
Direct-Manipulation Visualization of Deep Networks

Daniel Smilkov
Google, Inc.

5 Cambridge Center,
Cambridge MA, 02142

smilkov@google.com

Shan Carter
Google, Inc.

1600 Amphitheater Parkway,
Mountain View CA, 94043

shancarter@google.com

D. Sculley
Google, Inc.

5 Cambridge Center,
Cambridge MA, 02142

dsculley@google.com
Fernanda B. Viégas

Google, Inc.
5 Cambridge Center,

Cambridge MA, 02142
viegas@google.com

Martin Wattenberg
Google, Inc.

5 Cambridge Center,
Cambridge MA, 02142

wattenberg@google.com

ABSTRACT
Disclaimer: This work has been previously submitted to
the ICML 2016 Workshop on Visualization for Deep Learn-
ing. We are submitting it here with permission from orga-
nizers of both workshops.

The recent successes of deep learning have led to a wave
of interest from non-experts. Gaining an understanding of
this technology, however, is difficult. While the theory is im-
portant, it is also helpful for novices to develop an intuitive
feel for the effect of different hyperparameters and struc-
tural variations. We describe TensorFlow Playground1, an
interactive, open sourced2 visualization that allows users to
experiment via direct manipulation rather than coding, en-
abling them to quickly build an intuition about neural nets.

1. INTRODUCTION
Deep learning systems are currently attracting a huge

amount of interest, as they see continued success in prac-
tical applications. Students who want to understand this
new technology encounter two primary challenges.

First, the theoretical foundations of the field are not al-
ways easy for a typical software engineer or computer science
student, since they require a solid mathematical intuition.
It’s not trivial to translate the equations defining a deep
network into a mental model of the underlying geometric
transformations.

Even more challenging are aspects of deep learning where
theory does not provide crisp, clean explanations. Critical
choices experts make in building a real-world system–the
number of units and layers, the activation function, regu-
larization techniques, etc.–are currently guided by intuition

1http://playground.tensorflow.org
2https://github.com/tensorflow/playground

Copyright is held by the owner/author(s).

and experience as much as theory. Acquiring this intuition
is a lengthy process, since it typically requires coding and
training many different working systems.

One possible shortcut is to use interactive visualization
to help novices with mathematical and practical intuition.
Recently, several impressive systems have appeared that do
exactly this. Olah’s elegant interactive online essays [5] let
a viewer watch the training of a simple classifier, providing
a multiple perspectives on how a network learns a transfor-
mation of space. Karpathy created a Javascript library [4]
and provided a series of dynamic views of networks train-
ing, again in a browser. Others have found beautiful ways
to visualize the features learned by image classification nets
[10], [9].

Taking inspiration from the success of these examples, we
created the TensorFlow Playground. As with the work of
Olah and Karpathy, the Playground is an in-browser visu-
alization of a running neural network. However, it is specif-
ically designed for experimentation by direct manipulation,
and also visualizes the derived“features” found by every unit
in the network simultaneously. The system provides a va-
riety of affordances for rapidly and incrementally changing
hyperparameters and immediately seeing the effects of those
changes, as well as for sharing experiments with others.

2. TENSORFLOW PLAYGROUND: VISUAL-
IZATION

The structure of the Playground visualization is a stan-
dard network diagram. The visualization shows a network
that is designed to solve either classification or regression
problems based on two abstract real-valued features, x1 and
x2, which vary between -1 and 1. Input units, representing
these features and various mathematical combinations, are
at the left. Units in hidden layers are shown as small boxes,
with connections between units drawn as curves whose color
and width indicate weight values. Finally, on the right, a vi-
sualization of the output of the network is shown: a square
with a heatmap showing the output value of the single unit
that makes up the final layer of the network. When the user
presses the ”play” button, the network begins to train.

