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ABSTRACT 
We present Lytic, a domain-independent, faceted visual analytic 
(VA) system for interactive exploration of large datasets. It 
combines a flexible UI that adapts to arbitrary character-separated 
value (CSV) datasets with algorithmic preprocessing to compute 
unsupervised dimension reduction and cluster data from high-
dimensional fields. It provides a variety of visualization options 
that require minimal user effort to configure and a consistent user 
experience between visualization types and underlying datasets.  
Filtering, comparison and visualization operations work in 
concert, allowing users to hop seamlessly between actions and 
pursue answers to expected and unexpected data hypotheses.  

Categories and Subject Descriptors 
H.4.2 [Information Systems]: Types of Systems–Decision Support 

General Terms 
Design, Human Factors 

Keywords 
Visual analytics, scientific intelligence, infovis 

1. INTRODUCTION 
General-purpose data analysis tools—spreadsheets—were at the 
forefront of the personal computer revolution in the late 1970s and 
early 1980s.  As a so-called "killer app" that showcased PC utility, 
the benefits of digitized data helped to drive widespread corporate 
adoption of personal computing [7].  In the 2010s, the wide 
availability of large amounts of data from a variety of sources has 
shown the potential for a similar revolution centered on data, and 
more importantly the knowledge that can be extracted from it by 
algorithms and human ingenuity. 

And yet, there are relatively few general-purpose tools for such 
large-scale data analysis, particularly for exploratory purposes.  
Broadly, visual analytics addresses this problem through the 
synthesis of sophisticated computational algorithms with human 
initiative, and especially our high-functioning visuospatial 
perception capabilities.  

This paper presents Lytic (from the word Analytic), a flexible, 

domain-independent visual analytic (VA) system for interactive 
exploration of large datasets. Its design focuses on facilitating key 
data analysis tasks that occur across disciplines: filtering, 
transformation, comparison, and visualization. Data can be 
formatted in convenient (character-delimited flat files) formats, 
with the UI adapting to the data characteristics (# of items, data 
types, etc.).  Users create visualizations (scatter plots, line charts, 
parallel coordinates, etc.) simply by choosing variables from 
dropdown lists. 

Lytic also integrates dimension reduction and clustering  (DR/C) 
algorithms to facilitate analysis of high-dimensional data (e.g., 
text document term frequencies). It thus contributes to the 
literature a scalable system suitable for domain experts (rather 
than visualization or algorithm experts) to explore a wide variety 
of datasets1. 

2. RELATED WORK 
Several related lines of research have informed the Lytic system. 
Faceted classification is a library science concept derived from 
colon classification [24], which in turn has been independently 
replicated in database systems (cf. dimensional modeling [19]) 
and information visualization (e.g., in the Attribute Explorer [26]). 
Its core concept is that of classifying items of interest along 
multiple independent axes, allowing more powerful and 
descriptive classifications than strict hierarchical organizations. 
When implemented in software, this pattern (which is both a UI 
and a data model pattern) is commonly referred alternately as 
faceted search, browsing, or navigation.  
This design pattern has also become common in e-commerce 
sites, for example: customers can browse for clothes by filtering 
or comparing available items based on their size, style, color, 
price, manufacturer, etc.  Because users can easily determine what 
characteristics (or facets) are available and hop between them to 
perform filters, this method has proven to be powerful, flexible 
and user-friendly to a wide audience. This commercial popularity 
was preceded by their use in many research systems [5,30,31].  
Notably, faceted UI systems commonly display information about 
the values within each facet (e.g., the number of items matching a 
given category) and dynamically update it with successive queries 
[12]. 

There has long been recognition of the importance of the 
exploratory search and its distinction from targeted information 
seeking [22]. Information visualization (infovis) systems in 
particular are concerned with that distinction, as much of their 
value comes not just from allowing users to answer specific 
questions, but from harder-to-quantify attributes such as allowing 
                                                                    
1 A 64-bit windows binary release is publicly available from 

http://tmt.gtri.gatech.edu/lytic.html 
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users to ask better questions, or prompting users to ask questions 
they did not know they had in the first place [14]. 

