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ABSTRACT
Despite extensive research on visual query systems, the standard
way to interact with relational databases remains to be through SQL
queries and tailored form interfaces. We consider three require-
ments to be essential to a successful alternative: (1) query spec-
ification through direct manipulation of results, (2) the ability to
view and modify any part of the current query without departing
from the direct manipulation interface, and (3) SQL-like expres-
siveness. This paper presents the first visual query system to meet
all three requirements in a single design. By directly manipulating
nested relational results, and using spreadsheet idioms such as for-
mulas and filters, the user can express a relationally complete set of
query operators plus calculation, aggregation, outer joins, sorting,
and nesting, while always remaining able to track and modify the
state of the complete query. Our prototype gives the user an expe-
rience of responsive, incremental query building while pushing all
actual query processing to the database layer. We evaluate our sys-
tem with formative and controlled user studies on 28 spreadsheet
users; the controlled study shows our system significantly outper-
forming Microsoft Access on the System Usability Scale.

This work was previously published at SIGMOD 2016.

1. INTRODUCTION
Four decades after Query by Example [51], the broad problem

of Making Database Systems Usable [25] remains open. Tech-
nical users still interact with relational data through hand-coded
SQL, while non-technical users rely on restrictive form- and report-
based interfaces tailored, at great cost, for their specific database
schema [32, 27, 4]. Queries that involve “complex aggregates, nest-
ing, correlation, and several other features remain on a tall pedestal
approachable only by the initiated” [23]. Simple report queries
traversing one-to-many relationships in the database schema, such
as retrieving “a list of parts, and for each part a list of suppliers and
a list of open orders”, are painful to define for programmers and
largely inaccessible to end users.

Meanwhile, users from a wide range of backgrounds seem
happy, indeed eager, to interact with their data if it is served to
them in spreadsheet form. “Export to Excel”, the joke goes, “is

Short version prepared for the 2016 KDD IDEA Workshop.
To cite, please refer to our full SIGMOD paper [5].
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the third most common button in data and business intelligence
apps... after OK and Cancel”1. Spreadsheets lack basic database
functionality such as joins and views, but demonstrate the great
value of usable, general-purpose data manipulation tools [4].

Shneiderman [43] attributes the usability of the spreadsheet to
its nature as a direct manipulation interface. The properties of such
an interface include “visibility of the object of interest”, “rapid, re-
versible, incremental actions”, and “replacement of complex com-
mand language syntax by direct manipulation of the object of in-
terest”. Shneiderman paraphrases Harold Thimbleby: “The display
should indicate a complete image of what the current status is, what
errors have occurred, and what actions are appropriate.”

We agree with Liu and Jagadish [35] that a successful solution
to the visual query language problem must come in the form of
a spreadsheet-like direct manipulation interface. In particular, we
consider three requirements that have yet to be met in a single user
interface design:

R1. Query specification through direct manipulation of results.
The user should build queries incrementally through a
sequence of operations performed directly on the data in the
database, as seen through the result of each intermediate
query [35]. In Shneiderman’s terms, the object of interest
is not the query, but the data, as when working with a
spreadsheet.

R2. The ability to view and modify any part of the current query,
including operations performed many steps earlier, without
redoing subsequent steps or departing from the direct manip-
ulation interface. This is tricky in light of R1, because the
user will be looking at and manipulating the result of a query
rather than an actual query expression. The mapping between
the two is not obvious. [35]

R3. SQL-like expressiveness from within the direct manipulation
interface. R1 and R2 can be trivially met if only simple
queries are allowed. For example, Excel’s filter feature
works by direct manipulation of results, and allows its
complete state to be viewed and modified from within the
same interface, but supports only basic selection queries.
To compete with SQL, a visual query system should allow
the user to express any query commonly supported by
SQL implementations, including arbitrary (multi-block)
combinations of operations such as joins, calculations, and
aggregations.

In this paper, we present SIEUFERD (pronounced soy-fird), the
first visual query system to meet all of the requirements above in
1http://www.powerpivotpro.com/2012/03/
the-3rd-most-common-button-in-data-apps-is

12

http://www.powerpivotpro.com/2012/03/the-3rd-most-common-button-in-data-apps-is
http://www.powerpivotpro.com/2012/03/the-3rd-most-common-button-in-data-apps-is


Direct
Manip.

