
Interactive Clustering with a High-Performance ML Toolkit

Biye Jiang
Computer Science Division

UC Berkeley
Berkeley, CA 94720

bjiang@cs.berkeley.edu

John Canny
Computer Science Division

UC Berkeley
Berkeley, CA 94720

jfc@cs.berkeley.edu

ABSTRACT
Clustering is a class of machine learning algorithms which
has important applications in many different fields. Users
often use clustering to find hidden structures from data for
those domain specific problems. However, evaluating clus-
tering results is always a hard problem. In many and per-
haps most of these applications, users need to trade off com-
peting goals and encode prior knowledge into the model to
define what is the best result. The learning algorithm how-
ever has evolved around the optimization of a single, usu-
ally narrowly-defined criterion, which may not obtain sat-
isfactory results. In most cases, an expert makes trade-offs
between different criteria which requires high-level (human)
intelligence. This motivates us to provide interactive cus-
tomization and optimization so that the expert can incorpo-
rate secondary criteria into the model-generation process in
an interactive way.

In this demo paper we will demonstrate the techniques we
developed to do customized and interactive model optimiza-
tion for clustering algorithms. The keys to the approach are
(i) high-performance training so that non-trivial models can
be trained in real-time (using roofline design and GPU hard-
ware), (ii) a machine learning architecture which is modular,
and supports primary and secondary loss functions, and (iii)
highly-interactive visualization tools that support dynamic
creation of visualizations and controls to match the bespoke
criteria being optimized.

Keywords
Interactive, Machine learning, Clustering, GPU

1. INTRODUCTION
Machine Learning is now at the center of data analysis in
many fields across the sciences, business, health care and
other realms. Among those ML algorithms, clustering is a
class of unsupervised learning algorithms which is often used
to find hidden structures of the data. In contrast to super-

KDD 2015 Workshop on Interactive Data Exploration and Analytics
(IDEA’15) August 10th, 2015, Sydney, Australia.
Copyright is held by the owner/author(s)

vised learning which always uses accuracy to measure model
quality, in general it is hard to evaluate clustering results. In
practice users often need to trade off competing goals. La-
tent variable models such as K-Means clustering, or LDA[3]
or NMF[18] find latent factors which maximize the likeli-
hood of the observed data, but which may have secondary
desiderata such as uniform cluster size, independence of fac-
tors, or coherence of topics.

The learning algorithms have evolved around the optimiza-
tion of a single, usually narrowly-defined criterion, but users
often find it hard to represent their criteria as a single ob-
jective function. The lack of evaluation methods also make
it hard for analyzing algorithm behavior as well as debug-
ging. In many cases, using clustering algorithms requires
high-level (human) intelligence to make trade-offs between
these criteria and examine the results manually.

Because ML models today are not flexible enough to incor-
porate all these criteria, secondary constraints are often ap-
plied after model training (by overriding the model’s choices)
in a way that is inevitably sub-optimal. Furthermore, the
effects of downstream interventions require live testing to
quantify. By contrast, interactive customization and opti-
mization allows the analysts to incorporate secondary con-
straints into the model-generation process in an interactive
way. There are several benefits to this:

• Models can be fully optimized given a suitable mixture
of the criteria.

• Families of models can be trained to deal with vari-
ability in the application context.

• Analysts can explore the effects of particular trade-offs
instantly, without waiting for a live test.

• Through this exploration, an analyst can gain intu-
ition for the effects of various criteria, and make better
trade-offs in the long run.

In this paper we develop the techniques to do customized
and interactive model optimization, and demonstrate the
approach on several examples. The keys to the approach are
(i) high-performance training so that non-trivial models can
be trained in real-time (using roofline design and GPU hard-
ware), (ii) a machine learning architecture which is modular,
and support primary and secondary loss functions, and (iii)
highly-interactive visualization tools that support dynamic
creation of visualizations and controls to match the bespoke
criteria being optimized.

37

2. RELATED WORK
2.1 Interactive clustering
Interactive clustering is an active area. Since clustering is
widely-used to simplify the interpretation of large datasets,
and since the natural metrics for a new domain may be dif-
ficult to articulate, interactive exploration [8, 24, 29] is a
natural and powerful approach. In [8, 24] authors used vi-
sualization to rapidly explore the results of a clustering algo-
rithm, and these approaches have become important tools
in computational biology [8]. AverageExplorer [29] allow
users to explore and summarize large collection of images
by interactively posing constraints.

