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Built on top of HDFS#

Supports real-time read/write random access#

Scale to very large datasets, many machines#

Not relational, does NOT support SQL  
(“NoSQL” = “not only SQL”)#

Supports billions of rows, millions of columns#

Written in Java; can work with many languages#

Where does HBase come from?
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http://hbase.apache.org
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HBase’s “history”
Hadoop & HDFS based on...#

• 2003 Google File System (GFS) paper #
• 2004 Google MapReduce paper#

HBase based on ...#

• 2006 Google Bigtable paper
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Not designed for random access

This “fixes” that



How does HBase work?
Column-oriented"

Column is the most basic unit (instead of row)#

• Multiple columns form a row#
• A column can have multiple versions, each 

version stored in a cell#
Rows form a table#

• Row key locates a row#
• Rows sorted by row key lexicographically
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Row key is unique
Think of row key as the “index” of the table#

• You look up a row using its row key#
Only one “index” per table (via row key)#

HBase does not have built-in support for multiple 
indices; support enabled via extensions
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Rows sorted lexicographically 
(=alphabetically)
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hbase(main):001:0> scan 'table1'!
ROW     COLUMN+CELL!
row-1   column=cf1:, timestamp=1297073325971 ... !
row-10  column=cf1:, timestamp=1297073337383 ... !
row-11  column=cf1:, timestamp=1297073340493 ... !
row-2   column=cf1:, timestamp=1297073329851 ... !
row-22  column=cf1:, timestamp=1297073344482 ... !
row-3   column=cf1:, timestamp=1297073333504 ... !
row-abc column=cf1:, timestamp=1297073349875 ... !
7 row(s) in 0.1100 seconds

“row-10” comes before “row-2”. #
How to fix?



Rows sorted lexicographically 
(=alphabetically)
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hbase(main):001:0> scan 'table1'!
ROW     COLUMN+CELL!
row-1   column=cf1:, timestamp=1297073325971 ... !
row-10  column=cf1:, timestamp=1297073337383 ... !
row-11  column=cf1:, timestamp=1297073340493 ... !
row-2   column=cf1:, timestamp=1297073329851 ... !
row-22  column=cf1:, timestamp=1297073344482 ... !
row-3   column=cf1:, timestamp=1297073333504 ... !
row-abc column=cf1:, timestamp=1297073349875 ... !
7 row(s) in 0.1100 seconds

“row-10” comes before “row-2”. #
How to fix?

Pad “row-2” with a “0”.#
i.e., “row-02”



Columns grouped into column families

Column family is a new concept from HBase#

• Why? Helps with organization, understanding, 
optimization, etc.#

• In details...#
• Columns in the same family stored in same file 

called HFile (inspired by Google’s SSTable = 
large map whose keys are sorted)#

• Apply compression on the whole family#
• ...
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More on column family, column
Column family"

• Each table only supports a few families (e.g., <10)#
• Due to limitations in implementation#

• Family name must be printable"
• Should be defined when table is created#

• Shouldn’t be changed often#
Each column referenced as “family:qualifier”#

• Can have millions of columns#
• Values can be anything that’s arbitrarily long
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Cell Value
Timestamped"

• Implicitly by system#
• Or set explicitly by user#

Let you store multiple versions of a value#

• = values over time#
Values stored in decreasing time order#

• Most recent value can be read first
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Time-oriented view of a row
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Concise way to describe all these?

HBase data model (= Bigtable’s model)#

• Sparse, distributed, persistent, multidimensional map#
• Indexed by row key + column key + timestamp

�12

(Table, RowKey, Family, Column, Timestamp) ! Value



... and the geeky way
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(Table, RowKey, Family, Column, Timestamp) ! Value

SortedMap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>>



An exercise
How would you use HBase to create a webtable 
store snapshots of every webpage on the 
planet, over time?
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Details: How does HBase scale up 
storage & balance load?

Automatically divide contiguous ranges of rows 
into regions#

Start with one region, split into two when getting 
too large
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Details: How does HBase scale up 
storage & balance load?
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How to use HBase
Interactive shell"

• Will show you an example, locally (on your 
computer, without using HDFS) #

Programmatically#

• e.g., via Java, C++, Python, etc.
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Example, using interactive shell
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Start HBase

Start Interactive Shell

Check HBase is running



Example: Create table, add values
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Example: Scan (show all cell values)
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Example: Get (look up a row)
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Can also look up a particular cell value, with a 
certain timestamp, etc.



Example: Delete a value
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Example: Disable & drop table
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RDBMS vs HBase
RDBMS (=Relational Database Management System)#

• MySQL, Oracle, SQLite, Teradata, etc.#
• Really great for many applications#

• Ensure strong data consistency, integrity #
• Supports transactions (ACID guarantees)#
• ...#
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RDBMS vs HBase
How are they different?#

• Hbase when you don’t know the structure/schema#
• HBase supports sparse data (many columns, most values are not 

there)#
• Use RDBMS if you only work with a small number of columns#
• Relational databases good for getting “whole” rows#
• HBase: Multiple versions of data#
• RDBMS support multiple indices, minimize duplications#
• Generally a lot cheaper to deploy HBase, for same size of data 

(petabytes)#
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Advanced topics to learn about
Other ways to get, put, delete... (e.g., programmatically via Java)#

• Doing them in batch#
Maintaining your cluster#

• Configurations, specs for  “master” and “slaves”?#
• Administrating cluster#
• Monitoring cluster’s health#

Key design (http://hbase.apache.org/book/rowkey.design.html)#

• bad keys can decrease performance#
Integrating with MapReduce#

More...
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http://hbase.apache.org/book/rowkey.design.html


Hive

Use SQL to run queries on large datasets"

Developed at Facebook#

Similar to Pig, Hive runs on your computer#

• You write HiveQL (Hive’s query language), 
which gets converted into MapReduce jobs
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http://hive.apache.org

http://hive.apache.org


Example: starting Hive
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Example: create table, load data
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Specify that data file is 
tab-separated

This data file will be copied to 
Hive’s internal data directoryOverwrite old file



Example: Query
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So simple and boring! Or is it?



Same thing done with Pig
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records = LOAD 'input/ ncdc/ micro-tab/ sample.txt'  
  AS (year:chararray, temperature:int, quality:int);  
 
filtered_records =  
  FILTER records BY temperature != 9999  
  AND (quality = = 0 OR quality = = 1 OR  
       quality = = 4 OR quality = = 5 OR  
       quality = = 9);  
 
grouped_records = GROUP filtered_records BY year;  
 
max_temp = FOREACH grouped_records GENERATE  
  group, MAX( filtered_records.temperature);  
 
DUMP max_temp;



Pig vs Hive
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