Query
Representation Year System R1 R2 R3

Unrestricted
Nested Results

Yes Overlaid
on Result

2014 GBXT [2] X X X
2012 DataPlay [1] X X X
2006 Tabulator [8] X X X
2002 Polaris/Tableau [46] X X

Spreadsheet
Formulas

2016 Object Spreads. [37] X X X
2010 Spreads. as DB [48] X X
2005 A1 [30] X X X
1997 OOF Spreads. [15] X X X
1994 Forms/3 [10] X X

Exposed
Algebraic

2013 Mashroom [20] X X X
2011 Wrangler [29] X X
1991 TableTalk [18] X X X

Hidden
Algebraic

2016 Gneiss [13] X X
2013 GestureDB [38] X X
2010 CRIUS [41] X X
2009 SheetMusiq [35] X
2008 AppForge [50] X X
1989 R2 [22] X X X

No Diagram-
based

2014 VisualTPL [14] X
2009 App2You [31] X
2005 QBB [40]
2002 QURSED [39] X
1990 QBD [3]

Form-
based

2008 Form Cust. [28]
1998 QBEN [36] X
1997 ESCHER [49] X
1989 PERPLEX [44]
1977 QBE [51]

Table 1: Summary of related systems, evaluated as visual query
interfaces. R1 is indicated where some class of queries can be
initially specified by direct manipulation of results. R2 is indi-
cated where all parts of such queries can subsequently be mod-
ified through similar means. R3 is indicated where the same
class of queries is relationally complete and supports aggrega-
tion in arbitrary multi-block queries.

a single user interface design. The key insight is that given a suit-
able data model for results, the complete structure of a query can
be encoded in the schema of the query’s own result. This in turn
allows the user interface to display the query and its result in a sin-
gle visual representation, which can then be manipulated directly
to modify any part of the query. Specifically, we allow queries
to produce results from the nested relational data model [24, 33],
and display results using a nested table layout [6]. In our visual
representation, the header area of the result’s nested table layout
encodes the structure of the query, which can then be manipulated
using spreadsheet idioms such as formulas and filters. The use of
nested results affords a natural visualization of operations such as
joins and aggregation, and allows the user to see, in context, inter-
mediate tuples produced in any part of the query.

Using our system, the user can express a relationally
complete [16] set of query operators plus calculation, aggregation,
outer joins, sorting, and nesting [5, Appendix A]. This covers the
full set of query operators generally considered as the minimum
to model SQL [7, 21], and expresses, for example, all SELECT
statements valid in SQL-92.

In an initial formative user study, 14 participants were able to
solve complex query tasks with a minimal amount of training,
with many expressing strong levels of satisfaction with the tool.
In a second, controlled study, another 14 participants rated both
SIEUFERD and the query designer found in Microsoft Access on
the System Usability Scale (SUS) [9] after doing a series of tasks
on each. Users rated SIEUFERD 18 points higher on average than
Access. This corresponds to a 46 percentage point difference on a
percentile scale of other studies in the Business Software category.

This work was previously published at SIGMOD 2016 [5].

2. RELATED WORK
Visual query systems have been surveyed by Catarci et al. [11]

and, recently, El-Mahgary and Soisalon-Soininen [17]. Systems
discussed in this section include, in particular, those that employ
direct manipulation, nested results, or optimizations for traversing
relationships in the database. Table 1 categorizes systems by query
representation style, and provides an assessment of each system
against the requirements set forth in the introduction.

Besides our core requirements, Table 1 also indicates which sys-
tems support nested results, i.e. a graphical equivalent of a hierar-
chical data model such as XML, JSON, or nested relations. This
handles report-style queries that encode multiple parallel one-to-
many relationships in a single result, as when retrieving “a list of
parts, and for each part a list of suppliers and a list of open or-
ders” [6]. Systems that base their result representation on a single
flat table of primitive values, such as Tableau [46], are unable to
express such queries. The same tends to hold for any system that
takes its input from a single joined SQL query, since multivalued
dependencies [19] in the flattened result (PARTS�SUPPLIERS and
PARTS�ORDERS in the preceding example) would interact to pro-
duce a pathological number of tuples for even small inputs. Some
systems, like Tableau and Gneiss [13], support a restricted form of
nesting, where an otherwise flat result table can be grouped into
a single-branch hierarchy, or a finite set of such (a dashboard in
Tableau, or a set of hierarchical tables in Gneiss). This still does
not handle PARTS�SUPPLIERS/ORDERS-type queries from the ex-
ample above. Tableau, as well as other systems based on the pivot
table concept, produce cross-tabulated rather than nested results;
these concepts are orthogonal.

We first discuss visual query systems that do not fall in the direct
manipulation category. Form-based systems originated with Query
by Example (QBE) [51], where the user populates a set of empty
skeleton tables with conditions, variables (examples), and output
indications. ESCHER [49] and QBEN [36] extend QBE to support
nested results, while PERPLEX [44] supports general-purpose
logic programming. The ubiquitous search forms of commercial
database applications can be seen as restricted versions of
QBE tailored for a specific schema; Form Customization [28]
generalizes such forms by considering the form designer as part of
the query system. In diagram-based systems, the user manipulates
queries for example through a schema tree or schema diagram, as
in Query by Diagram (QBD) [3], Query by Browsing (QBB) [40],
QURSED [39], and App2You [31], or through a diagrammatic
query plan, as in VisualTPL [14]. The diagram-based query
building style is common in commercial tools–Microsoft Access,
Navicat, pgAdmin, dbForge, Alteryx etc. The general problem
with both form-based and diagram-based interfaces is that users
must manipulate queries through an abstract query representation
that is divorced from the actual data that is being retrieved. To
construct and understand queries, the user must look back and
forth between the query representation on one side of the screen
and a separate result representation on the other. Thus we do
not consider these systems to be direct manipulation interfaces
(requirement R1).