Recently, there has been much interest in using visualization
to support the refinement of topic models [26, 12, 7]. Since
the latent topics extracted by the algorithm are not always
semantically meaningful [22, 6], different constrained topic
models [20, 2, 21] have been developed. Systems like [26, 12]
also allow users to iteratively refine the model based on their
preference. However, those models always require solving a
complicated optimization problem with some very specific
constraint. And few systems have demonstrated real-time
interaction with large scale dataset.

2.2 Interactive model refinement
In the context of supervised learning, one early influential
paper on interactive machine learning was Fail and Olsen’s
paper [9], which describes partially-supervised learning with
a user supplying some (sparse) labelled data to help an ML
algorithm label the rest. A number of other works have fol-
lowed this route, by focusing on manipulation of the training
data rather than internals of a particular algorithm. Other
work focused on human-assisted feature selection (rather
than algorithm training) [23]. Amershi et al. [1] provides a
detailed summary of the work in this area. Much of these
works attempt to improve only the accuracy of a machine
learning problem by adding a human in the loop, which is
quite different from our work. Perhaps the closest to ours is
[13] which integrates a human-assisted optimization strategy
with the design of multi-class classifiers. But in this paper
we focus on clustering and the optimization algorithms are
different.

2.3 Large scale machine learning system
There has been a great deal of work recently on tools for
Big Data. But much of these works emphasize scalability on
clusters [14, 25, 10] without applying single-node accelera-
tion (CPU and GPU-specific acceleration libraries). Those
systems are typically optimized for scalability rather than
latency, which is more important for interactive modeling.

3. SYSTEM DESIGN
3.1 BIDMach: high-performance, customized

machine learning
The first key to interactive, customized machine learning is
an architecture which supports it. BIDMach [5] is a new
machine learning toolkit which has demonstrated extremely
high performance with modest hardware (single computers
with GPUs), and which has the modular design shown in
Fig 1. BIDMach use minibatch updates, typically many
per second, so that models are being updated continuously.

This is a good match to interactive modeling, since the ef-
fects of analysts actions will be seen quickly. Rather than
a single model class, models comprise first a primary model
(which typically outputs the model loss on a minibatch and
a derivative or other update for it). Next an optimizer is
responsible for updating the model given gradients. Several
are available including simple SGD, ADAGRAD, and Pre-
conditioned CG. Finally, mixins represent secondary con-
straints or likelihoods. Gradient-based primary models and
mixins are combined with a weighted sum. In our interactive
context, these weights are set interactively.

Figure 1: BIDMach’s Architecture

Beyond the architecture of Fig 1, BIDMach has two layers.
A general-purpose matrix layer called BIDMat, and BID-
Mach which includes the machine learning classes from fig-
ure 1. This organization shortens development time by pro-
viding high-level primitives for writing learning algorithms,
and also allows us to leverage recent gains in the performance
of GPU hardware. BIDMat is completely agnostic about
matrix type: both CPU and GPU matrices (and sparse or
dense and single or double precision) can be used and code
is written generically.

BIDMach contrasts with most high-performance machine
learning systems [14, 25, 10] in its emphasis on optimiz-
ing single-machine performance first, and then scale-up if
needed. BIDMach uses roofline design to optimize computa-
tional kernels toward hardware limits. On a large collection
of benchmarks it has proved to be typically two orders of
magnitude faster than other single-machine toolkits (when
BIDMach is used with a GPU), and one to two orders of
magnitude faster than cluster toolkits running on 10-100
nodes. Part of the difference is due to BIDMach’s complete
suite of GPU primitives. Almost all computation is done on
the GPU, CPU/GPU transfers are minimized, and custom
kernels give close to theoretically optimal GPU performance.
GPUs typically achieve an order-of-magnitude speedup in
dense matrix operations vs. mid-range CPUs. Less well
know is their advantage in main memory speed, which (at
300 GB/s) is nearly an order-of-magnitude faster than re-
cent quad-channel CPUs (at around 40 GB/s). This mem-
ory speed gap also gives GPUs a similar advantage for sparse
matrix operations which are central to most real-world ML
applications. These differences explain one order of magni-
tude of the performance gap that we observe with BIDMach.
The balance is due to the fact that most other systems are
not close to their (CPU) rooflines. Because of this BIDMach

38

has a significant performance edge for most ML algorithms
even when run on one CPU.

