
Zips: Mining Compressing Sequential Patterns in Streams

Hoang Thanh Lam
TU Eindhoven

Eindhoven, the Netherlands
t.l.hoang@tue.nl

Toon Calders
TU Eindhoven

Eindhoven, the Netherlands
t.calders@tue.nl

Jie Yang
TU Eindhoven

Eindhoven, the Netherlands
j.yang.1@student.tue.nl

Fabian Mörchen
Amazon.com Inc
Seattle, WA, USA

moerchen@amazon.com

Dmitriy Fradkin
Siemens Corporate Research

Princeton NJ, USA
dmitriy.fradkin@siemens.com

ABSTRACT
We propose a streaming algorithm, based on the minimal de-
scription length (MDL) principle, for extracting non-redundant
sequential patterns. For static databases, the MDL-based
approach that selects patterns based on their capacity to
compress data rather than their frequency, was shown to
be remarkably effective for extracting meaningful patterns
and solving the redundancy issue in frequent itemset and se-
quence mining. The existing MDL-based algorithms, how-
ever, either start from a seed set of frequent patterns, or
require multiple passes through the data. As such, the ex-
isting approaches scale poorly and are unsuitable for large
datasets. Therefore, our main contribution is the proposal
of a new, streaming algorithm, called Zips, that does not re-
quire a seed set of patterns and requires only one scan over
the data. For Zips, we extended the Lempel-Ziv (LZ) com-
pression algorithm in three ways: first, whereas LZ assigns
codes uniformly as it builds up its dictionary while scanning
the input, Zips assigns codewords according to the usage of
the dictionary words; more heaviliy used words get shorter
code-lengths. Secondly, Zips exploits also non-consecutive
occurences of dictionary words for compression. And, third,
the well-known space-saving algorithm is used to evict un-
promising words from the dictionary. Experiments on one
synthetic and two real-world large-scale datasets show that
our approach extracts meaningful compressing patterns with
similar quality to the state-of-the-art multi-pass algorithms
proposed for static databases of sequences. Moreover, our
approach scales linearly with the size of data streams while
all the existing algorithms do not.

1. INTRODUCTION
Mining frequent patterns is an important research topic in

data mining. It has been shown that frequent pattern mining
helps finding interesting association rules, or can be useful
for classification and clustering tasks when the extracted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEA’13, August 11th, 2013, Chicago, IL, USA.
Copyright 2013 ACM 978-1-4503-2329-1 ...$15.00.

patterns are used as features [1]. However, in descriptive
data mining the pattern frequency is not a reliable measure.
In fact, it is often the case that highly frequent patterns are
just a combination of very frequent yet independent items.

There are many approaches that address the aforemen-
tioned issues in the literature. One of the most successful
approaches is based on data compression which looks for the
set of patterns that compresses the data most. The main
idea is based on the Minimum Description Length Princi-
ple (MDL) [5] stating that the best model describing data
is the one that together with the description of the model,
it compresses the data most. The MDL principle has been
successfully applied to solve the redundancy issue in pattern
mining and to return meaningful patterns [4, 6].

So far most of the work focussed on mining compressing
patterns from static datasets or from modestly-sized data.
In practice, however databases are often very large. In some
applications, data instances arrive continuously with high
speed in a streaming fashion. In both cases, the algorithms
must ideally scale linearly with the data size and be able
to quickly handle fast data updates. In the streaming case,
the main challenge is that whole data cannot be kept in
memory and hence the algorithm has to be single-pass. None
of the approaches described in the literature scales up to the
arbitrarily large data or obey the single-pass constraint.

In this work, we study the problem of mining compressing
sequential patterns in a data stream where events arrive in
batches, e.g. like stream of tweets. We first introduce a novel
encoding that encodes sequences with the help of patterns.
Different from the encodings used in recent work [2, 3, 7],
the new encoding is online which enables us to design online
algorithms for efficiently mining compressing patterns from
a data stream. We prove that there is a simple algorithm
using the proposed online encoding scheme and achieving
a near optimal compression ratio for data streams gener-
ated by an independent and identical distributed source, i.e.
the same assumption that guarantees the optimality of the
Huffman encoding in the offline case [9].

Subsequently, we formulate the problem of mining com-
pressing patterns from a data stream. Generally, the data
compression problem is NP-complete [11]. Under the stream-
ing context with the additional single pass constraint, we
propose a heuristic algorithm to solve the problem. The pro-
posed algorithm scales linearly with the size of data. In the
experiments with one synthetic and two real-life large-scale
datasets, the proposed algorithm was able to extract mean-

55

ingful patterns from the streams while being much more
scalable than the-state-of-the-art algorithms.

2. RELATED WORK
The SubDue system [6] is the first work exploiting the

MDL principle for mining useful frequent subgraphs. In the
field of frequent itemset mining, the well-known Krimp al-
gorithm [4] was shown to be very good at solving the redun-
dancy issue and at finding meaningful patterns.

