0083), geometric-frequency label-
ing (0.0876±0.0073), and k-means-based labeling (0.0904±
0.0089). While the results do suffice to confidently separate
this group from the rest of the methods, they are insufficient
to confidently separate them from one another. The next
group consists of equal-frequency labeling (0.1067± 0.0069)
and sample-dependent geometric-width labeling (0.1193 ±
0.0095). The remaining range-based methods are at the end
of the spectrum with a small but significant advantage for
sample-dependent equal-width (0.1494± 0.0109).

Turning to the interval displacement risk (see Fig. 7 and
Tab. 2, lower portion, row “all”), the first observation is
that the magnitude of empirical loss values is somewhat and
their variation is notable smaller as for the sample displace-
ment risk. Consequently we have smaller confidence inter-
vals. The ranking of the methods are slightly shifted with
geometric-frequency labeling (0.0729± 0.0058) now leading
confidently in front of the following group consisting of k-
medoids-based labeling (0.0898±0.0063), k-means-based la-
beling (0.0931±0.007), and labeling based on equal-frequency
(0.0974± 0.0067). At the end of the field we have again the
range-based methods. Out of those methods, just as with
the sample displacement risk, sample-dependent geometric-
width performs best. However, for the interval displacement

3We give all risks here rounded to 4 digits with α = 0.95
two-sided confidence intervals.
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si equal-width sd equal-width si geom.-width sd geom.-width equal-freq. geom.-freq. k-means k-medoids

sample displacement risk
normal 0.1439 ± .0225 0.1150 ± .0188 0.1791 ± .0282 0.1150 ± .0188 0.1129 ± .0137 0.0916 ± .0177 0.0789 ± .0185 0.0789 ± .0185
exponential 0.1684 ± .0214 0.2419 ± .0168 0.2097 ± .0252 0.2216 ± .0152 0.1201 ± .0177 0.1019 ± .0156 0.0875 ± .0169 0.1078 ± .0154
uniform 0.1342 ± .0151 0.1988 ± .0170 0.0841 ± .0129 0.0844 ± .0121 0.1131 ± .0108 0.0910 ± .0126 0.1571 ± .0160 0.1074 ± .0161
mixture 0.2515 ± .0213 0.0413 ± .0124 0.2279 ± .0181 0.0498 ± .0111 0.0796 ± .0093 0.0649 ± .0091 0.0413 ± .0124 0.0410 ± .0124
all 0.1742 ± .0110 0.1494 ± .0109 0.1765 ± .0123 0.1193 ± .0095 0.1066 ± .0069 0.0876 ± .0073 0.0904 ± .0089 0.0839 ± .0083

interval displacement risk
normal 0.1254 ± .0125 0.1788 ± .0184 0.1240 ± .0132 0.1509 ± .0161 0.1410 ± .0162 0.0898 ± .0147 0.1160 ± .0168 0.1160 ± .0168
exponential 0.0792 ± .0102 0.1927 ± .0145 0.1427 ± .0126 0.1719 ± .0099 0.0730 ± .0114 0.0559 ± .0103 0.0557 ± .0105 0.0718 ± .0093
uniform 0.0941 ± .0110 0.1340 ± .0113 0.0800 ± .0113 0.0892 ± .0108 0.0954 ± .0121 0.0876 ± .0119 0.1420 ± .0114 0.1104 ± .0106
mixture 0.2272 ± .0110 0.0680 ± .0073 0.2280 ± .0108 0.0576 ± .0066 0.0782 ± .0080 0.0585 ± .0061 0.0607 ± .0081 0.0607 ± .0081
all 0.1310 ± .0077 0.1448 ± .0082 0.1439 ± .0078 0.1189 ± .0072 0.0974 ± .0067 0.0729 ± .0058 0.0930 ± .0070 0.0898 ± .0063

Table 2: Empirical sample displacement and interval displacement risks with 95% confidence intervals—taken
over all tasks and per task class. All numbers are rounded to 4th digit after decimal point.

risk, its confidence interval has a slight overlap with the
sample-independent equal-width method.