In the direct manipulation category, we now consider algebraic
user interfaces. In such systems, the user builds queries by select-
ing, one step at a time, a series of operations to be applied to the
currently displayed result. Each operation is applied to the result of
all previous operations. Formal expressiveness is easy to achieve in
algebraic interfaces, since the relevant relational operators can sim-
ply be exposed to the user directly. The main problem with alge-
braic interfaces is that the user has no direct way to, in the words of
Liu and Jagadish, “modify an operation specified many steps ear-
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Field selector: Pop-
up displaying a tree 
representation of 
the query structure, 
including exact join 
conditions, centered 
around the selected 
fi eld. The selector 
includes previously 
hidden fi elds as well 
as fi elds that can be 
reached through joins 
over known foreign 
key relationships.

Formula bar: Shows the label, value, or  formula under the selected cell.
Result header: Visu-
ally encodes both the 
structure of the query 
and the schema of its 
result. Icons indicate 
query-related state 
associated with each 
fi eld in the schema.

Context menu: Ex-
poses a complete set 
of query manipulation 
actions, and serves 
as a legend for all 
icons that can appear 
in the result header.

Result area: Displays 
the currently open que-
ry and its nested re-
lational result. Labels 
and formulas can be 
edited using a spread-
sheet-like cursor.

Filter popup: Allows 
the user to associ-
ate a fi lter with the 
currently selected 
fi eld. The list of val-
ues available to fi lter 
on is generated au-
tomatically using a 
separate database 
query. Filters may be 
associated with either 
primitive fi elds or re-
lation fi elds.

Figure 1: The SIEUFERD query interface. To create queries, users start from a simple tabular view of a table in the database and
add filters, formulas, and nested relations. The integrated result and query representation is displayed continuously as the user
interacts with the data. The particular query above instantiates six database tables (one per nested relation), contains five joins (each
child relation against its parent), and is evaluated using five generated SQL queries (one for each one-to-many relationship ). This
query was constructed purely by checking off the appropriate fields and foreign key relationships in the field selector.

lier without redoing the steps afterwards” [35] (requirement R2).
For example, in GestureDB [38], the user has no way to modify
a filter on a column that was subsequently used in an aggregation
or removed with a projection. Similar problems exist in R2 [22],
AppForge [50], CRIUS [41], and Gneiss [13]. SheetMusiq [35]
provides a partial solution by using an algebra where certain op-
erators can commute out of a complex expression for subsequent
modification; however, the technique breaks down for expressions
enclosed in binary operators such as joins, set union, or set dif-
ference. In other systems, the underlying algebraic expression is
exposed directly, as in the procedural data manipulation scripts of
Wrangler [29], the XQuery-like mashup scripts of Mashroom [20],
or the diagram-based representation in TableTalk [18]. Thus, only
the initial query specification can be done through direct manipu-
lation; tweaking and examination of existing queries must be done
with a separate, indirect interface.

With clever use of formulas, Tyszkiewicz [48] shows that
existing spreadsheet products can be considered expressive enough
to formulate arbitrary SQL queries. If we consider Excel as a
query system, however, only a subset of such queries could be
said to be constructible by direct manipulation. Heavy reliance
on set-based formula functions such as INDEX, MATCH, and
SUMPRODUCT means that spreadsheet formulas soon take the role
of a text-based query language, with a vocabulary far removed
from that of typical query tasks. This would also be the case for
spreadsheet programming systems such as Forms/3 [10], Object
Oriented Functional Spreadsheets [15], A1 [30], and Object
Spreadsheets [37].

Last, we consider direct manipulation systems that overlay their
query representation on the result of the same query, with the struc-
ture of the query reflecting the visual structure of the result. This

solves the mapping problem of requirement R2. The problem is
that current such representations are not expressive enough to sup-
port arbitrary queries (requirement R3). For example, the direct
manipulation interfaces of Tabulator [8] and GBXT [2] support fil-
ters and joins over schema relationships, but are unable to express
calculation, aggregation, general-purpose joins, or other binary op-
erators. In DataPlay [1], direct manipulation is used only to choose
between universal and existential qualifiers. Tableau [46] allows
a large class of two-dimensional visualizations to be created and
manipulated through direct manipulation of table headers and cor-
responding axis shelves; however, queries involving calculations
or binary operators must be configured using a separate interface
rather than through direct manipulation. Our own system is the first
to achieve SQL-like expressiveness from within a direct manipula-
tion interface based on an overlaid query/result representation.