The MDL principle was first applied for mining compress-
ing patterns in sequence data in [2, 3] and in [7]. The
GoKrimp algorithm in the former work solved the redun-
dancy issue effectively. However, the first version of the
GoKrimp algorithm [2] used an encoding scheme that does
not punish large gaps between events in a pattern. In an
extended version of the GoKrimp algorithm [3] this issue is
solved by introducing gaps into the encoding scheme based
on Elias codes. Besides, a dependency test technique is pro-
posed to filter out meaningless patterns. Meanwhile, in the
latter work the SQS algorithm proposed a clever encoding
scheme punishing large gaps. In doing so, the SQS was able
to solve the redundancy issue effectively. At the same time
it was able to return meaningful patterns based solely on
the MDL principle.

However, a disadvantage of the encoding defined by the
SQS algorithm is that it does not allow encoding of over-
lapping patterns. Situations where patterns in sequences
overlap are common in practice, e.g. message logs produced
by different independent components of a machine, network
logs through a router etc. Moreover, neither the GoKrimp
algorithm nor the SQS algorithm were intended for mining
compressing patterns in data streams. The encodings pro-
posed for these algorithms are offline encodings. Under the
streaming context, an offline encoding does not work because
of the following reasons:

1. Complete usage information is not available at the mo-
ment of encoding because we don’t know the incoming
part of the stream

2. When the data size becomes large, the dictionary size
usually grows indefinitely beyond the memory limit.
Temporally, part of the dictionary must be evicted.
In the latter steps, when an evicted word enters the
dictionary again we loose the historical usage of the
word completely.

3. Handling updates for the offline encoding is expensive.
In fact, whenever the usage of the word is updated, all
the words in the dictionary must be updated accord-
ingly. On one hand, this operation is expensive, on the
other hand, it is impossible to update the compression
size correctly for the case that part of the dictionary
has been evicted.

In contrast to these approaches, the Zips algorithm pro-
posed in this work inherits the advantages of both state-of-
the-art algorithms. It defines a new online encoding scheme
that allows to encode overlapping patterns. More impor-
tantly, under reasonable assumptions, it provably scales lin-
early with the size of the stream making it the first work
in this topic being able to work efficiently on very large
datasets. Our work is tightly related to the Lempel-Ziv ’s
data compression algorithm [9]. However, since our goal

is to mine interesting patterns instead of compression, the
main differences between our algorithm and data compres-
sion algorithms are:

1. Data compression algorithms do not aim to a set of
patterns because they only focus on data compression.

2. Encodings of data compression algorithms do not con-
sider important patterns with gaps. The Lempel-Ziv
compression algorithms only exploit repeated strings
(consecutive subsequences) to compress the data while
in descriptive data mining we are mostly interested in
patterns interleaved with noises and other patterns.

3. DATA STREAM ENCODING
In this work, we assume that events in a data stream ar-

rive in batches. This assumption covers broad types of data
streams such as tweets, web-access sequences, search engine
query logs, etc. This section discusses online encodings that
compress a data stream by a set of patterns. For education
reasons, we first start with the simplest case when only sin-
gletons are used to encode the data. The generalized case
with non-singletons is described in the next subsection.

3.1 Online encoding using singletons:
We discuss an online encoding that uses only singletons

to compress the data. Since this encoding does not exploit
any pattern for compress the data, we consider the repre-
sentation of the data in this encoding as an uncompressed
form of that data. Let

∑
= {a1, a2, · · · , an} be an alphabet

containing a set of characters ai, the online data encoding
problem can be formulated as follows:

Definition 1 (Online Encoding Problem). Let A be
a sender and let B be a receiver. A and B communicate
over some network, where sending information is expensive.
A observes a data stream St = b1b2 · · · bt. Upon observing a
character bt, A needs to compress the character and trans-
mit it to the receiver B, who must be able to uncompress
it. Since sending information on the network is expensive,
the goal of A and B is to compress the stream as much as
possible to save up the network bandwidth.

In the offline scenario, i.e. when St is finite and given in
advance, one possible solution is to first calculate the fre-
quency of every item a (denoted as f(a)) of the alphabet
in the sequence St. Then assign each item a a codeword
with length proportional to its entropy, i.e. − log f(a). It
has been shown that when the stream is independent and
identically distributed (i.i.d) this encoding, known as the
Huffman code in the literature, is optimal [9]. However, in
the streaming scenario, the frequency of every item a is un-
known and the codeword of a must be assigned at the time
a arrives and B must know that codeword to decode the
compressed item.

We propose a simple solution for Problem 1 as follows.
First, in our proposed encoding we need codewords for natu-
ral numbers. This work uses the Elias Delta code [8] denoted
E(n) to encode the number n. The Elias was chosen because
it was provable as near optimal when the upper bound on n
is unknown in advance. The length of the codeword E(n) is
blog2 nc+ 2blog2 (blog2 nc+ 1)c+ 1 bits.
A first notifies B of the size of the alphabet by sending

E(|
∑
|) to B. Then it sends B the dictionary containing all

56

A B d c b a b a c a b b
d c b a E(4) E(2) E(5) E(6) E(1) E(3)

Data stream Alphabet

a b c d b b a c a b

Decoded sequence
Communication network

3 1
6

5
2

4

Figure 1: A first sends B the alphabet abcd then it sends the codewords of gaps between consecutive occur-
rences of a character. B decodes the gaps and uses them to refer to the characters in part of the stream
having been already decoded. The reference stream is E(3)E(1)E(6)E(5)E(2)E(4).

characters of the alphabet
∑

in the lexicographical order.
Every character in the dictionary is encoded by a binary
string with length dlog2 |

∑
|e. Finally, when a new charac-

ter in the stream arrives A sends the codeword of the gap
between the current and the most recent occurrence of the
character. When B receives the codeword of the gap it de-
codes the gap and uses that information to refer to the most
recent occurrence of the character which has been already
decoded in the previous step. Since the given encoding uses
a reference to the most recent occurrence of a word to encode
its current occurrence we call this encoding the reference en-
coding scheme. We call the sequence of encoded gaps sent
by A to B the reference stream.