Because software must first be derived from some implicit or 
explicit set of requirements, infovis work has therefore been 
concerned with the difficult question of what kind of end-user 
tasks it should support in order to help users achieve ill-defined, 
mutable, vague goals.  One of the best known is Shneiderman’s 
Visual Information Seeking mantra: “Overview first, zoom and 
filter, then details-on-demand” [25].  While the mantra concerns 
software, other work in both the infovis and VA communities 
characterizes the nature of both high- and low-level human 
activities and goals (Yi et al. provide a recent survey [32]).  But 
informally, such activities include data filtering, comparisons, 
transformation, and visualization. 
Infovis and VA systems have sought to support these kinds of 
tasks implicitly or explicitly in general-purpose analysis tool. 
Systems like Jigsaw [27], Apolo [8], and IN-SPIRE [29] all 
provide varying levels of support for these kinds of tasks in 
service of exploratory search goals.  The overlapping domain of 
data warehousing within the database community also contributes 
to this space and commonly refers to these kinds of tools as a part 
of a business intelligence software environment. 

Polaris [28] and its commercial successor Tableau exemplify this 
type of work, extending the Excel pivot table concept to provide a 
wide variety of filtering and visualization capabilities for arbitrary 
data. TIBCO Spotfire also began as an academic work [1] before 

becoming a commercial products. Many other purely commercial 
products also exist, such as SAS JMP, Pentaho, and many others. 

DBMS-centric visualization environment tools generally act as an 
SQL abstraction layer, reducing the amount of programming 
expertise required. The Tioga-2 visualization environment [2] was 
an early example of providing a programming abstraction (boxes-
and-arrows) specifically for visualization purposes. Zloof 
proposed a rendering-by-example [20] environment (building off 
his well-known query-by-example work [33]) that would allow 
users to build interactive renderings via a direct manipulation 
style interaction.  More recent system include specialized designs 
such as building queries within a radial visualization [13] and 
querying electronic health record (EHR) data [15]. 

Influential infovis systems often employ brushing and linking 
interaction facilities to assist interactive exploration. The attribute 
explorer [26] consists of a set of linked histograms that show the 
distribution of the dataset  along many dimensions, and 
dynamically update with filtering operations. Brushing 
scatterplots [4] visualize multidimensional data by forming a 
scatterplot matrix of arbitrarily many dimensions, and 
dimensional relationships can be explored by brushing items in 
the visualization.  Both of these systems tightly couple a particular 
visualization technique with data exploration (filtering, 
comparison, interaction) actions: in contrast, Lytic decouples such 
operations from the visualization because 1) as the number of 
dimensions grows large, such small multiples-style approaches 

Figure 1. Lytic, showing data from historical U.S. baseball statistics:  data filters (A) are assembled from the data at left; the active 
visualization (B) is at right.  Filter choices update the active visualization and the choices available in other filter widgets.  Inset 
(C) shows detail of a filter for the nominal variable Bats indicating a player’s handedness.   The view shows the number of home 

runs hit by players over time, configured by the common view controls (D). 
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become problematic and 2) it allows for operations on dimensions 
that are not being visualized. 

Other systems have approached data exploration and visual 
analytics from a more algorithmic perspective, using machine 
learning or other data mining-oriented computation. The 
FODAVA Testbed system provides a library of old and new 
dimension reduction and clustering algorithms and provides a 
visualization environment to evaluate their performance on 
different datasets [10].  The VisIRR system uses the same library 
to implement a system for dynamic exploration of large-scale 
document corpora [9]. 

Lytic is distinct from previous work in two ways.  First, it 
approaches its UI design from a faceted navigation rather than a 
RDBMS or pivot table orientation.  Second, it directly integrates a 
scalable, general-purpose data exploration-and-visualization tool 
with algorithmic (DR/C) preprocessing. 

3. DESIGN 
Lytic is based on the data analysis component of a modeling and 
simulation management framework [11], and thus its origins are 
in analyzing large, high-dimensional simulation datasets for 
scientific and engineering applications.  As a result, we think of it 
as a sort of scientific intelligence tool, complementing the existing 
business intelligence tools.  It is implemented in C++ using the Qt 
framework, which provides the ability to compile a desktop 
application for Windows, Linux and OS/X. 