High performance is very important for interactivity. BID-
Mach has reduced the running time of many non-trivial ML
tasks from hours to minutes. And even for models that take
minutes to train fully, the effects of parameter changes are
typically visible in seconds. We will see this in the examples
later.

3.2 Client-server architecture
We use a client-server architecture with 3 components as
shown in Fig 2: a computing (BIDMach) engine, a web
server, and a web based front end. BIDMach is implemented
in the Scala language which supports concurrency with high
level “actor” primitives. Another thread runs in the same
Scala runtime, communicating with the web server. This
thread receives parameter updates from the web server, and
updates the corresponding model training parameters. As
the model is trained, primary and mixin cost functions are
evaluated on minibatches, providing regular updates which
are passed to the web server.

Visualization
in Browser Web Server

Computing
Engine

Grab data from
GPU 3~5 times/s User input

Model parameters

Using D3.js

Through
WebSocket Manipulate

parameters

Figure 2: Visualization Architecture

In the client side, we implement a web based interface which
uses D3.js[4] for data visualization. D3 is widely used, has
very powerful graphics elements, and good support for an-
imation. As a browser-based system, it runs transparently
with a local or remote server. We will discuss the interface
design in detail in the next section.

The communication between client and server is bi-directional,
with both client and server initiating transfers. We there-
fore use WebSockets instead of e.g. a one-way RESTful web
service. For simplicity and extensibility, we use JSON as the
over-the-wire exchange format.

3.3 Secondary criteria as Mixins
Model customization is useful for both supervised and unsu-
pervised problems. Unsupervised learning involves a certain
amount of arbitrariness in the criteria for the “best” latent
state. Therefore regularization is widely used as a secondary
constraint on the primary objective [20, 2, 21, 26].

In a bit more detail, clustering algorithms like KMeans usu-
ally use the measure of model/centroid similarity, and may
or may not use intra-model coherence measures or inter-
cluster distance. Indeed, unsupervised learning models are
often evaluated using a variety of criteria that are much more
complex than the criteria used to derive the learning algo-

rithms [22, 6]. The same holds true for topic models such as
LDA, NMF and Word2Vec, and for collaborative filtering.

This is a paradox. Clearly one should get better scores for
these criteria if they were directly optimized as part of train-
ing. Beyond these standard criteria, there are many oth-
ers that are commonly used in the applications of machine
learning. Historically it has probably been too difficult to
optimize these criteria (the criteria may be expensive to eval-
uate, or non-locally computable).

On the other hand computing power is abundantly available
now, especially in graphics processors. The bottleneck is
often moving data rather than computing on it. Thus it
is often practical to evaluate multiple, relatively complex
criteria as part of optimization.

Combining these approaches, we can deal with a variety of
secondary or “mixin” criteria as part of the learning process.
In our present implementation, we use a linear combination
of cost functions for primary and secondary criteria:

argmin
x
f(x, d) +

∑
i

λi ∗ gi(x)

Where x is the model parameters, d is data, f is the primary
cost function and gi are the user-defined Mixin functions.
The weights λi are “controls” that are dynamically adjusted
by the analyst as part of training. For the primary criterion
f and each secondary criteria gi there should be at least one
dynamic graphic that captures changes in that criterion in
an intuitive way. The analyst watches these as each of the
controls are adjusted to monitor the tradeoff between them.

4. INTERFACE DESIGN
In this section, we will describe the visual interface of our
interactive machine learning system.

4.1 Visual dashboard
We use a dashboard approach where user can customize their
own visualizations. As shown in Fig 3, the left side of the
interface contains the menus and control sliders. From the
menus, a user can select the metrics and controls for the
modeling task. A corresponding control or metric visual-
ization is then added to the dashboard, which can then be
dragged, dropped and resized. There is at least one corre-
sponding performance indictor for each control parameter,
and more than one can be added to the dashboard. The de-
tails of each visualization component will be described next.