Example 1. Figure 1 shows an example of a reference
encoding scheme. A first sends B the alphabet in lexico-
graphical order. When each item of the stream arrives A
sends B the codeword of the gap to its most recent occur-
rence. For instance, A sends E(3) to encode the first occur-
rence of b and sends E(1) to encode the next occurrence of b.
The complete reference stream is E(3)E(1)E(6)E(5)E(2)E(4).

Let O be a reference encoding ; denote LO(St) as the
length of the data including the length of the alphabet. The

average number of bits per character is calculated as LO(St)
t

.
The following theorem shows that when the data stream
is generated by an i.i.d source, i.e. the same assumption
guaranteeing the optimality of the Huffman code, the refer-
ence encoding scheme approximates the optimal solution by
a constant factor with probability 1.

Theorem 1 (Near Optimality). Given an i.i.d data
stream St, let H(P) denote the entropy of the distribution of
the characters in the stream. If the Elias Delta code is used
to encode natural numbers then:

Pr

(
lim
t7→∞

LO(St)

t
≤ H(P) + log2(H(P) + 1) + 1

)
= 1

Proof. Due to space limit the complete proof of this the-
orem is available in an extension version1.

It has been shown that in expectation the lower bound
of the average number of bits per character of any encod-
ing scheme is H(P) [9]. Therefore, a corollary of Theorem
1 is that the reference encoding approximates the optimal
solution by a constant factor α = 2 plus one extra bit.

In the proof of Theorem 1 we can also notice that the gaps
between two consecutive occurrences of a character represent
the usage of the character in the offline encoding because in
expectation the gap is proportional to the entropy of the

1http://www.win.tue.nl/~lamthuy/projects/zips.pdf

character, i.e. − log pi. This property is very important
because it provides us with a lot of conveniences in designing
an effective algorithm to find compressing patterns in a data
stream. In particular, since gaps can be calculated instantly
without the knowledge about the whole data stream, using
reference encoding we can solve all the aforementioned issues
of the offline encodings.

3.2 Online encoding with non-singletons
The reference encoding can be extended to the case using

singleton together with non-singleton patterns to encode a
data stream. Let S = S1S2 · · ·St denote a stream of se-
quences where each Si is a sequence of events. Let D be
a dictionary containing all characters of the alphabet and
some non-singletons. Reference encodings compress a data
stream S by replacing instances of words in the dictionary
by references to the most recent occurrences of the words.
If the words are non-singletons, beside the references, gaps
between characters of the encoded words must be stored to-
gether with the references. Therefore, in a reference encod-
ing, beside the reference stream we also have a gap stream.

Similar to the case with non-singleton, first we need to
encode the dictionary D (now contains both singleton and
non-singleton). We add a special symbol] to the alphabet.
The binary representation of the dictionary starts with the
codeword of the size of the dictionary. It is followed by
the codewords of all the characters in the alphabet each
with length dlog2 |D|e. The representations of every non-
singleton follow right after that. The binary representation
of a non-singleton contains codewords of the characters of
the non-singleton. Non-singletons are separated from each
other by the special character].

Example 2 (Dictionary representation). The dic-
tionary D = {a, b, c,], ab, abc} can be represented as follows
E(6)C(a)C(b)C(c)C(])C(a)C(b)C(])C(a)C(b)C(c). The rep-
resentation starts with E(6) indicating the size of D. It fol-
lows by the codewords of all the characters and the binary
representation of the non-singletons separated by].

Having the binary representation of the dictionary, A first
sends that representation to B. After that A send the encod-
ing of the actual stream with the reference stream and the
gap stream. The following example show how to encode a
sequence with a reference encoding.