3. SYSTEM DESCRIPTION

3.1 Overview
Our core query building interface is shown in Figure 1. All user

interactions are initiated from the result area, which shows the cur-
rent query’s nested relational result, formatted using a nested table
layout. In a nested table layout, the table’s header area visually
encodes the schema of the nested result, including which fields are
nested under others in the hierarchical schema. Because our system
maps all query-related state to specific fields in the result schema,
the result’s table header simultaneously becomes a visual represen-
tation of the query that generated it. A set of icons, carefully de-
signed to allow every aspect of the query state to be represented in
the header, is used to augment the information that can be derived
from the names and positions of fields.
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Tuple

Primitive Values

Relation Value Label for Relation Field (bold)

Label for
Primitive
Field

Figure 2: Terminology of the nested relational data model, il-
lustrated on a nested table layout.

Starting from any selection of fields (columns) in the result area,
the user may open a context menu of query-related actions, which
also serves as a legend for icons that may appear in the result
header. Query actions modify the query state, not the data in the
database. Whenever a visual query is modified, the system gener-
ates and executes one or more corresponding SQL queries to eval-
uate it, merges the returned flat results into a single nested result,
and displays the latter to the user. At the same time, the fields and
iconography in the new result’s header reflect the updated state of
the modified query.

To keep the result layout compact, several aspects of the query
state are indicated with icons in the header but are not displayed
in full until the user requests it. In these cases we leverage well-
established spreadsheet idioms to expose the underlying state. A
filter icon ( ) next to a field label indicates the presence of a filter
on that field, which can be manipulated by opening the filter popup
from the context menu. A formula icon ( ) indicates that the
primitive field in question is a calculated field with an associated
spreadsheet-style formula. The actual formula can be edited using
the formula bar above the result area, or directly in any non-header
cell belonging to the field’s column. Finally, as in a spreadsheet,
our system allows fields (columns) to be hidden from view and later
recalled for inspection. If the hidden field was used for filtering or
sorting, or is referenced from a formula, a dashed cell icon ( ) is
shown for the relevant dependent field to indicate that the visible re-
sult depends on a hidden portion of the query. Hidden fields can be
recalled using the field selector popup, which shows an expandable
list of available fields, centered around the field it was opened for.
The field selector also serves to suggest new joins over known for-
eign key relationships, modeled as pre-existing hidden fields, and
to display exact join conditions.

For the remainder of this paper, we will use the following ter-
minology when referring to concepts in the nested relational data
model: A value is either a primitive or a relation, where a relation
is defined as a set of tuples, each containing a set of fields iden-
tified by labels, each containing a value, recursively. The schema
of a value either defines the value to be a primitive, or defines the
value to be a relation, with schemas further specified for each of
the latter’s fields, recursively. See Figure 2.

3.2 Query Model
We now discuss the specific structure of queries in our system.

A visual query is modeled as a nested relational schema that has
been annotated with query- and presentation-related properties on
each field. We refer to the annotated schema as the SIEUFERD
query model. When SQL queries are generated from a visual query
and flat result sets have been assembled into a nested relational re-

sult, the schema of the nested result is identical to the schema in
the query model. This correspondence makes it straightforward to
translate high-level user interactions on the visualized query result
to concrete modifications on the underlying query model, and con-
versely, to indicate the state of the query model in the table header
of the visualized result.

Table instantiation. As a basic rule, each relation in the query
model gets to retrieve data from one concrete table in the underly-
ing database; that relation is said to instantiate the database table.
The following is a simple query that instantiates the table called
COURSES and displays a selection of its fields:

Nesting and joins. Queries need to be able to incorporate data
from multiple tables. Commonly, tables need to be equijoined to-
gether, for example when the user wishes to examine data spread
across foreign key relationships in a normalized database schema.
In the SIEUFERD query model, the introduction of a new table
instance can be done by defining a nested relation, optionally con-
strained by an equijoin condition against its parent relation:

In the query above, the nested relation READINGS instantiates
the database table with the same name, and equijoins itself against
its parent relation COURSES on the COURSE_ID field, as indicated
by the join icon (Lorgm ) on the latter. The other side of the equijoin
condition is the ID field in the COURSES relation. The latter infor-
mation is omitted from the result layout to save space, but is dis-
played in the field selector (Figure 1). The one-to-many icon ( )
on the READINGS relation indicates that our system decided the lat-
ter may contain more than one tuple for each corresponding tuple
in COURSES, the parent relation.

The joins described here have different semantics than the tra-
ditional flat joins encountered in SQL and most other visual query
tools. Rather than duplicating tuples on one side of the operator for
each occurrence of a matching tuple on the other, each tuple from
the parent side of the join has a nested relation added to it holding
zero or more matching tuples from the child side. This operator
is known formally as a nest equijoin [45], though we will simply
use the term join when unambiguous. One convenient property of
nest equijoins is that tuples on the left-hand side of the operator
do not disappear when the join fails to find matching tuples on the
right; this can be seen in the query above for the course AMERICAN
POLITICS, which has no books in its reading list.

It is often desirable to hide technical primary key fields, fields
made redundant by equijoin conditions (e.g. COURSE_ID), or oth-
erwise uninteresting fields, for presentation purposes. Continuing
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the example above, our query model allows us to hide several fields
without altering the query semantics:

The hidden fields could be recalled at any time using the field
selector. As before, the field selector can also be used to see the
exact join conditions between READINGS and COURSES.

