
Lytic: Synthesizing High-Dimensional Algorithmic
Analysis with Domain-Agnostic, Faceted Visual Analytics

Edward Clarkson1, Jaegul Choo2, John Turgeson1, Ray Decuir1 and Haesun Park2

Georgia Tech Research Institute
925 Dalney St., Atlanta, GA 30332-0834

{edward.clarkson, john.turgeson, ray.decuir}
@gtri.gatech.edu

School of Computational Science & Engineering
Georgia Institute of Technology

266 Ferst Drive, Atlanta, GA 30332-0765
{jaegul.choo, park}@cc.gatech.edu

ABSTRACT
We present Lytic, a domain-independent, faceted visual analytic
(VA) system for interactive exploration of large datasets. It
combines a flexible UI that adapts to arbitrary character-separated
value (CSV) datasets with algorithmic preprocessing to compute
unsupervised dimension reduction and cluster data from high-
dimensional fields. It provides a variety of visualization options
that require minimal user effort to configure and a consistent user
experience between visualization types and underlying datasets.
Filtering, comparison and visualization operations work in
concert, allowing users to hop seamlessly between actions and
pursue answers to expected and unexpected data hypotheses.

Categories and Subject Descriptors
H.4.2 [Information Systems]: Types of Systems–Decision Support

General Terms
Design, Human Factors

Keywords
Visual analytics, scientific intelligence, infovis

1. INTRODUCTION
General-purpose data analysis tools—spreadsheets—were at the
forefront of the personal computer revolution in the late 1970s and
early 1980s. As a so-called "killer app" that showcased PC utility,
the benefits of digitized data helped to drive widespread corporate
adoption of personal computing [7]. In the 2010s, the wide
availability of large amounts of data from a variety of sources has
shown the potential for a similar revolution centered on data, and
more importantly the knowledge that can be extracted from it by
algorithms and human ingenuity.

And yet, there are relatively few general-purpose tools for such
large-scale data analysis, particularly for exploratory purposes.
Broadly, visual analytics addresses this problem through the
synthesis of sophisticated computational algorithms with human
initiative, and especially our high-functioning visuospatial
perception capabilities.

This paper presents Lytic (from the word Analytic), a flexible,

domain-independent visual analytic (VA) system for interactive
exploration of large datasets. Its design focuses on facilitating key
data analysis tasks that occur across disciplines: filtering,
transformation, comparison, and visualization. Data can be
formatted in convenient (character-delimited flat files) formats,
with the UI adapting to the data characteristics (# of items, data
types, etc.). Users create visualizations (scatter plots, line charts,
parallel coordinates, etc.) simply by choosing variables from
dropdown lists.

Lytic also integrates dimension reduction and clustering (DR/C)
algorithms to facilitate analysis of high-dimensional data (e.g.,
text document term frequencies). It thus contributes to the
literature a scalable system suitable for domain experts (rather
than visualization or algorithm experts) to explore a wide variety
of datasets1.

2. RELATED WORK
Several related lines of research have informed the Lytic system.
Faceted classification is a library science concept derived from
colon classification [24], which in turn has been independently
replicated in database systems (cf. dimensional modeling [19])
and information visualization (e.g., in the Attribute Explorer [26]).
Its core concept is that of classifying items of interest along
multiple independent axes, allowing more powerful and
descriptive classifications than strict hierarchical organizations.
When implemented in software, this pattern (which is both a UI
and a data model pattern) is commonly referred alternately as
faceted search, browsing, or navigation.
This design pattern has also become common in e-commerce
sites, for example: customers can browse for clothes by filtering
or comparing available items based on their size, style, color,
price, manufacturer, etc. Because users can easily determine what
characteristics (or facets) are available and hop between them to
perform filters, this method has proven to be powerful, flexible
and user-friendly to a wide audience. This commercial popularity
was preceded by their use in many research systems [5,30,31].
Notably, faceted UI systems commonly display information about
the values within each facet (e.g., the number of items matching a
given category) and dynamically update it with successive queries
[12].

There has long been recognition of the importance of the
exploratory search and its distinction from targeted information
seeking [22]. Information visualization (infovis) systems in
particular are concerned with that distinction, as much of their
value comes not just from allowing users to answer specific
questions, but from harder-to-quantify attributes such as allowing

1 A 64-bit windows binary release is publicly available from

http://tmt.gtri.gatech.edu/lytic.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IDEA ’13, August 11th, 2013, Chicago, IL, USA.
Copyright 2013 ACM 978-1-4503-2329-1…$15.00.