Example 3 (Reference encoding). Given a dictio-
nary D = {a, b, c,], ab, abc}, a sequence S = abbcacbacbacbabc.
Figure 2 show an encoding of S using dictionary words(the
numbers below the characters denote the positions of the
character in the original sequence). The reference stream
is E(1)E(7)E(5)E(8)E(2)E(2)E(2)E(2)E(8), where E(1) is
the reference of the first abc to the position of abc in the

57

a b c # ab # abc abc b ab c ab c ab c abc

Dictionary The encoded sequence

7

5

1

8

2 2

2 2

8

1 2 4 3 5 7 6 8 10 9 11 13 12 14 15 16

Figure 2: An example of encoding the sequence S = abbcacbacbacbabc with a reference encoding. The ar-
rows represent the references between two consecutive encoded occurrences of a word which represent as
a reference stream E(1)E(7)E(5)E(8)E(2)E(2)E(2)E(2)E(8). Having the reference stream we can reconstruct
the stream but not in the same order of event occurrence. Therefore, we need a gap stream indicating
the gaps between consecutive characters in each encoded non-singletons. For example, the gap stream is
E(1)E(2)E(2)E(2)E(2)E(1)E(1).

dictionary, E(7) is the reference of the following b to the
position of b in the dictionary and so on. The gap stream
is E(1)E(2)E(2)E(2)E(2)E(1)E(1), where for instance, the
first codewords E(1)E(2) indicate the gaps between a and b,
b and c in the first occurrence of abc at position (1, 2, 4) in
the stream. For non-singleton, there is no gap information
representing in the gap stream.

Example 4 (Decoding). In Figure 2, the sequence can
be decoded as follows. Reading the first codeword of the ref-
erence stream, i.e. E(1), the decoder refers one step back
to get abc. There will be two gaps (between a, b and b, c)
so the decoder reads the next two codewords from the gap
stream, i.e. E(1), and E(2). Knowing the gaps it can infer
the positions of abc. In this case, the positions are 1,2 and 4.
Subsequently, the decoder reads the next codeword from the
reference stream, i.e. E(7), it refers seven steps back and
decode the current reference as b. There is no gap because
the word is a singleton, the position of b in the stream corre-
sponds to the earliest position that has not been occupied by
any decoded character, i.e. 3. The decoder continues decode
the other references of the stream in the same way.

Different from the singleton case, there might be a lot of dif-
ferent reference encodings for a stream given a dictionary.
Each reference encoding incurs different description lengths.
Finding an optimal dictionary and an optimal reference en-
coding is the main problem we solve in this paper.

4. PROBLEM DEFINITION
Given a data stream S and a dictionary D denote LCD(S)

as the description length of the data (including the cost to
store the dictionary) in the encoding C. The problem of
mining compressing sequential patterns in data stream can
be formulated as follows:

Definition 2 (Compressing patterns mining). Given
a stream of sequences S, find a dictionary D and an encod-
ing C such that LCD(S) is minimized.

Generally, the problem of finding the optimal lossless com-
pressed form of a sequence is NP-complete [11]. In this work,

Algorithm 1 Zips(S)

1: Input: Event stream S = S1S2 · · ·
2: Output: Dictionary D
3: D ←− ∅
4: for t = 1 to ∞ do
5: while St 6= ε do
6: w = encode(St)
7: w∗ = extend(w)
8: update(w∗)
9: end while

10: end for
11: Return D

Problem 2 is similar to the data compression problem but
with additional constraint on the number of passes through
data. Therefore, in next section we discuss a heuristic al-
gorithm inspired by the idea of the Lempel-Ziv ’s data com-
pression algorithm [9] to solve this problem.

5. ALGORITHMS
In this section, we discuss an algorithm for finding a good

set of compressing patterns from a data stream. Our algo-
rithm is single-pass, memory-efficient and scalable. We call
our algorithm Zips as for Zip a stream. There are three im-
portant subproblems that Zips will solve. The first problem
concerns how to grow a dictionary of promising candidate
patterns for encoding the stream. Since the memory is lim-
ited, the second problem is how to keep a small set of impor-
tant candidates and evict from the dictionary unpromising
candidates. The last problem is that having a dictionary
how to encode the next sequence effectively with existing
words in the dictionary.

The pseudo-code depicted in Algorithm 1 shows how Zips
work. It has three subroutines each of them solves one of
the three subproblems:

1. Compress a sequence given a dictionary: for every new
sequence St in the stream, Zips uses the subroutine
encode(St) to find the word w in the dictionary which
gives the most compression benefit when it is used to

58

a b a c b b c c
1 2 3 4 5 6 7 8

2 3

1

3
1

a b a c b b c c
1 2 3 4 5 6 7 8

2
2

3 2

𝑆1(𝑤)

𝑆2(𝑤)
1

1

(a) (b)

Encoded

Figure 3: An illustration of how compression benefit is calculated: (a) The sequence S in the uncompressed
form. (b) two instances of w = abc: S1(w) and S2(w) and their references to the most recent encoded instance
of w highlighted by the green color.

encode the uncompressed part of the sequence. Sub-
sequently, the instance corresponds to the best chosen
word is removed from St. Detail about how to choose
w is discussed in subsection 5.1.

2. Grow a dictionary: Zips uses extend(w) to extend the
word w chosen by the procedure encode(St). Word
extensions are discussed in subsection 5.2.

3. Dictionary update: the new extension is added to the
dictionary. When the dictionary size exceeds the mem-
ory limit, a space-saving algorithm is used to evict un-
promising words from the dictionary (subsection 5.3).

These steps are iteratively repeated as long as St is not en-
coded completely. When compression of the sequence fin-
ishes, Zips continues to compress the next in a similar way.