4.2 Visualizing the model
Directly visualizing the model provides a nice summariza-
tion for the dataset and users can gain a general under-
standing about the behavior of the algorithms. It can also
help identify obvious errors and verify assumptions or intu-
itions. While there are different types of data and algorithm,
the visualizations are necessarily model-specific, and should
provide a natural interpretation of the model directly. For
image data, the cluster centers can usually be visualized as
in Fig 4a. For dictionary learning algorithms like NMF[18],
the learned image dictionary can also be directly visualized
as in Fig 4b, which is a much sparser representation. For
more general matrix data, a simple direct visualization of el-
ement weights can work well. This was the approach taken

39

Figure 3: Dashboard for KMeans using MNIST dataset

in the “termite” system [7] and we use it also for our topic
model visualization.

(a) MNIST clustering centers
(b) Dictionary learned by NMF
on CIFAR dataset

(c) Ranking by global frequency (d) Ranking within a topic

Figure 4: Model visualization

The topic model visualization follows the design from [7], as
shown in Fig 4c and 4d. The radius of each pink circle in
row i and column j encodes the weight for word i in topic j.
We also display the word itself on the left side of each row to
help people interpret the numbers. One common challenge
for visualizing topic model comes from the huge size of the

model. Typically hundreds or thousands of topics and even
tens of thousands of different words. Limited screen size and
limited human perception power require us to filter out in-
formation according to some saliency metric[7]. The metric
will provide an ordering for words and topics and only the
most important words and topics are displayed. Also, such
an approach will significantly reduce the the amount of data
that need to be transferred from the server to the client.

As we are displaying in real-time an evolving model, it is
important to have a smooth and consistent word order after
each update. We therefore only use the original topic weight
to get the order of the words. In order to support a detailed
zoom in for each topic, we also support ranking within a
topic. This feature will be triggered when user mouse over
the topic title, as shown in Fig 4d.

4.3 Continuous visualization of model quality
As described in 3.3, we are optimizing an additive function
which consists of a main loss term as well as several Mixin
terms. The value of the cost function can reflect how the
model behaves under each criteria. As the engine keeps com-
puting the update, we visualize those metrics as streaming
data, as shown in Fig 5. Visualizing the main loss function
is very important when we change the control parameters.
It will reflect how algorithm responses to the user control
and whether the tradeoff for Mixin functions may affect the
general model performance.

As discussed earlier, the main loss function is computed on
each minibatch, and is a single scalar. We use a simple, dy-
namic curve plot to display its state. This style of plot is
easy to read and understand. With the parameters fixed,
one normally sees a rapid initial increase in likelihood, fol-
lowed by a slow increase on a plateau as in fig 5.

40

Figure 5: Continuous visualization of the likelihood function

4.4 Visualizing other performance indictors for
Clustering

As mentioned above, the evaluation of unsupervised cluster-
ing algorithm is hard in general. Therefore showing multiple
aspects of the clustering results at the same time would help
users better interpret the model.

4.4.1 Cluster size distribution
To examine the cluster size balance, we are interested in
the distribution of cluster sizes. The natural visualization
for this kind of data is a histogram or kernel density plot.
Fig 6a shows the size distribution for the clusters of digits
on the MNIST dataset.

4.4.2 Silhouette graph
Another useful metric is the widely used silhouette graph
(Fig 6b) for evaluating clustering results. The silhouette
score is calculated for each data point xj as:

sj =
bj − aj

max(aj , bj)

Where aj is the average distance between xj and all other
data points in the same cluster, bj is the lowest average
distance of xj to any other cluster. It could be seen that
−1 ≤ sj ≤ 1 and larger value indicates better clustering
results.

4.4.3 Recovered images from NMF
For the Non-negative Matrix Factorization algorithm[18], it
is easy to recover the approximated matrix by multiplying
the two factorized matrixes. Although the quality of the re-
covered matrix can be measured using L2-distance between
the original matrix and the approximated one, directly show-
ing the recovered result for image data (Fig 6c) can provide
more details about what kind of information is being lost or
preserved.

