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Data is Too Big To Do Something..

Limited memory size
Data may not be fitted to the memory of your machine 

Slow computation
106-dim vs. 10-dim vectors for Euclidean distance computation
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How many dimensions representing each item?
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Two Axes of Data Set

No. of data items
How many data items?

No. of dimensions
How many dimensions representing each item?

Data item index

Dimension 
index

Columns as 
data items vs. Rows as data items

We will use this during lecture
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What You Get from DR

Obviously, 
Less storage
Faster computation

More importantly, 
Noise removal (improving quality of data)

Leads better performance for tasks
2D/3D representation

Enables visual data exploration



 

Applications

Traditionally, 
Microarray data analysis
Information retrieval
Face recognition
Protein disorder prediction
Network intrusion detection
Document categorization
Speech recognition

More interestingly, 
Interactive visualization of high-dimensional data 



 

Face Recognition
Vector Representation of Images

Images → serialized/rasterized pixel values

Dimensions can be huge.
640x480 size: 307,200 dimensions
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Face Recognition

Vector 
Representation of 

Images 

Classification on dim-
reduced data

Dimension 
Reduction

PCA, LDA, etc.

→	
  Better accuracy than 
on original-dim data Color = Person

Column = Image
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Document Retrieval

Latent semantic indexing
Term-document matrix via bag-of-words model

D1 = “I like data”
D2 = “I hate hate data”

Dimensions can be hundreds of thousands
i.e., #distinct words 

D1 D2 …

I 1 1 …

like 1 0 …

hate 0 2 …

data 1 1 …

… … …

Dimension 
Reduction

D1 D2 …

Dim1 1.75 -0.27 …

Dim2 -0.21 0.58 …

Dim3 1.32 0.25

→	
  	
  Search-Retrieval on 
dim-reduced data leads 
to better semantics



 

Visualization
Visualizing “Map of Science”

http://www.mapofscience.com



 

Two Main Techniques

1. Feature selection
Selects a subset of the original variables as reduced 
dimensions
For example, the number of genes responsible for a 
particular disease may be small

2. Feature extraction
Each reduced dimension involves multiple original 
dimensions
Active area of research recently

Note that Feature = Variable = Dimension



 

Feature Selection

What are the optimal subset of m features to maximize a 
given criterion?

Widely-used criteria
Information gain, correlation, …

Typically combinatorial optimization problems 
Therefore, greedy methods are popular

Forward selection: Empty set → add one variable at a time
Backward elimination: Entire set → remove one variable at a time



From now on, we will only discuss 
about feature extraction
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Linear
Represents each reduced dimension as a linear 
combination of original dimensions

e.g., Y1 = 3*X1 – 4*X2 + 0.3*X3 – 1.5*X4, 
       Y2 = 2*X1 + 3.2*X2 – X3 + 2*X4

Naturally capable of mapping new data  to the same 
space

Dimension Reduction
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Aspects of DR
Linear vs. Nonlinear

Linear
Represents each reduced dimension as a linear 
combination of original dimensions

e.g., Y1 = 3*X1 – 4*X2 + 0.3*X3 – 1.5*X4, 
       Y2 = 2*X1 + 3.2*X2 – X3 + 2*X4

Naturally capable of mapping new data  to the same 
space

Nonlinear
More complicated, but generally more powerful
Recently popular topics
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Uses only the input data
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Aspects of DR
Unsupervised vs. Supervised

Supervised
Uses the input data + additional info

e.g., grouping label

Dimension Reduction

High-dim 
data

low-dim 
data

No. of 

Additional info 
about data Other Dim-reducing 

Transformer for a 
new data
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Aspects of DR
Global vs. Local

Dimension reduction typically tries to preserve all the 
relationships/distances in data

Information loss is unavoidable!

Then, what would you care about?

Global
Treats all pairwise distances equally important

Tends to care larger distances more
Local

Focuses on small distances, neighborhood relationships
Active research area a.k.a. manifold learning
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Feature vectors vs. Similarity (as an input)
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Additional info 
about data

Typical setup (feature vectors as an input)
Some methods take similarity matrix instead

(i,j)-th component indicates how similar i-th and j-th data items are
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Aspects of DR
Feature vectors vs. Similarity (as an input)
Typical setup (feature vectors as an input)
Some methods take similarity matrix instead
Some methods internally converts feature vectors to 
similarity matrix before performing dimension reduction
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Aspects of DR
Feature vectors vs. Similarity (as an input)

Why called graph embedding?
Similarity matrix can be viewed as a graph where 
similarity represents edge weight

 

Similarity 
matrix

High-dim 
data

Dimension Reduction

low-dim 
data

a.k.a. Graph Embedding



 