5.1 Compress a sequence:
Let S be a sequence, consider a dictionary word w =

a1a2 · · · ak, let S(w) denote an instance of w in S. Let
g2, g3, · · · , gk be the gaps between the consecutive characters
in S(w). We denote the gap between the current occurrence
and the most recent encoded occurrence of w by g. Let gi
i = 1, · · · , k be the gap between the current and the most
recent occurrence of ai. Therefore, to calculate the compres-
sion benefit we subtract the size of encoding S(w) and the
cost of encoding the gap to the last encoded occurrence of
S(w) from the size of encoding each singleton:

B(S(w)) =

k∑
i=1

|E(gi)| − |E(g)| −
k∑
i=2

|E(gi)| (1)

Example 5 (Compression benefit). Figure 3.a shows
a sequence S in the uncompressed form and Figure 3.b shows
the current form of S. Assume that the instance of w = abc
at positions 1, 2, 4 is already compressed. Consider two in-
stances of abc in the uncompressed part of S:

1. S1(w) = (a, 3)(b, 5)(c, 7): the cost to replace this in-
stance by a pointer is equal to the sum of the cost to
encode the reference to the previous encoded instance
of abc |E(1)| plus the cost of gaps |E(2)|+ |E(2)|. The
cost of representing this instance in an uncompressed
form is |E(2)| + |E(3)| + |E(3)|. Therefore the com-
pression benefit of using this instance to encode the se-
quence is B(S1(w)) = |E(2)|+|E(3)|+|E(3)|−|E(1)|−
|E(2)| − |E(2)| = 3 bits.

2. S2(w) = (a, 3)(b, 6)(c, 8): the compression benefit of
using S2(w) to encode the sequence is calculated in a
similar way: B(S2(w)) = |E(2)| + |E(1)| + |E(1)| −
|E(1)| − |E(3)| − |E(2)| = −3 bits.

In order to ensure that every symbol of the sequence is
encoded, the next instance considered for encoding has to
start at the first non-encoded symbol of the sequence. There
maybe many instances of w in S that start with the first non-
encoded symbol of S, denote S∗(w) = argmaxS(w)B(S(w))
as the one that results in the maximum compression ben-
efit. We call S∗(w) the best match of w in S. Given a
dictionary, the encoding function depicted in Algorithm 2
first goes through the dictionary and finds the best match
starting at the next uncompressed character of every dictio-
nary word in the sequence S (line 4). Among all the best
matches, it greedily chooses the one that results in the max-
imum compression benefit (line 6).

For any given dictionary word w = a1a2 · · · ak, the most
important subroutine of Algorithm 2 is to find the best
match S∗(w). This problem can be solved by creating a
directed acyclic graph G(V,E) as follows:

1. Initially, V contains a start node s and an end node e

2. For every occurrence of ai at position p in S, add a
vertex (ai, p) to V

3. Connect s with the node (a1, p) by a directed edge
and add to that edge a weight value equal to |E(g1)|−
|E(g)|.

4. Connect every vertex (ak, p) with e by a directed edge
with weight 0.

5. For all q > p connect (ai, p) to (ai+1, q) by a directed
edge with weight value |E(gi+1)| − |E(q − p)|

Algorithm 2 encode(S)

1: Input: a sequence S and dictionary D = w1w2 · · ·wN
2: Output: the word w that starts at the first non-encoded

symbol gives the most additional compression benefit
3: for i = 1 to N do
4: S∗(wi) = bestmatch(S,wi)
5: end for
6: max = argmax iB(S∗(wi))
7: Return wmax

59

S (a,3) e

(b,5)

(b,6)

(c,7)

(c,8)

0

0

|E(2)|-|E(1)|=3 bits

|E(3)|-|E(2)|=0

|E(1)|-|E(3)|=-3

|E(3)|-|E(2)|=0

|E(3)|-|E(1)|=3

|E(1)|-|E(3)|=-3

|E(1)|-|E(2)|=-3

Figure 4: A directed acyclic graph created from the
instances of abc in the uncompressed part of S shown
in Figure 3.b

Theorem 2. The best match S∗(w) corresponds to the
directed path from s to e with the maximum sum of the weight
values along the path.

The proof of theorem 2 is trivial since any instance of w
in S corresponds to a directed path in the directed acyclic
graph and vice versa. The sum of the weights along a di-
rected path is equal to the benefit of using the corresponding
instance of w to encode the sequence. Finding the directed
path with maximum weight sum in a directed graph is a
well-known problem in graph theory. That problem can be
solved by a simple dynamic programming algorithm in linear
time of the size of the graph, i.e. O(|S|2)[12].

Example 6 (The best match in a graph). Figure 4
shows the directed acyclic graph created from the instances of
abc in the uncompressed part of S shown in Figure 3.b. The
best match of abc corresponds to the path s(a, 3)(b, 5)(c, 7)e
with the maximum sum of weights equal to 3 bits.

It is important to notice that in order to evaluate the
compression benefit of a dictionary word, Equation 1 only
requires bookkeeping the position of the most recent encoded
instance of the word. This is in contrast to the offline encod-
ings used in recent work [2, 3, 7] in which the bookkeeping
of the word usage and the gaps cost is a must. When a new
instance of a word is replaced by a pointer, the relative usage
and the codewords of all dictionary words also change. As a
result, the compression benefit needs to be recalculated by a
pass through the dictionary. This operation is an expensive
task when the dictionary size is unbounded.