As such, Lytic is designed as a generic data analysis tool to 
support common analytic activities that exist across application 
domains (e.g., filter, compare, transform, visualize). Its design 
imperative is to make common tasks as easy and fast as possible 
to complete, while providing facilities for more complex 
exploration through extension and customization.  The focus on 
optimizing common tasks accelerates the human-in-the-loop 
analytic cycle, providing more opportunities for opportunistic and 
goal-driven insights.  

Figure 1 shows the high-level organization of the tool, which is 
populated by an initial data ingest and processing step. Data 
filter widgets, which are created for each facet/dimension, are 
grouped at left. Data view choices (e.g., scatterplot visualization) 
at right.  Filter operations update the backing data model, which 
is structured as a SQLite database, and in turn update the data 
view as well as other filters.  Data comparisons notify the view 
that it should provide a partitioning of its representation along 
some dimension.  The user may perform several types of data 
transformations on the data, including unit conversions and 
customized formulations of new variables. The following sections 
provide details of each of these topics. 

3.1 Data Ingest and Processing 
In keeping with this lowest-common-denominator support, Lytic 
reads row/column-oriented character-separated value (CSV) files. 
The convention used by Lytic and this paper is to treat columns as 
data dimensions or variables, and rows as distinct data items. A 
key component of Lytic is the integration of the algorithmic suite 
developed for the FODAVA testbed [10], which provides a 
variety of dimension reduction and clustering algorithms2.  An 
end user can specify one or more algorithms to selected 

                                                                    
2  The FODAVA suite includes newer techniques like linear 

discriminant analysis (LDA) and non-negative matrix 
factorization (NMF) as well as older algorithms like principal 
component analysis (PCA) or K-means clustering. 

dimensions so that the use can leverage the algorithms to better 
analyze the data or use the tool to analyze the algorithms 
themselves.  For very high-dimensional data (to us, more than 
~1000 dimensions), the user can also augment the main data file 
with sparse matrix syntax auxiliary (high-dimensional data can 
also be specified in the CSV file).  
Integrating DR/C algorithms directly helps analysts deal with 
high-dimensional data more effectively, which often occurs from 
automated processing of some source data, such as term 
frequencies in document data or image characteristics. DR/C 
algorithms thus summarize those dimensions efficiently, reducing 
the complexity of the data space for the analyst. 

High-cardinality data (i.e., large number of data items/rows) also 
presents a scalability challenge for most DR/C algorithms, which 
are commonly O(N2) or worse in processing time, memory space, 
or both. Lytic is intended as an interactive end-user tool on 
commodity PC hardware, so it is important that ingest and load be 
limited to a reasonable amount of time—for us, a few minutes in 
the common case and no more than a few hours.  As such, “high-
cardinality” is a relative term for DR/C scalability; we have found 

Figure 2.  Three filter widgets for scalar data, which use 
double-ended sliders rather than checkboxes and render 
visualizations of the data distribution for that variable. 

Actions which would yield no data are disabled (Bats = ‘B’). 
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on modern laptop processors with SSD storage and 8-16 GB 
RAM this threshold to be ~2000 items. 

Lytic itself can scale 2-3 orders of magnitude larger (see the 
following section), so we attempt to deal with this disparity by 
sampling and interpolation [3]: we randomly select a designated 
number (1000 by default) of rows and use only that data as input 
to the DR/C algorithms. Those results are then extrapolated to the 
extra-sample data items. 

3.2 Data Model 
The Lytic data model is similar to that of many OLAP-style tools.  
The combined CSV and synthesized DR/C data are imported into 
a single SQLite table, trading space efficiency for speed. All 
columns are indexed.  This monolithic construction deviates from 
data warehousing and previously-described norms [12] because 
Lytic was initially targeted at scientific datasets with largely 
numeric, non-hierarchical data.  