Nested relations can be used very effectively to display data
spread over many tables in a database schema. In the following
example, we pull data from five database tables to see more
information about each university course:

Notice that tuples in the READINGS relation occur independently
of tuples in the SECTIONS relation; this kind of visualization can
not be constructed in tools based on flat tabular results (see Related
Work). Also notice the absence of the one-to-many icon ( ) on
the AREA relation: because the latter relation was joined on its in-
stantiated table’s primary key, our system deduced that at most one
tuple can exist in AREA for each parent tuple in COURSES.

Sorting. Each nested relation can be sorted on a sequence of its
direct child fields, indicated by subscripted sort icons ( 123) on the
latter. In the following example, the root-level COURSES relation is
sorted ascending on the MAX_ENROLL field, while individual sets
of READINGS are sorted by AUTHOR_NAME, then by TITLE:

It is possible to sort on both primitive and relation fields, though
we omit the exact semantics of the latter case here. Following any
explicit sort terms, our system automatically sorts every relation on
a tuple-identifying subset of its retrieved fields. This ensures that all
query results are retrieved in a deterministic order. The automatic
sort is usually on an indexed primary key; see set projection below.

Filter. Using the filter popup (Figure 1), a filter can be defined

on any field, indicated by the filter icon ( ). Filters on relation
fields restrict the set of tuples retrieved in that relation, while filters
on primitive fields restrict the tuples of the parent relation. In the
following example, the MEETINGS relation is filtered to show only
tuples for which the DAY is W:

By default, the effect of a filter in a nested relation is propa-
gated all the way to the root of the query by means of a HIDE PAR-
ENT IF EMPTY setting on each intermediate relation, indicated by
the arrow-towards-root icon ( ) on the SECTIONS and MEETINGS
relations above. In the example, the courses ROMAN ART and
RUSSIAN DRAMA have disappeared because they do not have any
Wednesday sections. If, rather than retrieving “a list of courses
with at least one Wednesday section”, we wanted to retrieve “a list
of all courses, showing sections on Wednesday only”, we could
deactivate HIDE PARENT IF EMPTY on the SECTIONS relation:

Formulas. An important part of the expressiveness offered by
SQL is the ability to include scalar and aggregate computations
over primitive values in any part of the query. In the SIEUFERD
query model, both kinds of calculations are supported by means of
calculated fields. A calculated field is a primitive field, added to
any relation by the user, that takes its value from a formula rather
than from a particular column in an instantiated database table.
Like other fields, calculated fields can be sorted or filtered on.

SIEUFERD formulas are syntactically similar to spreadsheet for-
mulas, but belong to and reference entire columns of field values
rather than hard-coded ranges of cells. This allows SIEUFERD
queries, like SQL queries, to be defined independently of the exact
data that might reside in a database at any given time. Without this
design, the user might have to rewrite formulas if the data in the
underlying data source changes, or if other parts of the query are
changed in such a way as to add or remove tuples in the result. For-
getting to update formulas when input data is changed is a common
kind of error in spreadsheets [26, 12], which we avoid.

The restriction that calculated fields always be primitive fields
is an important one; we do not wish formulas to take the role of a
textual query language embedded within the visual one. Formulas
do not provide a relational algebra, but rather allow simple compu-
tations over primitive values.

Continuing the course catalog example, we can calculate the du-
ration of each meeting of a course section:
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The calculated field DURATION, marked with the formula
icon ( ), is evaluated once for each tuple in MEETINGS, its
containing relation. Using another calculated field, we can add up
the durations as well, at the level of each course:

When using aggregate functions such as SUM or COUNT, the re-
lation in which the calculated field is defined determines the level at
which aggregate values are grouped. In the example above, because
the TOTAL DURATION field is a child of the COURSES relation, a
total is calculated for each course rather than, say, for each section.
Each course includes in its total only tuples from the MEETINGS
relation that are descendants of that course’s tuple in the COURSES
relation.

Filters and aggregate functions. When an aggregate function
references a relation with a filter applied to it, the filter is evaluated
before the aggregate. In the following example, the SECTIONS re-
lation is filtered to only include lecture-type sections. The TOTAL
DURATION for each course changes accordingly:

It is equally valid to define a filter on the output side of an aggre-
gate, e.g. on TITLE or TOTAL DURATION in the example above.

Flat joins. Traditional flat joins can be expressed by referencing
a descendant relation from a formula without enclosing the
reference in an aggregate function. In the following example,
each course title is repeated once for each distinct author name
in the reading list, because the AUTHOR REFERENCE field in the

COURSES relation references the READINGS relation without the
use of an aggregate function:

The actual behavior is that of a left join, with a null value being
returned for the course AMERICAN POLITICS, which has no read-
ings in its reading list. To express an inner join instead, the HIDE
PARENT IF EMPTY setting could be enabled on the READINGS re-
lation. The left join semantics of these inward formula references
help our visual query language maintain some desirable properties.
In particular, the mere introduction of a new calculated field (e.g.
AUTHOR REFERENCE) will never cause tuples to disappear from
said field’s containing relation (COURSES).