Methods

Traditional
Principal component analysis (PCA)
Multidimensional scaling (MDS)
Linear discriminant analysis (LDA)
Nonnegative matrix factorization (NMF)

Advanced (nonlinear, kernel, manifold learning) 
Isometric feature mapping (Isomap)
Locally linear embedding (LLE)
Laplacian Eigenmaps (LE)
Kernel PCA
t-distributed stochastic neighborhood embedding (t-SNE)

* Matlab codes are available at
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html

http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html


 

Principal Component Analysis

Finds the axis showing the greatest variation, and project 
all points into this axis
Reduced dimensions are orthogonal
Algorithm: eigen-decomposition
Pros: Fast
Cons: basic limited performances

http://en.wikipedia.org/wiki/Principal_component_analysis
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Principal Component Analysis

Finds the axis showing the greatest variation, and project 
all points into this axis
Reduced dimensions are orthogonal
Algorithm: eigen-decomposition
Pros: Fast
Cons: basic limited performances

http://en.wikipedia.org/wiki/Principal_component_analysis

PC1PC2
Linear
Unsupervised
Global
Feature vectors



 

Principal Component Analysis
Document Visualization



 

Principal Component Analysis
Testbed Demo – Text Data



 

Multidimensional Scaling (MDS)

Intuition
Tries to preserve given ideal pairwise distances in low-
dimensional space

Metric MDS
Preserves given ideal distance values

Nonmetric MDS
When you only know/care about ordering of distances 
Preserves only the orderings of distance values

Algorithm: gradient-decent type
c.f. classical MDS is the same as PCA
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Multidimensional Scaling (MDS)

Intuition
Tries to preserve given ideal pairwise distances in low-
dimensional space

Metric MDS
Preserves given ideal distance values

Nonmetric MDS
When you only know/care about ordering of distances 
Preserves only the orderings of distance values

Algorithm: gradient-decent type
c.f. classical MDS is the same as PCA

Nonlinear
Unsupervised
Global
Similarity input

ideal distanceactual distance



 

Multidimensional Scaling
Sammon’s mapping

Sammon’s mapping
Local version of MDS 
Down-weights errors in large distances 

Algorithm: gradient-decent type

Nonlinear
Unsupervised
Local
Similarity input



 

Multidimensional Scaling
Force-directed graph layout

Force-directed graph layout
Rooted from graph visualization, but essentially variant of 
metric MDS
Spring-like attractive + repulsive forces between nodes
Algorithm: gradient-decent type

Widely-used in visualization
Aesthetically pleasing results
Simple and intuitive
Interactivity

Nonlinear
Unsupervised
Global
Similarity input



 

Multidimensional Scaling
Force-directed graph layout

Demos
Prefuse

http://prefuse.org/gallery/graphview/

D3: http://d3js.org/ 
http://bl.ocks.org/4062045

http://prefuse.org/gallery/graphview/
http://prefuse.org/gallery/graphview/
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://bl.ocks.org/4062045
http://bl.ocks.org/4062045
http://bl.ocks.org/4062045
http://bl.ocks.org/4062045


 

Multidimensional Scaling

In all variants, 
Pros: widely-used (works well in general)
Cons: slow

Nonmetric MDS is even much slower than metric MDS
Nonlinear
Unsupervised
Global
Similarity input



 

Linear Discriminant Analysis

Maximally separates clusters by
Putting different cluster as far as possible
Putting each cluster as compact as possible

(a) (b)



 

Linear Discriminant Analysis
vs. Principal Component Analysis

2D visualization of 7 Gaussian mixture of 1000 dimensions

Linear discriminant analysis
(Supervised)

Principal component analysis
(Unsupervised)36 
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Linear Discriminant Analysis

Maximally separates clusters by
Putting different cluster as far as possible
Putting each cluster as compact as possible

Algorithm: generalized eigendecomposition
Pros: better show cluster structure
Cons: may distort original relationship of data

Linear
Supervised
Global
Feature vectors



 

Linear Discriminant Analysis
Testbed Demo – Text Data



 

Nonnegative Matrix Factorization

Dimension reduction via matrix factorization

Why nonnegativity constraints?
Better approximation vs. better interpretation
Often physically/semantically meaningful

Algorithm: alternating nonnegativity-constrained least 
squares

~
= èmin || A – WH ||F

 W>=0, H>=0 

A

H

W



 

Nonnegative Matrix Factorization
as clustering 

Dimension reduction via matrix factorization

Often NMF performs better and faster than k-means
W: centroids, H: soft-clustering membership

~
= èmin || A – WH ||F

 W>=0, H>=0 

A

H

W



 

In the next lecture..

More interesting topics coming up including
Advanced methods

Isomap, LLE, kernel PCA, t-SNE, …
Real-world applications in interactive visualization
Practitioners’ guide

What to try first in which situations?