37

users to ask better questions, or prompting users to ask questions
they did not know they had in the first place [14].

Because software must first be derived from some implicit or
explicit set of requirements, infovis work has therefore been
concerned with the difficult question of what kind of end-user
tasks it should support in order to help users achieve ill-defined,
mutable, vague goals. One of the best known is Shneiderman’s
Visual Information Seeking mantra: “Overview first, zoom and
filter, then details-on-demand” [25]. While the mantra concerns
software, other work in both the infovis and VA communities
characterizes the nature of both high- and low-level human
activities and goals (Yi et al. provide a recent survey [32]). But
informally, such activities include data filtering, comparisons,
transformation, and visualization.
Infovis and VA systems have sought to support these kinds of
tasks implicitly or explicitly in general-purpose analysis tool.
Systems like Jigsaw [27], Apolo [8], and IN-SPIRE [29] all
provide varying levels of support for these kinds of tasks in
service of exploratory search goals. The overlapping domain of
data warehousing within the database community also contributes
to this space and commonly refers to these kinds of tools as a part
of a business intelligence software environment.

Polaris [28] and its commercial successor Tableau exemplify this
type of work, extending the Excel pivot table concept to provide a
wide variety of filtering and visualization capabilities for arbitrary
data. TIBCO Spotfire also began as an academic work [1] before

becoming a commercial products. Many other purely commercial
products also exist, such as SAS JMP, Pentaho, and many others.

DBMS-centric visualization environment tools generally act as an
SQL abstraction layer, reducing the amount of programming
expertise required. The Tioga-2 visualization environment [2] was
an early example of providing a programming abstraction (boxes-
and-arrows) specifically for visualization purposes. Zloof
proposed a rendering-by-example [20] environment (building off
his well-known query-by-example work [33]) that would allow
users to build interactive renderings via a direct manipulation
style interaction. More recent system include specialized designs
such as building queries within a radial visualization [13] and
querying electronic health record (EHR) data [15].

Influential infovis systems often employ brushing and linking
interaction facilities to assist interactive exploration. The attribute
explorer [26] consists of a set of linked histograms that show the
distribution of the dataset along many dimensions, and
dynamically update with filtering operations. Brushing
scatterplots [4] visualize multidimensional data by forming a
scatterplot matrix of arbitrarily many dimensions, and
dimensional relationships can be explored by brushing items in
the visualization. Both of these systems tightly couple a particular
visualization technique with data exploration (filtering,
comparison, interaction) actions: in contrast, Lytic decouples such
operations from the visualization because 1) as the number of
dimensions grows large, such small multiples-style approaches

Figure 1. Lytic, showing data from historical U.S. baseball statistics: data filters (A) are assembled from the data at left; the active
visualization (B) is at right. Filter choices update the active visualization and the choices available in other filter widgets. Inset
(C) shows detail of a filter for the nominal variable Bats indicating a player’s handedness. The view shows the number of home

runs hit by players over time, configured by the common view controls (D).

A	

B	

D	

C	

38

become problematic and 2) it allows for operations on dimensions
that are not being visualized.

Other systems have approached data exploration and visual
analytics from a more algorithmic perspective, using machine
learning or other data mining-oriented computation. The
FODAVA Testbed system provides a library of old and new
dimension reduction and clustering algorithms and provides a
visualization environment to evaluate their performance on
different datasets [10]. The VisIRR system uses the same library
to implement a system for dynamic exploration of large-scale
document corpora [9].

Lytic is distinct from previous work in two ways. First, it
approaches its UI design from a faceted navigation rather than a
RDBMS or pivot table orientation. Second, it directly integrates a
scalable, general-purpose data exploration-and-visualization tool
with algorithmic (DR/C) preprocessing.

3. DESIGN
Lytic is based on the data analysis component of a modeling and
simulation management framework [11], and thus its origins are
in analyzing large, high-dimensional simulation datasets for
scientific and engineering applications. As a result, we think of it
as a sort of scientific intelligence tool, complementing the existing
business intelligence tools. It is implemented in C++ using the Qt
framework, which provides the ability to compile a desktop
application for Windows, Linux and OS/X.