5.2 Dictionary extension:
Initially, the dictionary contains all singletons; it is itera-

tively expanded with the locally best words. In each step,
when the best match of a dictionary word has been found,
Zips extends the best match with one extra character and
adds this extension to the dictionary. There are different
options to choose the character for extension. In this work,
Zips chooses the next uncompressed character right after the
word. The choice is inspired by the same extension method
suggested by the Lempel-Ziv compression algorithms.

Moreover, there is another reason behind our choice. When
w is encoded for the first time, the reference to the previous
encoded instance of w is undefined although the word has
been already added to the dictionary. Under that circum-
stance, we have to differentiate between two cases: either a
reference to an extension or to an encoded word. To achieve
this goal one extra flag bit is added to every reference. When
the flag bit is equal to 1, the reference refers to an exten-
sion of an encoded word. Otherwise, it refers to an encoded

ab c abc abc

𝑔1 𝑔2 𝑡0 𝑡1 𝑡2

1E(g1) 0E(g2)

Figure 5: An example of word is extended and en-
coded the first time and the second time. One extra
flag bit is added to every reference to differentiate
two cases.

word. When the former case happens by extending the word
with the character right after it, the decoder always knows
where to find the last character of the extension. When a
word is added to a dictionary all of its prefixes have been
already added to the dictionary. This property enables us
to store the dictionary by using a prefix tree.

Example 7. Figure 5 shows the first moment t0 when
the word w = abc is added to the dictionary and two other
moments t1 and t2 when it is used to encode the stream. At
t1, the flag bit 1 is used to notify the decoder that the gap g1
is a reference to an extension of an encoded word, while at
t2 the decoder understands that the gap g2 is a reference to
the previous encoded instance of w.

References to extensions may cause ambiguous references.
For instance, a potential case of ambiguous reference called
reference loop is discussed in the following example:

Example 8 (reference loops). At time point t0 the
word w = ab at positions p1p2 is extended by c at position
p3. Later on at another time point t1 > t0, another instance
of abc at q1q2q3 (q1 > p1) refers back to the instance abc at
p1p2p3. At time point t2 > t1, another instance of abc at
r1r2p3 (r1 > q1) refers back to the instance abc at q1q2q3.
In this case, c at p3 and c at q3 refers to each other forming
a reference loop.

Reference loops result in ambiguity when we decode the
sequence. Therefore, when we look for the next best matches,
in order to avoid reference loops, we always check if the new
match incurs a loop. The match that incurs a loop is not
considered for encoding the sequence. Checks for ambiguity
can be done efficiently by creating paths of references. Ver-
tices of a reference path are events in the sequence. Edge
between two consecutive vertices of the path corresponds to
a reference between the associated events. Since the total
sizes of all the paths is at most the sequence length, its is
cheap to store the paths for a bounded size sequence. More-
over, updating and checking if a path is a loop can be done
in O(1) if vertices of the path are stored in a hashmap.

Example 9 (reference paths). The references paths
of the encoding in Example 8 are: (a, r1) 7→ (a, q1) 7→ (a, p1),
(b, r2) 7→ (b, q2) 7→ (b, p2) and (c, p3) 7→ (c, q3) 7→ (c, p3).
The last path is a loop.

5.3 Dictionary update:
New extensions are added to the dictionary until the dic-

tionary exceeds memory limit. When it happens the space-
saving algorithm is used to evict unpromising words from the
dictionary. The space-saving algorithm [10] is a well-known

60

Algorithm 3 update(w∗)

1: Input: a word w∗ and dictionary D =
{w1, w2, · · · , wN}

2: Output: the dictionary D
3: m← |i : wi is a non-singleton|
4: v = argminiwi[1] and v is non-singleton at a leaf of the

prefix-tree
5: if m > M and w∗ 6∈ D then
6: D = D \ {v}
7: w∗[1] = w∗[2] = v[1]
8: D = D

⋃
{w∗}

9: else if w∗ 6∈ D then
10: w∗[1] = w∗[2] = 0
11: D = D

⋃
{w∗}

12: else
13: add additional compression benefit to w∗[1]
14: end if
15: Return D

0E+0

3E-2

6E-2

9E-2

1E-1

2E-1

1E+5 3E+5 5E+5 7E+5 9E+5

The number of sequences

Tweets average update time

0E+0

5E+4

1E+5

1E+5 3E+5 5E+5 7E+5 9E+5

Ti
m

e
 (

se
co

n
d

s)

The number of sequences

Tweets running time

Figure 6: The running time and the average up-
date time per sequence of the Zips algorithm in the
Tweets dataset when the stream size increases. Zips
scales linearly with the size of the stream.

method proposed for finding the most frequent items in a
stream of items given a budget on the maximum memory.
In this work, we propose a similar space-saving algorithm to
keep the number of non-singleton words in the dictionary at
below a predefined number M while it can be able to return
the set of compressing patterns with high accuracy.