4.5 Slider controls
Along with the visual interface, we also provide several kinds
of control including weights for Mixin, learning rate, etc. We
also provide temperature control by changing the sample
variance of the Gibbs sampler using SAME sampling[27].
So far these are all continuous scalars, and are all imple-
mented as slider widgets. When the user select one of the
controls from the menu, a labeled slider widget is created
on the dashboard. The user drags and resizes this widget
in an appropriate area of their dashboard. The selection of
controls is currently independent of the selection of related

(a) Distribution of Cluster Size (b) Silhouette graph

(c) Recovered images from NMF on CIFAR dataset

Figure 6: Performance indictors for clustering

metrics, and they are placed separately as well. In future we
will explore intuitive ways of linking them (e.g. highlighting
related metrics when a control is selected and vice-versa, or
moving them as a group).

5. USE CASES
In this section, we will demonstrate several representative
use cases for our system.

5.1 Non-negative Matrix Factorization
Our first demo is to monitor model update of the NMF
algorithm in real-time. Although in this demo we don’t have
interactive control to the algorithm, we will still demonstrate
how we can gain insight by viewing the learning process.

The NMF algorithm is trying to find low rank representation
of the data matrix V by factorizing it into a product of two
matrixes W,H with lower dimension. This is done by solv-
ing the optimization problem using multiplicative updates
described in[18]:

argmin
W,H
||V −WH||2

This technique is very powerful in practice and can be used
to find clusters of local patches for image data, or topics for
text data. In our demo, we apply the NMF algorithm on the
CIFAR-100 dataset[15]. The CIFAR dataset contains 50000
32*32 tiny RGB images which is stored in a 3072*50000
matrix. As we set the number of factors to be 256, the
data matrix will be factorized into a 3072*256 matrix which
is the dictionary for images and a 256*50000 matrix which
contains the weights for each original image. Therefore each

41

(a) Initialization (b) Recovering background information

(c) Recovering texture and edge (d) Details become clearer

Figure 7: Online update for NMF

original image can be approximated as a linear combination
of the 256 template images.

We train the model using a NVIDIA GTX-690 GPU with
2GB graphics memory, which costs less than a second for
one iteration on the entire dataset, achieving around 150
GFlops. Such speed allows us to monitor real-time update
as the model converges. We visualize the first 100 template
images as well as the first 100 recovered images to help inter-
pret what information is being extracted from the dataset.
We also visualize the L2-loss ||V −WH||2 as a quantitative
measurement.

The four representative stages of the training procedure is
shown in Fig 7. Initially, the weight matrix are set to all one.
Therefore a reasonable local optimal is to find some averag-
ing images as the dictionary, and the recovered results all
look similar, as shown in Fig 7a. Later in the procedure,
the algorithm begins to recover background information as
shown in Fig 7b. The sparseness of NMF model can also be
seen since most pixels in the dictionary are black. This is
consistent with [17] that the NMF algorithm always learns
parts of the images. More texture and edge information will
then be learned in the third stage, shown in Fig 7c. Some of
the recovered images gradually become recognizable. Also,

the template images clearly fall into two categories. One
captures background information and the other represents
tiny local patterns. Finally, in the last stage (Fig 7d), more
details are being recovered and the L2-loss is about to con-
verge. User now can trade off the model quality and training
time based on their requirement.

Comparing to the L2-loss metric, directly visualizing the
model provides much more information than a single scalar.
Users can gain more insight about the algorithm behavior by
viewing the whole training process, which could help them
make better decisions in the future.

5.2 KMeans
Our second demo is KMeans. This time we will have some
direct control to the model which can demonstrate the full
power of interactive clustering.

5.2.1 Evaluation and implementation for KMeans
For KMeans, the primary loss function is inertia: the sum
of squared distances from points to their centroid. And the
algorithm is straightforward: iteratively assigns data points
to clusters and updates the cluster centroids using the mean
of data.

42

(a) original KMeans (b) Cluster size concentrated

(c) Begin to loss performance (d) Recover the model

Figure 8: Interactive tuning for KMeans

However, as mentioned previously, the evaluation and tun-
ing of the KMeans algorithm turn out to be hard. We there-
fore use multiple criteria to examine different aspects of the
clustering results. Aside from the main loss, we use silhou-
ette graph to measure how tight it is for each cluster. A
low silhouette score typically indicates small clusters at the
periphery of larger ones.