As such, Lytic is designed as a generic data analysis tool to
support common analytic activities that exist across application
domains (e.g., filter, compare, transform, visualize). Its design
imperative is to make common tasks as easy and fast as possible
to complete, while providing facilities for more complex
exploration through extension and customization. The focus on
optimizing common tasks accelerates the human-in-the-loop
analytic cycle, providing more opportunities for opportunistic and
goal-driven insights.

Figure 1 shows the high-level organization of the tool, which is
populated by an initial data ingest and processing step. Data
filter widgets, which are created for each facet/dimension, are
grouped at left. Data view choices (e.g., scatterplot visualization)
at right. Filter operations update the backing data model, which
is structured as a SQLite database, and in turn update the data
view as well as other filters. Data comparisons notify the view
that it should provide a partitioning of its representation along
some dimension. The user may perform several types of data
transformations on the data, including unit conversions and
customized formulations of new variables. The following sections
provide details of each of these topics.

3.1 Data Ingest and Processing
In keeping with this lowest-common-denominator support, Lytic
reads row/column-oriented character-separated value (CSV) files.
The convention used by Lytic and this paper is to treat columns as
data dimensions or variables, and rows as distinct data items. A
key component of Lytic is the integration of the algorithmic suite
developed for the FODAVA testbed [10], which provides a
variety of dimension reduction and clustering algorithms2. An
end user can specify one or more algorithms to selected

2 The FODAVA suite includes newer techniques like linear

discriminant analysis (LDA) and non-negative matrix
factorization (NMF) as well as older algorithms like principal
component analysis (PCA) or K-means clustering.

dimensions so that the use can leverage the algorithms to better
analyze the data or use the tool to analyze the algorithms
themselves. For very high-dimensional data (to us, more than
~1000 dimensions), the user can also augment the main data file
with sparse matrix syntax auxiliary (high-dimensional data can
also be specified in the CSV file).
Integrating DR/C algorithms directly helps analysts deal with
high-dimensional data more effectively, which often occurs from
automated processing of some source data, such as term
frequencies in document data or image characteristics. DR/C
algorithms thus summarize those dimensions efficiently, reducing
the complexity of the data space for the analyst.

High-cardinality data (i.e., large number of data items/rows) also
presents a scalability challenge for most DR/C algorithms, which
are commonly O(N2) or worse in processing time, memory space,
or both. Lytic is intended as an interactive end-user tool on
commodity PC hardware, so it is important that ingest and load be
limited to a reasonable amount of time—for us, a few minutes in
the common case and no more than a few hours. As such, “high-
cardinality” is a relative term for DR/C scalability; we have found

Figure 2. Three filter widgets for scalar data, which use
double-ended sliders rather than checkboxes and render
visualizations of the data distribution for that variable.

Actions which would yield no data are disabled (Bats = ‘B’).

39

on modern laptop processors with SSD storage and 8-16 GB
RAM this threshold to be ~2000 items.

Lytic itself can scale 2-3 orders of magnitude larger (see the
following section), so we attempt to deal with this disparity by
sampling and interpolation [3]: we randomly select a designated
number (1000 by default) of rows and use only that data as input
to the DR/C algorithms. Those results are then extrapolated to the
extra-sample data items.

3.2 Data Model
The Lytic data model is similar to that of many OLAP-style tools.
The combined CSV and synthesized DR/C data are imported into
a single SQLite table, trading space efficiency for speed. All
columns are indexed. This monolithic construction deviates from
data warehousing and previously-described norms [12] because
Lytic was initially targeted at scientific datasets with largely
numeric, non-hierarchical data.

We define the data scope as the items/rows in the data model that
have not been filtered out (see the following section): initially, all
data are in scope. Filter operations are essentially SQL query
generators the successively limit the scope of the data to smaller
subsets. Since all columns are indexed, queries are executed
efficiently, and become more efficient the more filters are put in
place since the scope is necessarily reduced. Fields generated by
DR/C algorithms are treated as any other filter, thus integrating
synthetic and first-order characteristics of data items.

Lytic’s scalability is dependent on the memory and speed of the
user’s workstation as well as the nature of the test data (the type
and number of variables). On modern workstation-level hardware,
we have found practical limits with reasonable interaction rates
[6] to be between 100,000 and 1 million items with up to about
300 dimensions (after dimension reduction).