We define the data scope as the items/rows in the data model that 
have not been filtered out (see the following section):  initially, all 
data are in scope. Filter operations are essentially SQL query 
generators the successively limit the scope of the data to smaller 
subsets. Since all columns are indexed, queries are executed 
efficiently, and become more efficient the more filters are put in 
place since the scope is necessarily reduced.  Fields generated by 
DR/C algorithms are treated as any other filter, thus integrating 
synthetic and first-order characteristics of data items. 

Lytic’s scalability is dependent on the memory and speed of the 
user’s workstation as well as the nature of the test data (the type 
and number of variables).  On modern workstation-level hardware, 
we have found practical limits with reasonable interaction rates 
[6] to be between 100,000 and 1 million items with up to about 
300 dimensions (after dimension reduction). 

Lytic maintains a clean separation (with one minor exception, see 
§3.5) between its model and view, so other SQL implementations 
can easily replace the current Sqlite implementation (e.g., a 
column-oriented store like MonetDB), or even replaced by a non-
SQL alternative. 

3.3 Data Filtering and Comparison 
Lytic’s interaction design is focused on minimizing actions 
necessary to accomplish common operations: filtering, comparing, 
and visualizing. A faceted navigation-style UI makes as much 
data visible as possible and removing opportunities to make 

unproductive choices.  Streamlining these operations reduces the 
barriers to iterative investigation through visual hypothesis testing 
and analysis. Filtering operations are accomplished by single 
actions: clicking a checkbox or dragging a slider handle. Dragging 
a slider handle dynamically queries the data view (subject to 
performance constraints). 

Lytic forms a filter UI element for each field/column in the data 
model adapted to the nature of the data in the field: high-variation 
numeric data use a slider GUI element; nominal and low-variation 
scalars have a series of checkboxes (cf. Figure 1 inset) with 
parenthetical values indicating the number of data items matching 
that filter value.  In Figure 1, there are 7037 B (baseball players 
who hit with Both hands) players—many fewer than either Left or 
Right handed players. 

For numeric (scalar) data, basic statistics (mean, std. dev., count) 
are calculated about the variable distribution. If there are 
sufficient distinct values, the UI includes a double-ended slider 
element to make range-based filters and renders a simple 
visualization of the data distribution). Blue marks indicate items 
that are in scope; black marks have been filtered out. Figure 2 
shows three scalar filters (and one nominal); the user has filtered 
out all items with Weight greater than 135 and Birth Year greater 
than 1899, so all marks above those values are black in their 
respective distribution visualizations. However, there are black 
marks in the height filter as well, indicating how the filters from 

Figure 3.  Comparison of split scatterplot (top) and line chart 
(bottom) views. 
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one variable affect the distribution of data in another: as one 
might expect, lightweight players born in the 19th century are 
relatively short.  Furthermore, the user is prevented from making 
unproductive UI choices: there are no switch hitting players left in 
scope, so the B value in the Bats filter is disabled. 

The Split operator—available on nominal filters—compares data 
by partitioning it on the filter values. Data views are responsible 
for visualizing the comparison as appropriate for each view type 
(see Figure 3 and the following section). 

3.4 Data Views 
A data view is a fundamentally a method of mapping data to the 
characteristics of a visual glyph.  We term these characteristics 
slots, similar to the Polaris/Tableau shelf concept).  Examples of 
glyph slots are the two position dimensions of a mark on an X/Y 
Cartesian coordinate system, a mark’s color, size, orientation, etc.  
Thus, a data view is described by how glyph characteristics are 
used in the data mapping, and a user creates a specific view 
instantiation by choosing what actual data to map to those slots.  
Lytic is currently limited to a single view at a time, and there are 
currently no brushing operations from the view to filter widgets. 
The lack of brushing operations is due to computational obstacles: 
recent work shows promise for scalable brushing using 
precomputed “data tiles”, but even so scales only to modest 
numbers of dimensions [21]. 

All data views reflect current filters and splits.  Views only 
display data within the current filter scope, and any split 
comparisons are handled in a view-appropriate manner:  line 
charts use color to denote different split values within the same 
chart (cf. Figure 3, top), while scatter plots display multiple 
instances of the view with the distinct data partitions (cf. Figure 3, 
bottom).  The latter allows the easy construction of small multiple 
views of the dataset. There are currently five major view types 
implemented:  scatterplots, line charts, bar charts, parallel 
coordinates [16], and a tabular data view, with polar variants of 
the scatter and line charts.   