Set projection. By default, tuples retrieved for a relation always
include the primary key fields of the relation’s instantiated table,
even if the user has hidden those fields from view. This allows our
system to keep result tuples in a stable order as the user hides or
shows fields, and to keep a one-to-one relationship between tuples
on the screen and tuples in instantiated database tables. It also al-
lows us to generate more efficient SQL queries, for example by
avoiding expensive SELECT DISTINCT statements. The automatic
inclusion of primary key fields in the projection of a particular re-
lation can be avoided by means of the HIDE DUPLICATE ROWS
option, indicated by the bracket icon ( ):

3.3 Query Building
Having explained the query model, we now show how the user

would actually build queries using our direct manipulation inter-
face. We do this by means of an example query building ses-
sion. The user is an investigative journalist who is writing a story
about ethanol biofuel lobbying2. She has compiled, in the table
PLANTS_OS, a list of major ethanol producers3, and would like
to find the total lobbying expenditures of each. Another table,
LOBBYING, contains quarterly lobbying reports from US corpo-
rations in the years 1998 through 2012 (727,927 tuples)4.

2E. Díaz-Struck (2013). Ethanol Industry Battles to Keep
Incentives. http://eye.necir.org/2013/05/26/
ethanol-industry-battles-to-keep-incentives
3Renewable Fuels Association/Maple Etanol SRL (2012)
4The Center for Responsive Politics (2012)
https://www.opensecrets.org

17

http://eye.necir.org/2013/05/26/ethanol-industry-battles-to-keep-incentives
http://eye.necir.org/2013/05/26/ethanol-industry-battles-to-keep-incentives
https://www.opensecrets.org


Base table. The user starts by opening the table of ethanol pro-
ducers as a template for the new query:

Join. To add another table to the query, the user selects the col-
umn or columns to join on and invokes the JOIN action from the
context menu. This opens a dialog box for selecting the table to join
with, in this case LOBBYING, and for selecting the corresponding
columns from the latter to be matched in an equijoin constraint. The
user joins the PLANTS_OS and LOBBYING tables on the COMPANY
and ULTORG fields, respectively:

In cases where the database defines explicit foreign key relation-
ships between tables, use of the above JOIN dialog is unnecessary;
instead, all available joins will be available as hidden relations in
the field selector. The effect is a schema navigation capability anal-
ogous to that of QBB [40], AppForge [50], and App2You [31].

Hide fields. After the join, a lot of columns are shown, so the
user selects a few of them and invokes the HIDE action:

It is now easier to get a sense of the data. We have a new child
relation field, called LOBBYING, containing the lobbying reports
for each company:

Sort. The user decides to sort the lobbying reports for each com-
pany most-recent-first, invoking the SORT DESCENDING action on
the LYEAR field and then invoking the SORT DESCENDING AF-
TER PREVIOUS action on the LTYPE field. This sorts individual
LOBBYING relations by year ( ) and then by quarter ( 2):

Aggregate formula. The user would now like to calculate a total
lobbying amount for each company. She invokes the INSERT CAL-
CULATED FIELD AFTER action to insert a calculated field ( ) next
to the COMPANY field, and enters the name SUM OF AMOUNTS in
the new column’s label cell. She then moves the cursor to one of
the column’s value cells, and enters a sum formula, clicking the
AMOUNT column to insert the column reference:

Scalar formula. Reported lobbying amounts come from differ-
ent years, some going back to 1998. The user would like to calcu-
late inflation-corrected totals. A separate table CPI contains yearly
Consumer Price Index values normalized for 2012. The user per-
forms another JOIN, this time between LOBBYING and CPI, on the
LYEAR and CYEAR fields, respectively. This brings the CPIV value
for each lobbying report’s year into the nested result. The user then
adds another calculated field, this time under the same relation as
the existing AMOUNT field, and enters a formula that calculates the
inflation-adjusted amount for each report. We here have a useful
example of an inward formula reference (to CPIV) that is not en-
closed in an aggregate function:

A new inflation-adjusted total can now be added as a calculated
field at the PLANTS_OS level, shown adjacent to the existing non-
adjusted sum:

Filter. Lobbying reports may sometimes be amended, in which
case the superseded reports should be excluded from totals to
avoid double counting. The user can look for superseded reports
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by invoking the FILTER action on the LUSE field and selecting the
value N:

The user sees that there are superseded reports in the database
with non-zero dollar amounts, and inverts the filter to exclude them.

Select fields. The user now decides to hide the individual reports
altogether and instead reintroduce some of the fields that were hid-
den from the PLANTS_OS relation before, using the field selector:

Final touches. The user edits the field labels to make them a
bit more readable, and sorts the companies by their lobbying to-
tals. The underlying SQL column names can still be seen in the
field selector. The user also enables a formatting option on the last
column to produce a bar chart visualization. The result now looks
presentable:

While the LOBBYING relation that feeds into the aggregate for-
mula is now hidden, the user could easily make it visible again from
the field selector, like she did for the previously hidden PLANTS
and FEEDSTOCK fields. There are also shortcuts for unhiding hid-
den fields referenced from the formula, or the hidden filter, indi-
cated by the dashed cell icons ( ).

