CSE 6242 A / CS 4803 DVA Feb 12, 2013

Dimension Reduction

Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA Feb 12, 2013

Dimension Reduction

Guest Lecturer: Jaegul Choo

Data is Too Big To Do Something...

- Limited memory size
 - Data may not be fitted to the memory of your machine
- Slow computation
 - 10⁶-dim vs. 10-dim vectors for Euclidean distance computation

- No. of data items
 - How many data items?
- No. of dimensions
 - How many dimensions representing each item?

- No. of data items
 - How many data items?
- No. of dimensions
 - How many dimensions representing each item?

- No. of data items
 - How many data items?
- No. of dimensions
 - How many dimensions representing each item?

- No. of data items
 - How many data items?
- No. of dimensions
 - How many dimensions representing each item?

vs. Rows as data items

- No. of data items
 - How many data items?
- No. of dimensions
 - How many dimensions representing each item?

We will use this during lecture

vs. Rows as data items

Obviously,

- Less storage
- Faster computation

Obviously,

- Less storage
- Faster computation

More importantly,

Obviously,

- Less storage
- Faster computation

More importantly,

- Noise removal (improving quality of data)
 - Leads better performance for tasks

Obviously,

- Less storage
- Faster computation

More importantly,

- Noise removal (improving quality of data)
 - Leads better performance for tasks
- ►2D/3D representation
 - Enables visual data exploration

Applications

Traditionally,

- Microarray data analysis
- Information retrieval
- Face recognition
- Protein disorder prediction
- Network intrusion detection
- Document categorization
- Speech recognition

More interestingly,

Interactive visualization of high-dimensional data

Face Recognition Vector Representation of Images

- Dimensions can be huge.
 - 640x480 size: 307,200 dimensions

Vector Representation of Images

Vector Representation of Images

Vector Representation of Images

Vector
Representation of Images

Dimension Reduction

→ Better accuracy than on original-dim data

Column = Image

	D1	D2	
I	1	1	
like	1	0	
hate	0	2	
data	1	1	

	D1	D2	
I	1	1	
like	1	0	
hate	0	2	
data	1	1	

- Term-document matrix via bag-of-words model
 - D1 = "I like data"
 - D2 = "I hate hate data"

	D1	D2	
I	1	1	
like	1	0	
hate	0	2	
data	1	1	

- Term-document matrix via bag-of-words model
 - D1 = "I like data"
 - D2 = "I hate hate data"
- Dimensions can be hundreds of thousands
 - i.e., #distinct words

	D1	D2	
I	1	1	
like	1	0	
hate	0	2	
data	1	1	

- Term-document matrix via bag-of-words model
 - D1 = "I like data"
 - D2 = "I hate hate data"
- Dimensions can be hundreds of thousands
 - i.e., #distinct words

	D1	D2	
I	1	1	
like	1	0	
hate	0	2	
data	1	1	

Dimension Reduction	

	D1	D2	
Dim1	1.75	-0.27	
Dim2	-0.21	0.58	
Dim3	1.32	0.25	

Latent semantic indexing

- Term-document matrix via bag-of-words model
 - D1 = "I like data"
 - D2 = "I hate hate data"
- Dimensions can be hundreds of thousands
 - i.e., #distinct words

	D1	D2	
I	1	1	
like	1	0	
hate	0	2	
data	1	1	

Dimension ___ Reduction

	D1	D2	
Dim1	1.75	-0.27	
Dim2	-0.21	0.58	
Dim3	1.32	0.25	

→ Search-Retrieval on dim-reduced data leads to better semantics

Two Main Techniques

- 1. Feature selection
- Selects a subset of the original variables as reduced dimensions
- For example, the number of genes responsible for a particular disease may be small
- 2. Feature extraction
- Each reduced dimension involves multiple original dimensions
- Active area of research recently

Note that **Feature = Variable = Dimension**

Feature Selection

What are the optimal subset of *m* features to maximize a given criterion?

- Widely-used criteria
 - Information gain, correlation, ...
- Typically combinatorial optimization problems
- Therefore, greedy methods are popular
 - Forward selection: Empty set → add one variable at a time
 - Backward elimination: Entire set → remove one variable at a time

From now on, we will only discuss about feature extraction

From now on, we will only discuss about feature extraction

Aspects of DR

- Linear vs. Nonlinear
- Unsupervised vs. Supervised
- Global vs. Local
- Feature vectors vs. Similarity (as an input)

Aspects of DR Linear vs. Nonlinear

Linear

Represents each reduced dimension as a linear combination of original dimensions

■ e.g.,
$$Y1 = 3*X1 - 4*X2 + 0.3*X3 - 1.5*X4$$
, $Y2 = 2*X1 + 3.2*X2 - X3 + 2*X4$

Naturally capable of mapping new data to the same space

ī		1	I	1		_			
		D1	D2	→	Dimension Reduction			D1	D2
	X1	1	1				Y1	1.75	-0.27
	X2	1	0				Y2	-0.21	0.58
	X3	0	2						
Ī	ΧΔ	1	1						

Aspects of DR Linear vs. Nonlinear

Linear

- Represents each reduced dimension as a linear combination of original dimensions
 - e.g., Y1 = 3*X1 4*X2 + 0.3*X3 1.5*X4, Y2 = 2*X1 + 3.2*X2 X3 + 2*X4
- Naturally capable of mapping new data to the same space

Nonlinear

- More complicated, but generally more powerful
- Recently popular topics

Aspects of DR Unsupervised vs. Supervised

Unsupervised

Aspects of DR Unsupervised vs. Supervised

Supervised

Uses the input data + additional info No. of High-dim data low-dim data **Dimension Reduction** Additional info Dim-reducing Other about data Transformer for a new data

Aspects of DR Unsupervised vs. Supervised

Supervised

Dimension reduction typically tries to preserve all the relationships/distances in data

- Information loss is unavoidable!
 - e.g., PCA

Dimension reduction typically tries to preserve all the relationships/distances in data

- Information loss is unavoidable!
 - e.g., PCA

Data pairs

Dimension reduction typically tries to preserve all the relationships/distances in data

Information loss is unavoidable!