Lytic maintains a clean separation (with one minor exception, see
§3.5) between its model and view, so other SQL implementations
can easily replace the current Sqlite implementation (e.g., a
column-oriented store like MonetDB), or even replaced by a non-
SQL alternative.

3.3 Data Filtering and Comparison
Lytic’s interaction design is focused on minimizing actions
necessary to accomplish common operations: filtering, comparing,
and visualizing. A faceted navigation-style UI makes as much
data visible as possible and removing opportunities to make

unproductive choices. Streamlining these operations reduces the
barriers to iterative investigation through visual hypothesis testing
and analysis. Filtering operations are accomplished by single
actions: clicking a checkbox or dragging a slider handle. Dragging
a slider handle dynamically queries the data view (subject to
performance constraints).

Lytic forms a filter UI element for each field/column in the data
model adapted to the nature of the data in the field: high-variation
numeric data use a slider GUI element; nominal and low-variation
scalars have a series of checkboxes (cf. Figure 1 inset) with
parenthetical values indicating the number of data items matching
that filter value. In Figure 1, there are 7037 B (baseball players
who hit with Both hands) players—many fewer than either Left or
Right handed players.

For numeric (scalar) data, basic statistics (mean, std. dev., count)
are calculated about the variable distribution. If there are
sufficient distinct values, the UI includes a double-ended slider
element to make range-based filters and renders a simple
visualization of the data distribution). Blue marks indicate items
that are in scope; black marks have been filtered out. Figure 2
shows three scalar filters (and one nominal); the user has filtered
out all items with Weight greater than 135 and Birth Year greater
than 1899, so all marks above those values are black in their
respective distribution visualizations. However, there are black
marks in the height filter as well, indicating how the filters from

Figure 3. Comparison of split scatterplot (top) and line chart
(bottom) views.

40

one variable affect the distribution of data in another: as one
might expect, lightweight players born in the 19th century are
relatively short. Furthermore, the user is prevented from making
unproductive UI choices: there are no switch hitting players left in
scope, so the B value in the Bats filter is disabled.

The Split operator—available on nominal filters—compares data
by partitioning it on the filter values. Data views are responsible
for visualizing the comparison as appropriate for each view type
(see Figure 3 and the following section).

3.4 Data Views
A data view is a fundamentally a method of mapping data to the
characteristics of a visual glyph. We term these characteristics
slots, similar to the Polaris/Tableau shelf concept). Examples of
glyph slots are the two position dimensions of a mark on an X/Y
Cartesian coordinate system, a mark’s color, size, orientation, etc.
Thus, a data view is described by how glyph characteristics are
used in the data mapping, and a user creates a specific view
instantiation by choosing what actual data to map to those slots.
Lytic is currently limited to a single view at a time, and there are
currently no brushing operations from the view to filter widgets.
The lack of brushing operations is due to computational obstacles:
recent work shows promise for scalable brushing using
precomputed “data tiles”, but even so scales only to modest
numbers of dimensions [21].

All data views reflect current filters and splits. Views only
display data within the current filter scope, and any split
comparisons are handled in a view-appropriate manner: line
charts use color to denote different split values within the same
chart (cf. Figure 3, top), while scatter plots display multiple
instances of the view with the distinct data partitions (cf. Figure 3,
bottom). The latter allows the easy construction of small multiple
views of the dataset. There are currently five major view types
implemented: scatterplots, line charts, bar charts, parallel
coordinates [16], and a tabular data view, with polar variants of
the scatter and line charts.

For example, the Lytic scatterplot view can map data to the glyph
X/Y position, color and size; a user defines a specific scatter plot
view by selecting variables from her dataset to map to each slot:
time to the X-axis; distance to the Y-axis, etc. Other views have
fewer (e.g., line chart has only X and Y axis slots) or different
slots (the parallel coordinates view has a dynamic number of slots,
all for parallel Y axes).

Different slots have different properties: scalar-only slots can be
inverted or log-scaled; some have custom transformations (e.g.,
color mapping); some views have dynamic slots that can be added
or removed. All data views list what slots are used at the top of
the visualization area, and within each slot a drop-down list of
variables is available to choose which to map to that slot. Thus, to

Figure 4. Plot slot detail view. Different slots have different options, and variable selection dropdowns are populated only with
appropriate types.