4. FORMATIVE USER STUDY
We conducted a formative user study with 14 participants (de-

noted A through N, 5 male, median age 42). 7 had experience with
SQL, 11 used Excel daily. In the first part of the study, done by
users A-I, users were given standardized tasks aimed at assessing
the initial learnability of our tool. No prior training was given;
instead, initial tasks were designed to act as training tasks for sub-
sequent ones. In the second part of the study, and as time permitted
during earlier sessions, users were given a chance to do more open-
ended tasks on datasets we provided. Here, we gave participants
demos and instructions for operating our tool, in order to gather

higher-level observations than would be possible during pure learn-
ing tasks. In this section we discuss a selection of observations
from our study; see our full paper [5] for more details.

Manual joins. Performing the lobbying query from Section 3.3,
most users moved through the manual join dialog quickly and cor-
rectly on their first attempt. Still, users preferred automatic joins
once introduced to them, see below. Users attempting the infla-
tion correction portion of the query had no problems with the join
against the CPI table; only users DG required a hint that they would
need to use the JOIN feature again.

Formulas. When first attempting to perform a sum aggregation,
users BCDE started by looking for an explicit sum action, as would
be found in Excel’s toolbar. Users CGK looked for an Excel-style
formula builder. Having eventually realized that they needed to in-
sert a calculated field and enter a formula themselves, users DEFK
had initial trouble learning how to physically enter the formula, try-
ing for example to enter the formula in an already-existing column,
or in the column header.

In Excel, sums can be produced either using formulas or pivot
tables. The two interfaces are largely separate, with users often pre-
ferring one or the other. Our system follows the formula approach.
Users CH commented that they thought of pivot tables when first
trying to compute a sum, while users BEI thought of pivot tables
during other tasks.

A significant difference between spreadsheet formulas and
SIEUFERD formulas is that the latter, like SQL queries, reference
entire columns of values rather than an explicit range of cells.
Users ABCFH expected this on their first attempts to insert a
reference in a sum formula. Users DEGN expected the spreadsheet
model, initially attempting to select a range of cells. A related
challenge was to understand the level at which a calculated field
should be inserted in order for sums to be grouped in the right way.
The fact that the position of a formula in the relation hierarchy
determines the grouping of aggregate functions is a further
deviation from the spreadsheet model, while the lack of an explicit
GROUP BY clause may be confusing to SQL users. User H tried to
specify the set of columns to group by in the aggregate function
itself, as in the formula =SUM([NAME],[AMOUNT]), while user F
tried to hide every field other than the one to be summed. User G
attempted to invoke the HIDE DUPLICATE ROWS action. Users
CFGH also tried placing the calculated field next to the value to be
summed rather than at the parent level. User G thought aloud:

“Wouldn’t it be fantastic if there was a way simply to operate at
that group level rather than these individual entries? [After creat-
ing a new formula at the correct level:] Is it doing it that way? Oh,
that’s perfect. ... That is meeting my heart’s desire. But I wouldn’t
have the cue for that.”

Despite initial difficulty with formulas in a training task, users
applied them quickly and accurately in a follow-up task, despite
the follow-up task requiring more steps. This suggests users are
able to apply formulas effectively after first learning them, but that
there is significant potential for improved learnability. We agree
with users AM, who suggested adding an explicit sum action like
that of Excel. This feature would automatically generate a sum
formula above the nearest one-to-many relationship, which would
then serve as an example to the user to learn from.

After initial learning, users appreciated the behavior of formulas.
Users CEGK noted explicitly that the behavior of aggregate func-
tions, including grouping and subtotaling behavior, made sense.
Users ILK also commented that the all-column nature of formula
references made sense and was an advantage over Excel’s range-
style references. User K noted:

“I just feel like I have a truer sense of what I’m adding up, or
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what’s being considered in this format vs. the traditional Excel.
Because [in Excel] you could be pulling from the wrong places,
you can be getting weird numbers, you could accidentally hit a
field that now ends up in your calculation.”

Field selection; automatic joins. Working on the course catalog
dataset that was seen in Section 3.2, users were generally able to
use the automatic foreign key join feature without trouble. The
exception was user N, who had a hard time because of the lack
of visible indications in the result area that more fields could be
shown. User G also noted this issue. Users IKN specifically looked
for an action named “Unhide”, like in Excel. This suggests that
our user interface needs a more visible affordance for accessing
hidden fields. We expect hidden fields to be far more common in
SIEUFERD than in Excel, since a typical database query projects
only a small subset of columns available from instantiated database
tables. The design of an improved unhide affordance should take
this into account.