Besides, we also use cluster size balance as a criteria, which
could be naturally visualized with a histogram. This crite-
ria can also be optimized within the KMeans algorithm by
adding size as a secondary loss. The overall minimization
problem then becomes:

id(x) = argmin
i
||clusteri − x||22 + λ ∗ sizei (1)

id(x) is used to assign a cluster id for each data point x.
Where sizei represents how many data points have already
been assigned to the i-th cluster, clusteri is the center of the

i-th cluster.

The loss term λ ∗ sizei penalizes clusters with a larger size.
The algorithm would prefer to assign new data points to a
smaller cluster, which will tend to balance cluster sizes over
time. Size homogeneity matches most users’ intuition about
clustering, and it may also be important for accurate esti-
mation of cluster statistics. The λ also becomes a parameter
that we can interactively tune.

5.2.2 Incremental update
In order to take the advantage of mini-batch processing
which can return early feedback during the training, we fol-
low a similar approach to [28] for incremental KMeans up-
dating. And we also need an averaging update for sizei to
maintain its scale and make the visualization consistent. For

43

each batch {xj}, we compute the update as:

averagei =

∑
j xj ∗ 1(id(xj) = i)∑

j 1(id(xj) = i)

clusteri = clusteri + η ∗ averagei

sizei = sizei + α ∗
∑
j

1(id(xj) = i)

Normally η and α are set to 0.1 ∼ 0.2.

5.2.3 Experiment on MNIST dataset
We ran an experiment on the MNIST dataset [16], which
contains 8 million 28 × 28 images of hand written digits.
We train the model using NVIDIA GTX-690 GPU, which
could process roughly 500MB raw data (16.7k images) per
second. As we set the batch size to be 50000, every second
the system could perform 3 batch updates, which is enough
for real-time visualization.

In our dashboard, we choose to visualize the main loss, clus-
ter size distribution, as well as the silhouette graph. The
main loss is the averaging distance between the data points
and their assigned cluster centers (not taking into account
size).

The parameter that we choose to tune is the size weight
λ in eq(1), which we refer as sizeWeight in the interface.
Initially, we set the number of clusters K as 250 and we
assigned a small value to sizeWeight, so that the algorithm
will behave as the original KMeans algorithm. As shown in
Fig 8a, the likelihood is gradually improving and it quickly
converges to local minimal. The cluster size distribution
is quite diverse. We then increase the sizeWeight slightly,
which gives us a more concentrated cluster size distribution,
while the main loss and silhouette score are not affected, as
shown in Fig 8b. This implies that the algorithm now moves
to another local optimal by assigning some data points to a
suboptimal but smaller cluster. Notice that this has almost
no effect on the primary likelihood.

However, as we continue to increase sizeWeight, the loss
will start to increase, and the silhouette graph also shows
more defects (more negative area) (Fig 8c). From here, we
decrease the sizeWeight. Since the KMeans algorithm is in-
cremental, this change brings us back close to the likelihood
before the last increase, as shown in Fig 8d. This example
illustrates the tradeoffs that can be made, and the speed of
recognizing poor parameter choices.

5.3 L1-regularized Topic Model
Our last demo is applying our system to Latent dirichlet
allocation(LDA) topic modeling [3], one of the most widely
used topic models.

5.3.1 Implementation
LDA is a generative process to model the documents. For
each document d, it proceeds as follows (K is the number of
latent factors):

• Draw a topic distribution for the document d as θd ∼
Dirichlet(α), a K-dimensional Dirichlet.

• For each word position i (across all docs), draw a topic
index zd,i ∈ {1, ...,K} from zd,i ∼ θd

• Draw the word wd,i from the multinomial distribu-
tion wd,i ∼ ϕzd,i , which also has a prior: ϕzd,i ∼
Dirichlet(β)

α, and β are hyper-parameters specifying the Dirichlet prior.
The other two parameters of the model are θ, which can be
represented as a document-topic matrix, and ϕ, the word-
topic matrix. The algorithm therefore is to use Gibbs sam-
pler to draw samples for hidden states zi:

PX(zd,i = k|z−d,i, α, β, xd,i = w) ∼ θd,k ∗ ϕk,w (2)

After drawing the samples, θ and ϕ can be updated via Max-
imum Likelihood Estimation. In order to apply annealing to
the optimization procedure, we further use SAME sampling
[27] to draw m independent samples instead of just one from
Z each time. This results in a cooled Gibbs sampler and the
parameter m can be used to control the temperature. A
low value of m gives a higher-variance random-walk while
increasing m can cause parameters converge to a nearby op-
timum. By default m is set to 100, and it can be tuned
during the training. We refer m as nsamps in the interface.