41

create a new visualization, the user simply selects the desired
variable from the list, and the view updates with the new data.

Only valid selections are shown or allowed from the view drop-
down boxes: variables that are not the appropriate data type for a
slot (e.g., nominal variables for a numeric axis) are not included.
Some slots are aggregate, meaning the view will combine
multiple data points (grouping by the same value the non-
aggregate slots in that view); for those slots a second drop-down
box is shown with the available aggregate functions (e.g., mean,
standard deviation, etc.).
In Figure 4, the user has already selected to visualize Year vs. CG
(Complete Games), and is preparing to make a selection for the
Color slot. Variables such as Team or League are not present
since they are nominal. As the user makes selections in the slots,
the view updates immediately; the current view shows that over
time, the number of pitcher Complete Games has decreased
dramatically. If the user selects W (Wins) from the dropdown,
she could investigate if the number of Complete Games is
correlated with Wins in some way.

3.5 Data Transformation
Other analysis capabilities include data transformations via
automated unit conversions, creating new computed variables, and
custom analysis via a simple plugin API. Unit conversions are
specified in an XML file containing relevant units and conversion
factors. In the data ingest step, the user can specify units for a
variable, and any valid conversions are automatically presented
within the filter widgets. Users can also set global preferences for
metric or imperial unit systems, and any non-conforming units
will be transformed.
New computed variables can be created by the Bin dialog (which
bins scalar variables per user input) or in the more general case,
arbitrary SQL formulas using existing variables (this is the only
Lytic feature that directly exposes the SQL data model
underpinnings).

Lytic can be configured to launch external programs (“data
handlers”), passing any subset of the current data scope (as a file)
for customized analysis. Data is selected from the active view
(e.g., lasso-selecting scatterplot points, or selecting rows in the
tabular view), and a right-click context menu shows all available
handlers. A built-in default shows the entire record for each
selected data item, but generally the fields can be processed for
any purpose. For example, a handler could read the contents of a
file path that contains 3D scene data and render it, or could
implement a customized statistical analysis with an R script.

4. USAGE SCENARIO
To illustrate Lytic’s end-to-end utility, we provide a high-level
usage scenario prior to providing more details on system design
and implementation. Sports data analysis is an interesting domain
for visual analytics that has seen some recent attention [23],
providing motivated users (fans, teams, and media) and a rich set
of qualitative and quantitative data.

4.1 Narrative
Consider the perspective of a writer, Sally, doing research for a
book on the general history and evolution of the game of baseball.
She is aware of the Lahman Baseball Archive3, which contains
pitching, batting, fielding, managerial, and other statistics from
U.S. professional baseball.
Sally starts Lytic and selects the Teams CSV file from the several
dozen different collations in the archive, which she assumes has
summary statistics from each team season. Aside from general
research, she is interested in seeing if a machine learning tool can
suggest any interesting new ways of categorizing or looking at
historical teams, so she also adds a K-Means clustering and a PCA
(principal component analysis) dimension reduction algorithm in
the load dialog using the default parameters (10 clusters and 2
dimensions, respectively).

Lytic processes the data and presents the initial view of the team

3 http://www.seanlahman.com/baseball-archive/statistics/

Figure 6. PCA visualization of baseball team statistics.

Figure 5. The same view as Figure 6, but with color mapped to
Wins instead of cluster label. The user has selected a group of

items in the lower left (bold blue items).

Figure 7. Same view as Figure 6 and Figure 5, but with a
filter in place for seasons 1900 and after.

42

data. Sally is first interested in looking at what makes a successful
baseball team, but she first takes stock of the various filters built
from the file. She first notices that there is data dating from 1871,
when professional baseball was in its infancy, and that there is
also data from older defunct professional leagues. There are also
filters for the K-Means clusters and PCA dimensions. That kind of
data is new to her, so she decides to see what it looks like using
the default scatterplot view: she selects the PCA-0 and PCA-1
variables in the X- and Y-axis slots, and selects the K-Means
variable in the color (see Figure 5).

She is intrigued by the arrangement of the teams in the plot, and
wonders whether the algorithm results have any bearing on team
quality or success, so she changes the color slot to Wins (see
Figure 6). This seems to have some relationship with the reduced
space, primarily in the lower right that all appear to be low-win
teams (the default color mapping is a stoplight pattern). She
lasso-selects several points in the lower-right section, and right-
clicks to examine their details. She finds that they are all from the
19th century, so she immediately goes to confirm her guess by
changing the color slot to Year.