There is a new twist in this visualization, however. Inside
the box that represents each unit is a heatmap that maps the
unit’s response to all values of (x1, x2) in a square centered
at the origin. As seen in Figure 1, this provides a quick geo-

115



Figure 1: TensorFlow Playground. This network is, roughly speaking, classifying data based on distance to
the origin. Curves show weight parameters, with thickness denoting absolute magnitude and color indicating
sign. The feature heatmaps for each unit show how the classification function (large heatmap at right) is
built from input features, then near-linear combinations of these features, and finally more complex features.
At upper right is a graph showing loss over time. At left are possible features; x1 and x2 are highlighted,
while other mathematical combinations are faded to indicate they should not be used by the network.

metric view of how the network builds complex features from
simpler ones. For example, in the figure the input features
are simply x1 and x2, which themselves are represented by
the same type of heatmap. In the next layer, we see units
that correspond to various linear combinations, leading to
a final layer with more complicated non-linear classifiers.
Moving the mouse over any of these units projects a larger
version of the heatmap, on the final unit, where it can be
overlaid with input and test data.

The activation heatmaps help users build a mental model
of the mathematics underlying deep networks. For many
configurations of the network, after training there is an ob-
vious visual progression in complexity across the network.
In these configurations, viewers can see how the first layer
of units (modulo activation function, acting as linear clas-
sifiers) combine to recognize clearly nonlinear regions. The
heatmaps also help viewers understand the different effects
of various activation functions. For example, there is a clear
visual difference in the effect of ReLU and tanh functions.
Just as instructive, however, are suboptimal combinations
of architecture and hyperparameters. Often when there are
redundant units (Figure 3), it is easy to see that units in
intermediate layers have actually learned the classifier per-
fectly well and that many other units have little effect on
the final outcome. In cases where learning is simply unsuc-
cessful, the viewer will often see weights going to zero, and

that there is no natural progression of complexity in the
activation heatmaps (Figure 4).

The visualization is implemented in JavaScript using d3.js[3].
It is worth noting that for the neural network computation,
we are not using the TensorFlow library[1] since we needed
the whole visualization to run in the browser. Instead, we
wrote a small library3 that meets the demands of this edu-
cational visualization.

3. AFFORDANCES FOR EDUCATION AND
EXPERIMENTATION

The real strength of this visualization is its interactiv-
ity, which is especially helpful for gaining an intuition for
the practical aspects of training a deep network. The Play-
ground lets users make the following choices of network struc-
ture and hyperparameters:

• Problem type: regression or classification

• Training data: a choice of four synthetic data sets,
from well-separated clusters to interleaved ”swiss roll”
spirals.

• Number of layers

3https://github.com/tensorflow/playground/blob/master/
nn.ts

116



Figure 2: A complex configuration of TensorFlow Playground, in which a user is attempting to find hyper-
parameters that will allow the classification of spiral data. Many possible feature combinations have been
activated.

• Number of units in each layer

• Activation function

• Learning rate

• Batch size

• Regularization: L1, L2, or none

• Input features: in addition to the two real-valued fea-
tures x1 and x2, the Playground allows users to add
some simple algebraic combinations, such as x1x2 and
x2
1.

• Noise level for input data

These particular variations were chosen based on experi-
ence teaching software engineers how to use neural networks
in their applications, and are meant to highlight key deci-
sions that are made in real life. They are also meant to be
easily combined to support particular lessons. For instance,
allowing users to add algebraic combinations of the two pri-
mary features makes it easy to show how a linear classifier
can do ”non-linear”tasks when given non-linear feature com-
binations.

The user interface is designed to make these choices as
easy to modify as possible. The standard definition of di-
rect manipulation is that changes should be ”rapid, incre-
mental and reversible” [7]. Allowing fast, smooth changes to
variables helps build intuition for their effects. Reversibility

encourages experimentation: indeed, we chose as our tagline
for the visualization, ”You can’t break it. We promise.”

Additional aspects of the visualization make it well-suited
to education. We have found that the smooth animation
engages users. It also lends itself to a good “spectator ex-
perience” [6], drawing students in during presentations. We
have seen onlookers laugh and even gasp as they watch a
network try and fail to classify the spiral data set, for ex-
ample. Although animation has not always been found to
be helpful in educational contexts, simulations are one case
where there is good evidence that it is beneficial [2].