Similar to KMeans, we also use incremental update for LDA
as described in [11]. A L1-regularization is also added into
the model to enforce sparsity. As describe in 3.3, the im-
plementation is very straightforward. For each batch, after
computing the model update ϕ′, we also compute the sub-
gradient update for the L1-regularization:

g(ϕk,w) = −λ ∗ sign(ϕk,w)

We then add those two terms ϕ′ and g(ϕ) into the model
using the weighted averaging approach we discussed above.
We refer the weight λ as L1− reg in the interface.

5.3.2 Experiment on NYTimes dataset
We run an experiment on the NYTimes dataset [19], which
contains about 300K documents, 102K different words and
totally 100M tokens. Again, we train our model using GTX
690 GPU.

We first set topic number K as 1024 and the model con-
verged in about two minutes. As shown in Fig 9, the re-
sulting topic matrix is very sparse even without adding the
L1-regularization. This is due to that we set a large K and
many independent topics are generated.

We then set K to be 32. Without any regularization, the
algorithm’s behavior is shown in Fig 10. The likelihood
quickly converges to a local optimal, but the topic results
are still very noisy, and the topics are overlapping. We then
adjust the L1 − reg slider away from zero. However, tun-
ing L1 − reg will not always give good results on complex
likelihood functions due to local optima. Since SAME sam-
pling is used in our LDA implementation, we can decrease
nsamps to increase the variance of the random-walk, which
makes it easier to jump between possible solutions.

After we increase the temperature, as shown in Fig 11, the
likelihood drops significantly but we get a very sparse model.

44

Figure 9: Converged sparse model, K=1024

Afterward, we set the L1−reg back to a small value and use
a large nsamps (cold state) which prevents large changes in
model state. This is equivalent to only allowing the model to
make very small movement around that local optimal. From
Fig 12, we can see that the likelihood returns to a normal
value while the sparsity is maintained.

Figure 10: Overlapping topics, K=32

Figure 11: High temperature with high L1-reg

6. CONCLUSION & FUTURE WORK
We have demonstrated how to perform interactive optimiza-
tion on customized models using our system. The Mixin
function is a convenient and useful way to capture user’s in-
tuition and create customized model. The dashboard also
enable users to easily monitor several performance indicators
at the same time, which help users to evaluate the model

Figure 12: Likelihood back to normal, sparsity preserved

from different perspectives. By summarizing this informa-
tion, the trade-off decisions become straightforward. Also,
the GPU accelerated toolkit makes it possible to get real-
time feedback. This ensures that users can understand cause
and effect of the algorithm behavior in an iterative refine-
ment procedure.

More Mixin functions like measuring independence of fac-
tors, or coherence of topics could be implemented in the fu-
ture. Also, our framework is not limited to the unsupervised
learning algorithms. Some concrete examples of competing
goals in supervised learning include computational market-
ing where the primary goal is maximize revenue, but where
secondary goals include user satisfaction, advertiser satisfac-
tion, and budget constraints. Recommender systems seek to
recommended the highest-rated items, but may also need to
cover the available item inventory, favor more or less expen-
sive items, or favor items which encourage future purchases.
Those are all potential extensions that could be explored in
the future.

7. REFERENCES
[1] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza.

Power to the people: The role of humans in interactive
machine learning. AI Magazine, 35(4):105–120, 2014.

[2] D. Andrzejewski, X. Zhu, M. Craven, and B. Recht. A
framework for incorporating general domain
knowledge into latent dirichlet allocation using
first-order logic. In IJCAI Proceedings-International
Joint Conference on Artificial Intelligence, volume 22,
page 1171, 2011.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993–1022, 2003.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3

data-driven documents. Visualization and Computer
Graphics, IEEE Transactions on, 17(12):2301–2309,
2011.

[5] J. Canny and H. Zhao. Big data analytics with small
footprint: Squaring the cloud. In Proceedings of the
19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 95–103.
ACM, 2013.