The algorithm works as follows, for every non-singleton
word w it maintains a counter with two fields. The first field
denoted as w[1] contains an over-estimate of the compres-
sion benefit of w. The second field denoted as w[2] contains
the compression benefit of the word with least compression
benefit in the dictionary at the moment that w is inserted
into the dictionary.

Every time when a word w is chosen by Algorithm 2 to
encode its best match in the sequence St, the compression
benefit of the word is updated. The word w is then extended
to w∗ with an extra character by the extension subroutine.
In its turn, Algorithm 3 checks if the dictionary already con-
tains w∗. If the dictionary does not contains w∗ and it is
full with M non-singleton words, the least compressing word
v resident at a leaf of the dictionary prefix-tree is removed
from the tree. Subsequently, the word w∗ is inserted into
the tree and its compression benefit can be over-estimated
as w[1] = w[2] = v[1]. The first counter of every word
is always greater than the true compression benefit of the

Figure 7: Running time (x-axis) against the data
size (y-axis) of three algorithms in log-log scales.
The Zips algorithm scales linearly with the data size
while the GoKrimp and the SQS algorithm scales
quadratically with the data size.

words. This property ensures that the new emerging word
is not removed very quickly because its accumulated com-
pression benefit is dominated by long lasting words in the
dictionary. For any word w, the difference between w[2]
and w[1] is the actual compression benefit of w since the
moment that w is inserted into the dictionary. At anytime
point when we need to find the most compressing patterns,
we compare the value of w[2] − w[1] and select those with
highest w[2] − w[1]. In section 6 we show empirical results
with different datasets that this algorithm is very effective
in finding the most compressing patterns with high accuracy
even with limited memory.

6. EXPERIMENTS
We perform experiments with one synthetic dataset with

known ground truth and two real-world datasets. Our im-
plementation of the Zips algorithm in C++ together with
the datasets are available for download at our project web-
site2. All the experiments were carried out on a machine

2www.win.tue.nl/~lamthuy/zips.html

61

with 16 processor cores, 2 Ghz, 12 GB memory, 194 GB
local disk, Fedora 14 / 64-bit. As baseline algorithms, we
choose the GoKrimp algorithm [2, 3] and the SQS algorithm
[7] for comparison in terms of running time, scalability, and
interpretability of the set of patterns.

6.1 Data
Three different datasets are:

1. JMLR: contains 787 abstracts of articles in the Jour-
nal of Machine Learning Research. English words are
stemmed and stop words are removed. JMLR is small
but it is considered as a benchmark dataset in the re-
cent work [2, 3, 7]. The dataset is chosen also because
the set of extracted patterns can be easily interpreted.

2. Tweets: contains over 1270000 tweets from 1250 dif-
ferent twitter accounts3. All tweets are ordered as-
cending by timestamp, English words are stemmed
and stop words are removed. After preprocessing, the
dataset contains over 900000 tweets. Similar to the
JMLR dataset, this dataset is chosen because the set
of extracted patterns can be easily interpreted.

3. Plant: is a synthetic dataset generated in the same
way as the generation of the plant10 and plant50 dataset
used in [7]. The plant10 and plant50 are small so we
generate a larger one with ten patterns each with 5
events occurs 100 times at random positions in a se-
quence with length 100000 generated by 1000 indepen-
dent noise event types.

6.2 Running time and Scalability
Figure 6 plots the running time and the average update

time per sequence of the Zips algorithm in the Tweets dataset
when the data stream size (the number of sequences) in-
creases. Three different lines correspond to different max-
imum dictionary size settings M = 1000, M = 5000 and
M = 10000 respectively. The results show that the Zips
algorithm scales linearly with the size of the stream. The
average update time per sequence is constant given a maxi-
mum dictionary size setting. For example, whenM = 10000,
Zips can handle one update in about 20-100 milliseconds.

Figure 7 shows the running time in y-axis of the Zips
algorithm against the stream size in x -axis in the Tweets
dataset when the maximum dictionary size is set to 1000. In
the same figure, the running time of the baseline algorithms
GoKrimp and SQS are also shown. There are some missing
points in the results corresponding to the SQS algorithm
because we set a deadline of ten hours to get the results
corresponding to a point. The missing points corresponding
to the cases when the SQS program did not finish in time.

In the log-log scale, running time lines resemble straight
lines. This result shows that the running time of Zips,
GoKrimp and SQS is the power of data size, i.e. T ∼ α|S|β .
Using linear fitting functions in log-log scale we found that
with the Zips algorithm β = 1.01, i.e. Zips scales linearly
with the data size. Meanwhile, for the SQS algorithm the
exponent is β = 2.2 and for the GoKrimp algorithm the ex-
ponent is β = 2.01. Therefore, both GoKrimp and SQS do
not scale linearly with the data size and hence they are not
suitable for data stream applications.

3http://user.informatik.uni-goettingen.de/~txu/
cuckoo/dataset.html

6.3 JMLR
In Figure 8, we show the first 20 patterns extracted by

two baseline algorithms GoKrimp and SQS and the Zips al-
gorithm from the JMLR dataset. Three lists are slightly
different but the important patterns such as “support vector
machine”, “data set”, “machine learn”, “bayesian network”
or “state art” were discovered by all of the three algorithms.
This experiment confirms that the Zips algorithm was able
to find important patterns that are consistent with the re-
sults of state-of-the-art algorithms.