For example, the Lytic scatterplot view can map data to the glyph 
X/Y position, color and size; a user defines a specific scatter plot 
view by selecting variables from her dataset to map to each slot:  
time to the X-axis; distance to the Y-axis, etc.  Other views have 
fewer (e.g., line chart has only X and Y axis slots) or different 
slots (the parallel coordinates view has a dynamic number of slots, 
all for parallel Y axes). 

Different slots have different properties: scalar-only slots can be 
inverted or log-scaled; some have custom transformations (e.g., 
color mapping); some views have dynamic slots that can be added 
or removed. All data views list what slots are used at the top of 
the visualization area, and within each slot a drop-down list of 
variables is available to choose which to map to that slot.  Thus, to 

Figure 4.  Plot slot detail view.  Different slots have different options, and variable selection dropdowns are populated only with 
appropriate types. 
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create a new visualization, the user simply selects the desired 
variable from the list, and the view updates with the new data. 

Only valid selections are shown or allowed from the view drop-
down boxes: variables that are not the appropriate data type for a 
slot (e.g., nominal variables for a numeric axis) are not included.  
Some slots are aggregate, meaning the view will combine 
multiple data points (grouping by the same value the non-
aggregate slots in that view); for those slots a second drop-down 
box is shown with the available aggregate functions (e.g., mean, 
standard deviation, etc.). 
In Figure 4, the user has already selected to visualize Year vs. CG 
(Complete Games), and is preparing to make a selection for the 
Color slot. Variables such as Team or League are not present 
since they are nominal.  As the user makes selections in the slots, 
the view updates immediately; the current view shows that over 
time, the number of pitcher Complete Games has decreased 
dramatically.  If the user selects W (Wins) from the dropdown, 
she could investigate if the number of Complete Games is 
correlated with Wins in some way. 

3.5 Data Transformation 
Other analysis capabilities include data transformations via 
automated unit conversions, creating new computed variables, and 
custom analysis via a simple plugin API.  Unit conversions are 
specified in an XML file containing relevant units and conversion 
factors.  In the data ingest step, the user can specify units for a 
variable, and any valid conversions are automatically presented 
within the filter widgets. Users can also set global preferences for 
metric or imperial unit systems, and any non-conforming units 
will be transformed. 
New computed variables can be created by the Bin dialog (which 
bins scalar variables per user input) or in the more general case, 
arbitrary SQL formulas using existing variables (this is the only 
Lytic feature that directly exposes the SQL data model 
underpinnings). 

Lytic can be configured to launch external programs (“data 
handlers”), passing any subset of the current data scope (as a file) 
for customized analysis.  Data is selected from the active view 
(e.g., lasso-selecting scatterplot points, or selecting rows in the 
tabular view), and a right-click context menu shows all available 
handlers.  A built-in default shows the entire record for each 
selected data item, but generally the fields can be processed for 
any purpose. For example, a handler could read the contents of a 
file path that contains 3D scene data and render it, or could 
implement a customized statistical analysis with an R script. 

4. USAGE SCENARIO 
To illustrate Lytic’s end-to-end utility, we provide a high-level 
usage scenario prior to providing more details on system design 
and implementation. Sports data analysis is an interesting domain 
for visual analytics that has seen some recent attention [23], 
providing motivated users (fans, teams, and media) and a rich set 
of qualitative and quantitative data.  

4.1 Narrative 
Consider the perspective of a writer, Sally, doing research for a 
book on the general history and evolution of the game of baseball.  
She is aware of the Lahman Baseball Archive3, which contains 
pitching, batting, fielding, managerial, and other statistics from 
U.S. professional baseball.  
Sally starts Lytic and selects the Teams CSV file from the several 
dozen different collations in the archive, which she assumes has 
summary statistics from each team season. Aside from general 
research, she is interested in seeing if a machine learning tool can 
suggest any interesting new ways of categorizing or looking at 
historical teams, so she also adds a K-Means clustering and a PCA 
(principal component analysis) dimension reduction algorithm in 
the load dialog using the default parameters (10 clusters and 2 
dimensions, respectively). 

