
Scaling Up 2
HBase, Hive

CSE 6242 / CX 4242  
Feb 25, 2014

Duen Horng (Polo) Chau 
Georgia Tech

Some lectures are partly based on materials by  
Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Le Song

Lecture based on these two books.

�2

http://goo.gl/YNCWN# http://goo.gl/svzTV#

http://goo.gl/YNCWN
http://goo.gl/svzTV

Built on top of HDFS#

Supports real-time read/write random access#

Scale to very large datasets, many machines#

Not relational, does NOT support SQL  
(“NoSQL” = “not only SQL”)#

Supports billions of rows, millions of columns#

Written in Java; can work with many languages#

Where does HBase come from?
�3

http://hbase.apache.org

http://hbase.apache.org

HBase’s “history”
Hadoop & HDFS based on...#

• 2003 Google File System (GFS) paper #
• 2004 Google MapReduce paper#

HBase based on ...#

• 2006 Google Bigtable paper

�4

Not designed for random access

This “fixes” that

How does HBase work?
Column-oriented"

Column is the most basic unit (instead of row)#

• Multiple columns form a row#
• A column can have multiple versions, each

version stored in a cell#
Rows form a table#

• Row key locates a row#
• Rows sorted by row key lexicographically

�5

Row key is unique
Think of row key as the “index” of the table#

• You look up a row using its row key#
Only one “index” per table (via row key)#

HBase does not have built-in support for multiple
indices; support enabled via extensions

�6

Rows sorted lexicographically
(=alphabetically)

�7

hbase(main):001:0> scan 'table1'!
ROW COLUMN+CELL!
row-1 column=cf1:, timestamp=1297073325971 ... !
row-10 column=cf1:, timestamp=1297073337383 ... !
row-11 column=cf1:, timestamp=1297073340493 ... !
row-2 column=cf1:, timestamp=1297073329851 ... !
row-22 column=cf1:, timestamp=1297073344482 ... !
row-3 column=cf1:, timestamp=1297073333504 ... !
row-abc column=cf1:, timestamp=1297073349875 ... !
7 row(s) in 0.1100 seconds

“row-10” comes before “row-2”. #
How to fix?

Rows sorted lexicographically
(=alphabetically)

�7

hbase(main):001:0> scan 'table1'!
ROW COLUMN+CELL!
row-1 column=cf1:, timestamp=1297073325971 ... !
row-10 column=cf1:, timestamp=1297073337383 ... !
row-11 column=cf1:, timestamp=1297073340493 ... !
row-2 column=cf1:, timestamp=1297073329851 ... !
row-22 column=cf1:, timestamp=1297073344482 ... !
row-3 column=cf1:, timestamp=1297073333504 ... !
row-abc column=cf1:, timestamp=1297073349875 ... !
7 row(s) in 0.1100 seconds

“row-10” comes before “row-2”. #
How to fix?

Pad “row-2” with a “0”.#
i.e., “row-02”

Columns grouped into column families

Column family is a new concept from HBase#

• Why? Helps with organization, understanding,
optimization, etc.#

• In details...#
• Columns in the same family stored in same file

called HFile (inspired by Google’s SSTable =
large map whose keys are sorted)#

• Apply compression on the whole family#
• ...

�8

More on column family, column
Column family"

• Each table only supports a few families (e.g., <10)#
• Due to limitations in implementation#

• Family name must be printable"
• Should be defined when table is created#

• Shouldn’t be changed often#
Each column referenced as “family:qualifier”#

• Can have millions of columns#
• Values can be anything that’s arbitrarily long

�9

Cell Value
Timestamped"

• Implicitly by system#
• Or set explicitly by user#

Let you store multiple versions of a value#

• = values over time#
Values stored in decreasing time order#

• Most recent value can be read first
�10

Time-oriented view of a row

�11

Concise way to describe all these?

HBase data model (= Bigtable’s model)#

• Sparse, distributed, persistent, multidimensional map#
• Indexed by row key + column key + timestamp

�12

(Table, RowKey, Family, Column, Timestamp) ! Value

... and the geeky way

�13

(Table, RowKey, Family, Column, Timestamp) ! Value

SortedMap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>>

An exercise
How would you use HBase to create a webtable
store snapshots of every webpage on the
planet, over time?

�14

Details: How does HBase scale up
storage & balance load?

Automatically divide contiguous ranges of rows
into regions#

Start with one region, split into two when getting
too large

�15

Details: How does HBase scale up
storage & balance load?

�16

How to use HBase
Interactive shell"

• Will show you an example, locally (on your
computer, without using HDFS) #

Programmatically#

• e.g., via Java, C++, Python, etc.

�17

Example, using interactive shell

�18

Start HBase

Start Interactive Shell

Check HBase is running

Example: Create table, add values

�19

Example: Scan (show all cell values)

�20

Example: Get (look up a row)

�21

Can also look up a particular cell value, with a
certain timestamp, etc.

Example: Delete a value

�22

Example: Disable & drop table

�23

RDBMS vs HBase
RDBMS (=Relational Database Management System)#

• MySQL, Oracle, SQLite, Teradata, etc.#
• Really great for many applications#

• Ensure strong data consistency, integrity #
• Supports transactions (ACID guarantees)#
• ...#

�24

RDBMS vs HBase
How are they different?#

• Hbase when you don’t know the structure/schema#
• HBase supports sparse data (many columns, most values are not

there)#
• Use RDBMS if you only work with a small number of columns#
• Relational databases good for getting “whole” rows#
• HBase: Multiple versions of data#
• RDBMS support multiple indices, minimize duplications#
• Generally a lot cheaper to deploy HBase, for same size of data

(petabytes)#

�25

Advanced topics to learn about
Other ways to get, put, delete... (e.g., programmatically via Java)#

• Doing them in batch#
Maintaining your cluster#

• Configurations, specs for “master” and “slaves”?#
• Administrating cluster#
• Monitoring cluster’s health#

Key design (http://hbase.apache.org/book/rowkey.design.html)#

• bad keys can decrease performance#
Integrating with MapReduce#

More...
�26

http://hbase.apache.org/book/rowkey.design.html

Hive

Use SQL to run queries on large datasets"

Developed at Facebook#

Similar to Pig, Hive runs on your computer#

• You write HiveQL (Hive’s query language),
which gets converted into MapReduce jobs

�27

http://hive.apache.org

http://hive.apache.org

Example: starting Hive

�28

Example: create table, load data

�29

Specify that data file is
tab-separated

This data file will be copied to
Hive’s internal data directoryOverwrite old file

Example: Query

�30

So simple and boring! Or is it?

Same thing done with Pig

�31

records = LOAD 'input/ ncdc/ micro-tab/ sample.txt'  
 AS (year:chararray, temperature:int, quality:int);  
 
filtered_records =  
 FILTER records BY temperature != 9999  
 AND (quality = = 0 OR quality = = 1 OR  
 quality = = 4 OR quality = = 5 OR  
 quality = = 9);  
 
grouped_records = GROUP filtered_records BY year;  
 
max_temp = FOREACH grouped_records GENERATE  
 group, MAX(filtered_records.temperature);  
 
DUMP max_temp;

Pig vs Hive

�32

http://developer.yahoo.com/blogs/hadoop/comparing-pig-latin-sql-constructing-data-processing-pipelines-444.html

http://developer.yahoo.com/blogs/hadoop/comparing-pig-latin-sql-constructing-data-processing-pipelines-444.html