4.2 Outcome per task class
When looking at the results per task class (see Tab. 2),

one can make some notable observations specifically when
looking at the performance of the clustering-based methods.
Both, k-means and k-medoids, are the best or among the
best methods in all task classes but uniform. Here, k-means
is the second worst with respect to sample displacement risk
and the worst with respect to interval displacement risk. No-
tably, k-medoids performs more robust for this task class,
while its ranks (4 and 6, respectively) also deviate sub-
stantially from the ranks it achieves for the other classes.
In contrast to clustering-based methods, range-based dis-
cretization in the form of sample-independent and depen-
dent geometric-width, are specifically strong for the uniform
tasks. They are also competitive for mixture but perform
both weakly for normal as well exponential.

Finally, we can observe that geometric-frequency performs
consistently well across all problem types independent of the
risk functional. In fact, for the interval displacement risk it
performs best or at least not significantly worse than the best
for all classes. Interestingly, when looking at the median
cut-off values for all individual samples for which a large
number of responses was generated (Tab. 1), we can see that
there is only one sample (uniform sample ‘k’) for which the
labeling of the median respondents’ cut-off points disagrees
substantially with k-medoids and two more (samples ‘g’ and
‘h’) where there is a minor disagreement. In all these cases,
the respondents’ median labeling has category frequencies
closer to the geometric frequencies (0.25, 0.5, 0.25) than the
solution of k-medoids (there is a similar trend for ‘a’ and ‘g’,
where the median exactly respects the k-medoids objective,
but there is still a substantial number of respondents who did
not adhere to it and produced category proportions closer
to the geometric frequencies).

5. CONCLUSIONS AND OUTLOOK
With the presented study design we were able to gather

for the first time insights on the human expectation for dis-
cretizing numerical data into the discrete categories: “low”,
“normal”, and “high”, which are important categories, e.g.,
for providing a simple intuitive discretization in data anal-
ysis suites. Particular findings are:

1. Clustering-based methods appear to yield good results
essentially confirming the proposition from Cognitive
Psychology and Cognitive Linguistics, which says that

humans tend to perform categorization based on simi-
larity to category prototypes. It seems, however, that
this mechanism alone is not enough to fully replicate
human discretization choices for quantitative linguis-
tic categories (such as “low”, “normal”, and “high’). In
our trial we could observe a tendency to sometimes
deviate from optimal clustering-based solutions, pre-
sumably, in order to create more satisfying category
frequencies.

2. Particularly, for the chosen linguistic categories, a fre-
quency of 0.5 for the “normal” category, and a fre-
quency of 0.25 for the categories “low” and “high” each
appear to be attractive. This is testified by the fact
that the frequency-based method with these parame-
ters performed robustly well across different tasks.

3. Ranged-based methods that disregard the sample (or
almost disregard it except for the extreme values) ap-
pear to be too simplistic for robustly creating an in-
tuitive labeling and can not compete with the other
method classes. Hence, while the relative differences
of metric attributes seem to have a notable effect on
labeling decisions, the absolute scale of metric infor-
mation seems to be at most of minor importance.

Generally, we hope that the given work will open the door
for systematically deriving novel approaches for intuitive dis-
cretization and evaluating them with the proposed or a mod-
ified study design. Some open questions we consider to be
of particular importance are the following.

1. To what degree are the trends we discovered repre-
sentative for the underlying problem classes and for
specific target audiences. In the performed trial, rep-
resentativeness for task classes has been sacrificed for
more representativeness of the individual tasks, and
the population was mostly uncontrolled.

2. What is an intuitive mechanism for deriving precise
cut-off points from a given labelling? The given trial
data showed no clear trend of how human cut-off values
relate to their labelings.

3. Finally, the perhaps most interesting direction for fu-
ture research is to investigate to what degree the iden-
tified trends hold up for finer categorizations, e.g., into
“very low”, “low”, etc. and larger samples per task. A
particular question for the frequency-based methods is
whether the geometric proportions are really the ex-
pected continuation of the 0.25/0.5/0.25 scheme.
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