One particularly important feature is the ability to seam-
lessly bookmark [8] a particular configuration of hyperpa-
rameters and structure. As the user plays with the tool,
the URL in the browser dynamically updates to reflect its
current state. If the user (or a teacher preparing a lesson
plan) finds a configuration they would like to share with oth-
ers, they need only copy the URL. Additionally, using the
checkboxes below the visualization, each UI component can
be hidden, making it easy to repurpose the interface.

We have found this bookmarking capability invaluable in
the teaching process. For example, it has allowed us to put
together tutorials in which students can move, step by step,
through a series of lessons that focus on particular aspects
of neural networks. Using the visualization in these “liv-
ing lessons” makes it straightforward to create a dynamic,
interactive educational experience.

4. CONCLUSION AND FUTURE WORK

117



The TensorFlow Playground illustrates a direct-manipulation
approach to understanding neural nets. Given the impor-
tance of intuition and experimentation to the field of deep
learning, the visualization is designed to make it easy to
get a hands-on feel for how these systems work without any
coding. Not only does this extend the reach of the tool to
people who aren’t programmers, it provides a much faster
route, even for coders, to try many variations quickly. By
playing with the visualization, users have a chance to build
a mental model of the mathematics behind deep learning,
as well as develop a natural feeling for how these networks
respond to tweaks in architecture and hyperparameters.

In addition to internal success with the tool, we have seen
a strong positive reaction since it has been open-sourced.
Besides general positive comments, we have seen interesting,
playful interactions. On one Reddit thread, for example,
people competed to find a way to classify the spiral data,
posting screenshots of their successful configurations. This
suggests that the tool is instigating a vibrant social reaction
to the visualization.

Since the launch of TensorFlow Playground, we have seen
many suggestions for extensions. Affordances for many other
structural variations and hyperparameters could be added;
for instance, a common request is for an option to see the
effect of dropout. Architectures such as convolutional nets
and LSTMs could also be illuminated through direct ma-
nipulation techniques. Our hope is that, as an open-source
project, the Playground will be extended to accommodate
many such ideas. More broadly, the ideas of visualization,
direct manipulation, and shareability that we have used may
prove useful in explaining other aspects of deep learning be-
sides network structure and hyperparameters.

A further question is whether this same direct-manipulation
environment can be extended to help researchers as well
as students. While there are obvious technical obstacles–
breaking new ground often requires large data sets and com-
putational resources beyond what a browser offers–it may be
possible to create minimal ”research playgrounds” that yield
insights and allow rapid experimentation.

5. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] M. Betrancourt. The animation and interactivity
principles in multimedia learning. The Cambridge
handbook of multimedia learning, pages 287–296, 2005.

[3] M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-driven documents. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis), 2011.

[4] A. Karpathy. Convnetjs: Deep learning in your
browser.

[5] C. Olah. colah’s blog.

[6] S. Reeves, S. Benford, C. O’Malley, and M. Fraser.
Designing the spectator experience. In Proceedings of
the SIGCHI conference on Human factors in
computing systems, pages 741–750. ACM, 2005.

[7] B. Shneiderman. 1.1 direct manipulation: a step
beyond programming languages. Sparks of innovation
in human-computer interaction, 17:1993, 1993.

[8] F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss,
and M. McKeon. Manyeyes: a site for visualization at
internet scale. Visualization and Computer Graphics,
IEEE Transactions on, 13(6):1121–1128, 2007.

[9] M. D. Zeiler and R. Fergus. Visualizing and
understanding convolutional networks. In Computer
vision–ECCV 2014, pages 818–833. Springer, 2014.

[10] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and
A. Torralba. Object detectors emerge in deep scene
cnns. CoRR, abs/1412.6856, 2014.

118



Figure 3: A network architecture with redundant layers and units. Several units in the first hidden layer have
already essentially learned to classify the data, as seen by inspecting the in-network activation visualizations.

Figure 4: This network has completely failed to classify the data, even after many epochs. The high-contrast
activation visualizations and thick weight connections hint at a systemic problem. This diagram was the
result of setting the learning rate to the maximum speed.

119