[6] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and
D. M. Blei. Reading tea leaves: How humans interpret
topic models. In Advances in neural information

45

processing systems, pages 288–296, 2009.

[7] J. Chuang, C. D. Manning, and J. Heer. Termite:
Visualization techniques for assessing textual topic
models. In Proceedings of the International Working
Conference on Advanced Visual Interfaces, pages
74–77. ACM, 2012.

[8] M. B. Eisen, P. T. Spellman, P. O. Brown, and
D. Botstein. Cluster analysis and display of
genome-wide expression patterns. Proceedings of the
National Academy of Sciences, 95(25):14863–14868,
1998.

[9] J. A. Fails and D. R. Olsen Jr. Interactive machine
learning. In Proceedings of the 8th international
conference on Intelligent user interfaces, pages 39–45.
ACM, 2003.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, volume 12,
page 2, 2012.

[11] M. Hoffman, F. R. Bach, and D. M. Blei. Online
learning for latent dirichlet allocation. In advances in
neural information processing systems, pages 856–864,
2010.

[12] Y. Hu, J. Boyd-Graber, and B. Satinoff. Interactive
topic modeling. In Association for Computational
Linguistics, 2011.

[13] A. Kapoor, B. Lee, D. S. Tan, and E. Horvitz.
Performance and preferences: Interactive refinement of
machine learning procedures. In AAAI. Citeseer, 2012.

[14] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith,
M. J. Franklin, and M. I. Jordan. Mlbase: A
distributed machine-learning system. In CIDR, 2013.

[15] A. Krizhevsky and G. Hinton. Learning multiple
layers of features from tiny images. Computer Science
Department, University of Toronto, Tech. Rep, 1(4):7,
2009.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[17] D. D. Lee and H. S. Seung. Learning the parts of
objects by non-negative matrix factorization. Nature,
401(6755):788–791, 1999.

[18] D. D. Lee and H. S. Seung. Algorithms for
non-negative matrix factorization. In Advances in
neural information processing systems, pages 556–562,
2001.

[19] M. Lichman. UCI machine learning repository, 2013.

[20] Q. Mei, D. Cai, D. Zhang, and C. Zhai. Topic
modeling with network regularization. In Proceedings
of the 17th international conference on World Wide
Web, pages 101–110. ACM, 2008.

[21] D. Newman, E. V. Bonilla, and W. Buntine.
Improving topic coherence with regularized topic
models. In Advances in neural information processing
systems, pages 496–504, 2011.

[22] D. Newman, J. H. Lau, K. Grieser, and T. Baldwin.
Automatic evaluation of topic coherence. In Human
Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics, pages 100–108. Association

for Computational Linguistics, 2010.

[23] H. Raghavan, O. Madani, and R. Jones. Interactive
feature selection. In IJCAI, volume 5, pages 841–846,
2005.

[24] J. Seo and B. Shneiderman. Interactively exploring
hierarchical clustering results [gene identification].
Computer, 35(7):80–86, 2002.

[25] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam,
X. Pan, J. Gonzalez, M. J. Franklin, M. I. Jordan, and
T. Kraska. Mli: An api for distributed machine
learning. In Data Mining (ICDM), 2013 IEEE 13th
International Conference on, pages 1187–1192. IEEE,
2013.

[26] Y. Yang, S. Pan, Y. Song, J. Lu, and M. Topkara.
User-directed non-disruptive topic model update for
effective exploration of dynamic content. In
Proceedings of the 20th International Conference on
Intelligent User Interfaces, pages 158–168. ACM, 2015.

[27] H. Zhao, B. Jiang, and J. F. Canny. SAME but
different: Fast and high-quality gibbs parameter
estimation. CoRR, abs/1409.5402, 2014.

[28] S. Zhong. Efficient online spherical k-means clustering.
In Neural Networks, 2005. IJCNN’05. Proceedings.
2005 IEEE International Joint Conference on,
volume 5, pages 3180–3185. IEEE, 2005.

[29] J.-Y. Zhu, Y. J. Lee, and A. A. Efros.
Averageexplorer: Interactive exploration and
alignment of visual data collections. ACM
Transactions on Graphics (TOG), 33(4):160, 2014.

46