That appears to confirm her suspicion, so she filters out all
seasons prior to 1900 (see Figure 7). Doing so dynamically filters
the visualization, and when she releases the year slider it updates
the other filters—whose distribution is visible by default—
indicating that (as she already knew) almost all the historical
professional leagues were gone by 1900, and more importantly

shows that one of the clusters has been removed from the focus
data.

Sally then reverts to her original line of inquiry: do the clusters
have any relationship to team quality as expressed by Wins? She
maps color to Wins—there is still no obvious relationship on the
high end, but again the clusters on the lower right are consistently
on the lower end. She again lasso-selects and examines their
details, finding that one sub-group are teams from 1994 and one
from 1981. Sally might recognize these seasons as ones impacted
by player strikes; otherwise, this would clearly prompt additional
investigation outside Lytic.

This prompts Sally to wonder how much of the PCA components
and cluster values are related to the number of games played in
the season—she switches the color slot to G, and finds that a great
deal of the first component is due to the number of games in the
season; this leads her to wonder if the algorithmic data would be
better applied to rate statistics (e.g., attendance/game, adjusted for
population). She decides to investigate a few more items and
leave the re-processing for later.

Still interested in team success, she uses the scatterplot view to
look at team wins versus several statistics and finds some
interesting tradeoffs between offensive variables (e.g., Home
Runs and Triples are slightly negatively correlated). This causes
her to wonder about overall team construction: is there a tradeoff
between offense and defense? To test this, she creates a custom
variable, Total Bases, which is calculated from Home Runs,
Triples, Doubles and Hits; she plots total bases versus Earned Run
Average (a measure of pitching/defensive effectiveness), and sets
the color to wins (see Figure 8). Interestingly, there does appear to
be a tradeoff at work—the more offense a team has, the worse its
defense, and that the better teams are closer to the Pareto front.
Sally realizes that teams are constructed under resource
constraints (player supply, salaries), so this makes some sense

Piqued by this realization, she then uses the parallel coordinates
view to look at several variables at once (see Figure 9). She
happens to place the GHome (home games) variable next to the
year, finding that there are no teams from 2006-2010 with any
recorded home games. She suspects this must be a data collection
problem, since she is certain baseball was played during those
years.

She eventually backtracks to looking at the K-Means cluster data
(also splitting on that variable to color-code the view), and notices
a few clusters do have an association with low Stolen Base totals.
That leads her to wonder: is the offensive/defensive tradeoff (as

Figure 8. Scatterplot view of Earned Run Average (ERA) vs.
Total Bases, with color mapped to Wins, showing the tradeoff
between offense and defense and the advantage of being near

the Pareto front.

Figure 10. A small multiples scatterplot view of ERA vs.
Total Bases (cf. Figure 8), but with color mapped to Stolen
Bases and the view split on cluster value. This shows two
clusters (#1, 2nd from left; #7, 2nd from right) that show

similar teams having high stolen base totals, low ERAs and
low Total Bases.

Figure 9. A parallel coordinates view of several different
variables. Color is mapped to cluster label.

43

measured by Total Base) mitigated by Stolen Bases, which are
another way to generate offense?

She returns to the scatterplot view of ERA vs. Total Bases, but
this time colors nodes by Stolen Bases and splits the view on the
cluster value, creating a small multiples-style view (see Figure
10). She is excited to see that some of the clusters do have some
additional meaning outside of the number of games or the year:
two of the clusters appear to represent teams that steal a lot of
bases but otherwise are successful due to better pitching.

4.2 Discussion
Sally demonstrated several benefits of visual analytics as
supported by Lytic. First, outlier detection is a common task
(either intended or serendipitous), and in the context of end-user
data analysis, often takes the form of investigating data quality
and provenance. If a data point is anomalous, in different contexts
it is often the case that the data collection is faulty rather than
encountering a truly novel case—a useful outcome in and of itself.
Conversely, outliers that are really novel are the canonical case of
sidetracking for opportunistic insight, regardless of the original
goal or lack thereof.

The benefits of combining a general purpose VA tool with even
basic DR/C algorithms are also significant, simply because their
data provide a new jumping-off point for further investigation,
potentially leading to insights only a human might not have
considered.