Lytic processes the data and presents the initial view of the team 

                                                                    
3 http://www.seanlahman.com/baseball-archive/statistics/ 

Figure 6.  PCA visualization of baseball team statistics. 

Figure 5. The same view as Figure 6, but with color mapped to 
Wins instead of cluster label.  The user has selected a group of 

items in the lower left (bold blue items). 

Figure 7.  Same view as Figure 6 and Figure 5, but with a 
filter in place for seasons 1900 and after. 
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data. Sally is first interested in looking at what makes a successful 
baseball team, but she first takes stock of the various filters built 
from the file.  She first notices that there is data dating from 1871, 
when professional baseball was in its infancy, and that there is 
also data from older defunct professional leagues. There are also 
filters for the K-Means clusters and PCA dimensions. That kind of 
data is new to her, so she decides to see what it looks like using 
the default scatterplot view: she selects the PCA-0 and PCA-1 
variables in the X- and Y-axis slots, and selects the K-Means 
variable in the color (see Figure 5). 

She is intrigued by the arrangement of the teams in the plot, and 
wonders whether the algorithm results have any bearing on team 
quality or success, so she changes the color slot to Wins (see 
Figure 6).  This seems to have some relationship with the reduced 
space, primarily in the lower right that all appear to be low-win 
teams (the default color mapping is a stoplight pattern).  She 
lasso-selects several points in the lower-right section, and right-
clicks to examine their details.  She finds that they are all from the 
19th century, so she immediately goes to confirm her guess by 
changing the color slot to Year.  

That appears to confirm her suspicion, so she filters out all 
seasons prior to 1900 (see Figure 7). Doing so dynamically filters 
the visualization, and when she releases the year slider it updates 
the other filters—whose distribution is visible by default—
indicating that (as she already knew) almost all the historical 
professional leagues were gone by 1900, and more importantly 

shows that one of the clusters has been removed from the focus 
data. 

Sally then reverts to her original line of inquiry:  do the clusters 
have any relationship to team quality as expressed by Wins?  She 
maps color to Wins—there is still no obvious relationship on the 
high end, but again the clusters on the lower right are consistently 
on the lower end. She again lasso-selects and examines their 
details, finding that one sub-group are teams from 1994 and one 
from 1981.  Sally might recognize these seasons as ones impacted 
by player strikes; otherwise, this would clearly prompt additional 
investigation outside Lytic. 

This prompts Sally to wonder how much of the PCA components 
and cluster values are related to the number of games played in 
the season—she switches the color slot to G, and finds that a great 
deal of the first component is due to the number of games in the 
season; this leads her to wonder if the algorithmic data would be 
better applied to rate statistics (e.g., attendance/game, adjusted for 
population). She decides to investigate a few more items and 
leave the re-processing for later. 

Still interested in team success, she uses the scatterplot view to 
look at team wins versus several statistics and finds some 
interesting tradeoffs between offensive variables (e.g., Home 
Runs and Triples are slightly negatively correlated).  This causes 
her to wonder about overall team construction: is there a tradeoff 
between offense and defense?  To test this, she creates a custom 
variable, Total Bases, which is calculated from Home Runs, 
Triples, Doubles and Hits; she plots total bases versus Earned Run 
Average (a measure of pitching/defensive effectiveness), and sets 
the color to wins (see Figure 8). Interestingly, there does appear to 
be a tradeoff at work—the more offense a team has, the worse its 
defense, and that the better teams are closer to the Pareto front. 
Sally realizes that teams are constructed under resource 
constraints (player supply, salaries), so this makes some sense 

Piqued by this realization, she then uses the parallel coordinates 
view to look at several variables at once (see Figure 9).  She 
happens to place the GHome (home games) variable next to the 
year, finding that there are no teams from 2006-2010 with any 
recorded home games. She suspects this must be a data collection 
problem, since she is certain baseball was played during those 
years. 