Users EGHJKL reacted particularly enthusiastically to the
automatic join feature, using words such as “fantastic”, “wow”,
“damn”, and “amazing”. User E noted:

“Yes, the manual join made sense, but that was a very simple
situation. I wouldn’t want to have done the joins on this [more
complicated database]. The fact that I was just able to double-
click and expand it out, that meant, it dumbed the task down to the
level that I was happy performing it.”

5. CONTROLLED USER STUDY
In a second user study, we aimed to get a more precise idea

of how users might rate our system compared to an existing in-
dustry tool. We chose the “Query Design” facility of Microsoft
Access 2016 as a control. Being part of the Office Professional
suite, it is one of the most common visual query tools available.
It is also a good example of a query builder that uses a diagram-
based approach rather than direct manipulation of results (see Re-
lated Work).

The controlled study was a within-subjects counterbalanced
design, measuring usability using the System Usability Scale
(SUS) [9]. Tullis and Stetson [47] recommend sample sizes
of 12-14 users to get reasonably representative results from
within-subjects studies based on the SUS survey; we collected data
from 14 users (5 male, median age 36). 2 had prior experience
with the Access query designer, 6 had significant exposure to SQL.
2 used Excel daily, the rest weekly or monthly. We met with each
user for a single study session, structured as follows:

1. Complete demographic/background survey.
2. Briefly discuss the sample database that will be used for tasks,

consulting a schema diagram on paper. The paper diagram re-
mains available to the user during the tasks that follow.

3. Work through some standardized tasks to evaluate Tool 1. Stop
after about 20 minutes. The first tool is SIEUFERD for half of
the users and Microsoft Access for the other half, randomized.

4. Complete SUS survey for Tool 1.
5. Work through the same tasks in Tool 2, under otherwise identi-

cal conditions. Stop after about 20 minutes.
6. Complete SUS survey for Tool 2.
7. Discussion and feedback.

The standardized tasks [5], all done on the 7-table “Northwind”
example database that shipped with older versions of Microsoft Ac-
cess, are intended to be realistic examples of queries that a user
might want to run on such a database. They incorporate joins, fil-
ters, sorting, scalar calculations and aggregates, but are limited to
queries that can be expressed in Microsoft Access’ visual query

Table 2: Mean SUS survey results for the controlled study, us-
ing various standard scales. Higher scores are better. Error
bars show the standard error of the mean.

Scale Tool Score (0-100)
Raw SUS Access 50

10 20 30 40 50 60 70 80 90 100

Sieuferd 68
Learnability Access 49

Sieuferd 64
Usability Access 50

Sieuferd 69
Percentile Access 6

Sieuferd 52

designer; this excludes queries requiring nested results as well as
multi-block queries (e.g. aggregates used as inputs to other ag-
gregates). In both tools, we configured foreign key relationships
upfront so that the user would not have to manually specify exact
join constraints between tables. The first five tasks are guided train-
ing tasks, intended to expose the user to all features, in both tools,
that are needed to complete the subsequent unguided tasks. The
guided tasks tended to take about half of the 20 minutes that users
had available to try each tool. After the guided tasks, users were
asked to try solving four unguided tasks without help. Since the
main purpose of tasks was to give the user enough of an impression
of each system to complete the subsequent SUS survey, we gave
hints during unguided tasks whenever users reported being stuck.

The results of the study are shown in Table 2. The raw SUS score
is reported along with separate Learnability and Usability scores
as defined by Lewis and Sauro [34], as well as a percentile rating
among 30 other studies in the B2B (Business Software) category as
detailed by Sauro [42]. The difference in raw SUS scores between
Access and SIEUFERD is statistically significant (p = 0.0019 with
two-tailed paired t-test).

Interpreting the results, with the caveat that these observations
are based on only 20-minute interactions with each tool, we see that
SIEUFERD significantly outperformed Microsoft Access in terms
of usability. Most of the difference can be attributed to the poor
performance of Microsoft Access, considering its low ranking on
the percentile scale; SIEUFERD simply achieved an average rat-
ing compared to other business software. This supports the orig-
inal hypothesis of our paper: database querying is hard, but can
be made significantly easier using a direct manipulation interface.
SIEUFERD still has significant potential for improved usability. In
conversations with users, the main requests for future design im-
provements were (1) the ability to get an overview of the complete
database schema from within the query interface and (2) reduced
dependency on formulas during query building. This is consistent
with observations from the formative study.

6. CONCLUSION
SIEUFERD is a visual query system that achieves SQL-like

expressiveness from a pure direct manipulation interface.
Whereas previous direct manipulation systems either sacrifice
expressiveness or hide the actual query from the user, SIEUFERD
integrates the query and its result into a single interactive
visualization, using spreadsheet concepts like filters and formulas
to expose the complete state of the current query. Compared with
the diagram-based query designer of Microsoft Access 2016,
users greatly preferred our direct manipulation interface, with the
latter scoring 46 percentiles higher on a SUS-based percentile
scale. In future work, we hope to incorporate editing of data
in our system; this will allow SIEUFERD to act as a complete
schema-independent end user front-end for relational databases.
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