A few points of Sally’s story also pointed out areas for potential
improvement. Sally is a writer or journalist, with no background
in algorithms—as a result, it is somewhat of a stretch to assume
that she would be asking for “PCA” or “K-Means” “algorithms”,
much less perform even basic configuration, such as selecting an
appropriate k value. Revising the end-user nomenclature—e.g.,
data map for 2-dimensional DR results; automatic categories for
cluster results—may be beneficial for some user audiences, as
well as simplifying or eliminating configuration options.
Conversely, if we have a user-friendly method of employing
DR/C algorithms, it would be useful to have inline processing to
either include new or exclude spurious features from within the
analytic environment: in Sally’s case, including more rate
statistics or remove year as features.
Finally, although the scenario did not address truly high-
dimensional data such as those from a document term frequency
matrix, DR is crucial to enabling a manageable navigation
environment for those types of datasets.

5. LIMITATIONS AND FUTURE WORK
Lytic has a number of general limitations that we should
acknowledge and are implicit future work. Hierarchical facets
and similar data—particularly that which can be automatically
generated, such as a hierarchy of time intervals or geographic
location granularities—are a key omission from the current tool.
Similarly, Lytic has no first-class notion of either time or location
data types (e.g., Date/Time or latitude/longitude information), and
the current view have more options for numeric vs. categorical
data. Using Lytic to monitor streaming data would be useful as
well, but there is no current support for updating the data model
once it is built.
Working on Lytic has also convinced us of one of the conclusions
of a recent survey of data analysts [18]: that “data wrangling” is a
significant barrier to making full use of tools like Lytic, and that
more work [17] is necessary to solve end-to-end visual analytic
problems.

Mixed-initiative visual analytic tools that respond to users
previous interaction with the same or similar datasets. For
example, learning from user’s data ingest choices to make better
default selections in the future. Finally, we hope to make Lytic a
more open tool—including a visualization plugin system—for the
visual analytic community as both a research and practitioner
platform.

6. ACKNOWLEDGMENTS
The work of these authors was supported in part by the National
Science Foundation grant CCF-0808863. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

7. REFERENCES
1. Ahlberg, C. Spotfire: an information exploration environment.

SIGMOD Rec. 25, 4 (1996), 25–29.
2. Aiken, A., Chen, J., Stonebraker, M., and Woodruff, A. Tioga-

2: A Direct Manipulation Database Visualization
Environment. (1996), 208–217.

3. Bae, S.-H., Choi, J.Y., Qiu, J., and Fox, G.C. Dimension
reduction and visualization of large high-dimensional data via
interpolation. Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing,
ACM (2010), 203–214.

4. Becker, R.A. and Cleveland, W.S. Brushing Scatterplots.
Technometrics 29, 2 (1987), 127.

5. Capra, R.G. and Marchionini, G. The relation browser tool for
faceted exploratory search. Proceedings of the 8th
ACM/IEEE-CS joint conference on Digital libraries, (2008),
420–420.

6. Card, S.K., Robertson, G.G., and Mackinlay, J.D. The
information visualizer, an information workspace.
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (1991), 181–186.

7. Ceruzzi, P. and Grad, B. Guest Editors’ Introduction: PC
Software–Spreadsheets for Everyone. IEEE Annals of the
History of Computing 29, 3 (2007), 4–5.

8. Chau, D.H., Kittur, A., Hong, J.I., and Faloutsos, C. Apolo:
making sense of large network data by combining rich user
interaction and machine learning. Proceedings of the 2011
annual conference on Human factors in computing systems,
(2011), 167–176.

9. Choo, J., Lee, C., Clarkson, E., et al. VisIRR: Interactive
Visual Information Retrieval and Recommendation for Large-
scale Document Data. In submission to IEEE Transactions on
Visualization and Computer Graphics (TVCG), .

10. Choo, J., Lee, H., Liu, Z., Stasko, J., and Park, H. An
interactive visual testbed system for dimension reduction and
clustering of large-scale high-dimensional data. Proceedings
SPIE 8654, Visualization and Data Analysis, (2013).

11. Clarkson, E., Hurt, J., Zutty, J., Skeels, C., Parise, B., and
Rohling, G. Supporting robust system analysis with the test
matrix tool framework. Proceedings of the 2013 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation,
ACM (2013), 23–34.