She eventually backtracks to looking at the K-Means cluster data 
(also splitting on that variable to color-code the view), and notices 
a few clusters do have an association with low Stolen Base totals.  
That leads her to wonder: is the offensive/defensive tradeoff (as 

Figure 8.  Scatterplot view of Earned Run Average (ERA) vs. 
Total Bases, with color mapped to Wins, showing the tradeoff 
between offense and defense and the advantage of being near 

the Pareto front.  

Figure 10.  A small multiples scatterplot view of ERA vs. 
Total Bases (cf. Figure 8), but with color mapped to Stolen 
Bases and the view split on cluster value.  This shows two 
clusters (#1, 2nd from left; #7, 2nd from right) that show 

similar teams having high stolen base totals, low ERAs and 
low Total Bases. 

Figure 9. A parallel coordinates view of several different 
variables.  Color is mapped to cluster label. 
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measured by Total Base) mitigated by Stolen Bases, which are 
another way to generate offense? 

She returns to the scatterplot view of ERA vs. Total Bases, but 
this time colors nodes by Stolen Bases and splits the view on the 
cluster value, creating a small multiples-style view (see Figure 
10).  She is excited to see that some of the clusters do have some 
additional meaning outside of the number of games or the year: 
two of the clusters appear to represent teams that steal a lot of 
bases but otherwise are successful due to better pitching. 

4.2 Discussion 
Sally demonstrated several benefits of visual analytics as 
supported by Lytic.  First, outlier detection is a common task 
(either intended or serendipitous), and in the context of end-user 
data analysis, often takes the form of investigating data quality 
and provenance. If a data point is anomalous, in different contexts 
it is often the case that the data collection is faulty rather than 
encountering a truly novel case—a useful outcome in and of itself.  
Conversely, outliers that are really novel are the canonical case of 
sidetracking for opportunistic insight, regardless of the original 
goal or lack thereof. 

The benefits of combining a general purpose VA tool with even 
basic DR/C algorithms are also significant, simply because their 
data provide a new jumping-off point for further investigation, 
potentially leading to insights only a human might not have 
considered. 

A few points of Sally’s story also pointed out areas for potential 
improvement.  Sally is a writer or journalist, with no background 
in algorithms—as a result, it is somewhat of a stretch to assume 
that she would be asking for “PCA” or “K-Means” “algorithms”, 
much less perform even basic configuration, such as selecting an 
appropriate k value. Revising the end-user nomenclature—e.g., 
data map for 2-dimensional DR results; automatic categories for 
cluster results—may be beneficial for some user audiences, as 
well as simplifying or eliminating configuration options. 
Conversely, if we have a user-friendly method of employing 
DR/C algorithms, it would be useful to have inline processing to 
either include new or exclude spurious features from within the 
analytic environment: in Sally’s case, including more rate 
statistics or remove year as features. 
Finally, although the scenario did not address truly high-
dimensional data such as those from a document term frequency 
matrix, DR is crucial to enabling a manageable navigation 
environment for those types of datasets. 

5. LIMITATIONS AND FUTURE WORK 
Lytic has a number of general limitations that we should 
acknowledge and are implicit future work.  Hierarchical facets 
and similar data—particularly that which can be automatically 
generated, such as a hierarchy of time intervals or geographic 
location granularities—are a key omission from the current tool.  
Similarly, Lytic has no first-class notion of either time or location 
data types (e.g., Date/Time or latitude/longitude information), and 
the current view have more options for numeric vs. categorical 
data. Using Lytic to monitor streaming data would be useful as 
well, but there is no current support for updating the data model 
once it is built.  
Working on Lytic has also convinced us of one of the conclusions 
of a recent survey of data analysts [18]:  that “data wrangling” is a 
significant barrier to making full use of tools like Lytic, and that 
more work [17] is necessary to solve end-to-end visual analytic 
problems.  

Mixed-initiative visual analytic tools that respond to users 
previous interaction with the same or similar datasets. For 
example, learning from user’s data ingest choices to make better 
default selections in the future.  Finally, we hope to make Lytic a 
more open tool—including a visualization plugin system—for the 
visual analytic community as both a research and practitioner 
platform.  
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