6.4 Tweets
Since the tweet dataset is large, we schedule the programs

so that they terminate their running after two weeks. The
SQS algorithm was not able to finish its running before the
deadline while GoKrimp finished running after three days
and Zips finished running after 35 hours. The set of pat-
terns extracted by the Zips algorithm and the GoKrimp al-
gorithm are shown in Figure 9. Patterns are visualized by
the wordcloud tool in R such that more important patterns
are represented as larger words. In both algorithms, the
sets of patterns are very similar. The result shows the daily
discussions of the 1250 twitter accounts about the topics re-
garding “social media”, “Blog post’, about “youtube video”,
about “iphone apps”, about greetings such as “happy birth-
day”, “good morning” and “good night”, about custom ser-
vice complaint etc.

6.5 Plants
It has been shown [7] that SQS successfully returned all

ten patterns. We obtain the same result with GoKrimp
and Zips. All three algorithm ranked 10 true patterns with
highest scores.

7. CONCLUSIONS AND FUTURE WORK
In this paper we studied the problem of mining compress-

ing patterns from a data stream. A new encoding scheme
for sequence is proposed. The new encoding is convenient
for streaming applications because it allows encoding the
data in an online manner. Because the problem of mining
the best set of patterns with respect to the given encoding is
shown to be unsolvable under the streaming context, we pro-
pose a heuristic solution that solves the mining compressing
problem effectively. In the experiments with one synthetic
dataset with known ground-truths Zips was able to extract
the most compressing patterns with high accuracy. Mean-
while, in the experiments with two real-world datasets it
can find patterns that are similar to the-state-of-the-art al-
gorithms extract from these datasets. More importantly, the
proposed algorithm was able to scale linearly with the size
of the stream while the-state-of-the-art algorithms were not.
There are several options to extend the current work. One
of the most promising future work is to study the problem
of mining compressing patterns for different kinds of data
stream such as a stream of graphs.

8. REFERENCES
[1] Hong Cheng, Xifeng Yan, Jiawei Han, Philip S. Yu:

Direct Discriminative Pattern Mining for Effective
Classification. ICDE 2008: 169-178

[2] Hoang Thanh Lam, Fabian Moerchen, Dmitriy Fradkin,
Toon Calders: Mining Compressing Sequential Patterns.
SDM 2012: 319-330

62

Method Patterns

SQS

support vector machin
machin learn
state art
data set
bayesian network

larg scale
nearest neighbor
decis tree
neural network
cross valid

featur select
graphic model
real world
high dimension
mutual inform

sampl size
learn algorithm
princip compon analysi
logist regress
model select

GOKRIMP

support vector machin
real world
machin learn
data set
bayesian network

state art
high dimension
reproduc hilbert space
larg scale
independ compon analysi

neural network
experiment result
sampl size
supervis learn
support vector

well known
special case
solv problem
signific improv
object function

Zips

support vector machin
data set
real world
learn algorithm
state art

featur select
machine learn
bayesian network
model select
optim problem

high dimension
paper propose
graphic model
larg scale
result show

cross valid
decis tree
neutral network
well known
hilbert space

Figure 8: The first 20 patterns extracted from the JMLR dataset by two baseline algorithms GoKrimp and
SQS and the Zips algorithm. Common patterns discovered by all the three algorithms are bold.

Figure 9: The top 20 most compressing patterns extracted by Zips (left) and by GoKrimp (right) from the
Tweets dataset.

[3] Hoang Thanh Lam, Fabian Moerchen, Dmitriy Fradkin,
Toon Calders: Mining Compressing Sequential Patterns.
Accepted for publish in Statistical Analysis and Data
Mining, A Journal of American Statistical Association,
Wiley.

[4] Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes:
Krimp: mining itemsets that compress. Data Min.
Knowl. Discov. 23(1): 169-214 (2011)

[5] Peter D. Grünwald The Minimum Description Length
Principle MIT Press 2007

[6] L. B. Holder, D. J. Cook and S. Djoko. Substructure
Discovery in the SUBDUE System. In Proceedings of the
AAAI Workhop on Knowledge Discovery in Databases,
pages 169-180, 1994.

[7] Nikolaj Tatti, Jilles Vreeken: The long and the short of
it: summarising event sequences with serial episodes.
KDD 2012: 462-470

[8] Ian H. Witten, Alistair Moffat and Timothy C. Bell
Managing Gigabytes: Compressing and Indexing

Documents and Images, Second Edition. The Morgan
Kaufmann Series in Multimedia Information and
Systems. 1999

[9] Thomas M. Cover and Joy A. Thomas. Elements of
information theory. Second edition. Wiley Chapter 13.

[10] Ahmed Metwally, Divyakant Agrawal, Amr El
Abbadi: Efficient Computation of Frequent and Top-k
Elements in Data Streams. ICDT 2005: 398-412

[11] James A. Storer. Data compression via textual
substitution Journal of the ACM (JACM) 1982

[12] Cormen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford Introduction to Algorithms
(2nd ed.). MIT Press and McGraw-Hill

63