12. Clarkson, E., Navathe, S.B., and Foley, J.D. Generalized
formal models for faceted user interfaces. (2009), 125–134.

13. Draper, G.M. and Riesenfeld, R.F. Who votes for what? A
visual query language for opinion data. IEEE transactions on
visualization and computer graphics 14, 6 (2008), 1197–1204.

14. Fekete, J.-D., Wijk, J.J., Stasko, J.T., and North, C. The Value
of Information Visualization. In A. Kerren, J.T. Stasko, J.-D.

44

Fekete and C. North, eds., Information Visualization: Human-
Centered Issues and Perspectives. Springer-Verlag, Berlin,
Heidelberg, 2008, 1–18.

15. Huser, V., Narus, S.P., and Rocha, R.A. Evaluation of a
flowchart-based EHR query system: a case study of
RetroGuide. Journal of biomedical informatics 43, 1 (2010),
41–50.

16. Inselberg, A. The plane with parallel coordinates. The Visual
Computer 1, 2 (1985), 69–91.

17. Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. Wrangler:
interactive visual specification of data transformation scripts.
Proceedings of the 2011 Conference on Human Factors in
Computing Systems (CHI), ACM (2011), 3363–3372.

18. Kandel, S., Paepcke, A., Hellerstein, J.M., and Heer, J.
Enterprise Data Analysis and Visualization: An Interview
Study. IEEE Transactions on Visualization and Computer
Graphics 18, 12 (2012), 2917–2926.

19. Kimball, R. A dimensional modeling manifesto. DBMS 10, 9
(1997), 58–70.

20. Krishnamurthy, R. and Zloof, M. RBE: Rendering by
example. Proceedings of the Eleventh International
Conference on Data Engineering, 1995, (1995), 288–297.

21. Liu, Z., Jiang, B., and Heer, J. imMens: Real-time Visual
Querying of Big Data. Computer Graphics Forum 32, 3pt4
(2013), 421–430.

22. Marchionini, G. and Shneiderman, B. Finding Facts vs.
Browsing Knowledge in Hypertext Systems. Computer 21, 1
(1988), 70–80.

23. Pileggi, H., Stolper, C.D., Boyle, J.M., and Stasko, J.T.
SnapShot: Visualization to Propel Ice Hockey Analytics. IEEE
Transactions on Visualization and Computer Graphics 18, 12
(2012), 2819–2828.

24. Ranganathan, S. Colon Classification. Madras Library
Association, Madras, 1933.

25. Shneiderman, B. The eyes have it: A task by data type
taxonomy for information visualizations. Visual Languages,
1996. Proceedings., IEEE Symposium on, (1996), 336–343.

26. Spence, R. and Tweedie, L. The Attribute Explorer:
information synthesis via exploration. Interacting with
Computers 11, 2 (1998), 137–146.

27. Stasko, J., Görg, C., and Liu, Z. Jigsaw: supporting
investigative analysis through interactive visualization.
Information Visualization 7, 2 (2008), 118–132.

28. Stolte, C., Tang, D., and Hanrahan, P. Polaris: A System for
Query, Analysis, and Visualization of Multidimensional
Relational Databases. IEEE Transactions on Visualization and
Computer Graphics 8, 1 (2002), 52–65.

29. Thomas, J.J., Cowley, P.J., Kuchar, O., Nowell, L.T.,
Thompson, J., and Wong, P.C. Discovering knowledge
through visual analysis. Journal of Universal Computer
Science 7, 6 (2001), 517–529.

30. Wilson, M., Russell, A., and Smith, D.A. mSpace: improving
information access to multimedia domains with multimodal
exploratory search. Communications of the ACM 49, 4 (2006),
47–49.

31. Yee, K.-P., Swearingen, K., Li, K., and Hearst, M. Faceted
metadata for image search and browsing. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, ACM (2003), 401–408.

32. Yi, J.S., Kang, Y., Stasko, J.T., and Jacko, J.A. Toward a
Deeper Understanding of the Role of Interaction in
Information Visualization. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (2007), 1224–
1231.

33. Zloof, M.M. Query-by-example - Operations on hierarchical
data bases. Managing Requirements Knowledge, International
Workshop on, IEEE Computer Society (1976), 845.

45