Then, what would you care about?

Global

Dimension reduction typically tries to preserve all the relationships/distances in data

Information loss is unavoidable!

Then, what would you care about?

Global

- Treats all pairwise distances equally important
 - Tends to care larger distances more

Dimension reduction typically tries to preserve all the relationships/distances in data

Information loss is unavoidable!

Then, what would you care about?

Global

- Treats all pairwise distances equally important
 - Tends to care larger distances more

Local

Dimension reduction typically tries to preserve all the relationships/distances in data

Information loss is unavoidable!

Then, what would you care about?

Global

- Treats all pairwise distances equally important
 - Tends to care larger distances more

Local

Focuses on small distances, neighborhood relationships

Dimension reduction typically tries to preserve all the relationships/distances in data

Information loss is unavoidable!

Then, what would you care about?

Global

- Treats all pairwise distances equally important
 - Tends to care larger distances more

Local

- Focuses on small distances, neighborhood relationships
- Active research area a.k.a. manifold learning

Typical setup (feature vectors as an input)

- Typical setup (feature vectors as an input)
- Some methods take similarity matrix instead

(i,j)-th component indicates how similar i-th and j-th data items are No. of Similarity matrix low-dim data **Dimension Reduction** Additional info Dim-reducing Other about data Transformer for a new data

- Typical setup (feature vectors as an input)
- Some methods take similarity matrix instead
- Some methods internally converts feature vectors to similarity matrix before performing dimension reduction

- Typical setup (feature vectors as an input)
- Some methods take similarity matrix instead
- Some methods internally converts feature vectors to similarity matrix before performing dimension reduction

Why called graph embedding?

Similarity matrix can be viewed as a graph where similarity represents edge weight

Methods

- Traditional
 - Principal component analysis (PCA)
 - Multidimensional scaling (MDS)
 - Linear discriminant analysis (LDA)
 - Nonnegative matrix factorization (NMF)
- Advanced (nonlinear, kernel, manifold learning)
 - Isometric feature mapping (Isomap)
 - Locally linear embedding (LLE)
 - Laplacian Eigenmaps (LE)
 - Kernel PCA
 - t-distributed stochastic neighborhood embedding (t-SNE)
- * Matlab codes are available at http://homepage.tudelft.nl/19j49/Matlab Toolbox for Dimensionality Reduction.html

- Finds the axis showing the greatest variation, and project all points into this axis
- Reduced dimensions are orthogonal
- Algorithm: eigen-decomposition
- Pros: Fast
- Cons: basic limited performances

- Finds the axis showing the greatest variation, and project all points into this axis
- Reduced dimensions are orthogonal
- Algorithm: eigen-decomposition
- Pros: Fast
- Cons: basic limited performances

Linear

- Finds the axis showing the greatest variation, and project all points into this axis
- Reduced dimensions are orthogonal
- Algorithm: eigen-decomposition
- Pros: Fast
- Cons: basic limited performances

Linear Unsupervised

- Finds the axis showing the greatest variation, and project all points into this axis
- Reduced dimensions are orthogonal
- Algorithm: eigen-decomposition
- Pros: Fast
- Cons: basic limited performances

Linear Unsupervised Global

- Finds the axis showing the greatest variation, and project all points into this axis
- Reduced dimensions are orthogonal
- Algorithm: eigen-decomposition
- Pros: Fast
- Cons: basic limited performances

Linear
Unsupervised
Global
Feature vectors

Principal Component Analysis Document Visualization

Principal Component Analysis Testbed Demo – Text Data

Intuition

Tries to preserve given ideal pairwise distances in lowdimensional space

$$\min_{x_1, \dots, x_I} \sum_{i < j} (\|x_i - x_j\| - \delta_{i,j})^2.$$

- Metric MDS
 - Preserves given ideal distance values
- Nonmetric MDS
 - When you only know/care about ordering of distances
 - Preserves only the orderings of distance values
- Algorithm: gradient-decent type
- c.f. classical MDS is the same as PCA

Intuition

Tries to preserve given ideal pairwise distances in low-dimensional space actual distance ideal distance

$$\min_{x_1, \dots, x_I} \sum_{i < j} (||x_i - x_j|| - \delta_{i,j})^2.$$

- Metric MDS
 - Preserves given ideal distance values
- Nonmetric MDS
 - When you only know/care about ordering of distances
 - Preserves only the orderings of distance values
- Algorithm: gradient-decent type
- c.f. classical MDS is the same as PCA

Intuition

Tries to preserve given ideal pairwise distances in low-dimensional space actual distance ideal distance

$$\min_{x_1, \dots, x_I} \sum_{i < j} (||x_i - x_j|| - \delta_{i,j})^2.$$
 Nonlinear

- Metric MDS
 - Preserves given ideal distance values
- Nonmetric MDS
 - When you only know/care about ordering of distances
 - Preserves only the orderings of distance values
- Algorithm: gradient-decent type
- c.f. classical MDS is the same as PCA

Intuition

Tries to preserve given ideal pairwise distances in low-dimensional space actual distance ideal distance

$$\min_{x_1,...,x_I} \sum_{i < j} (||x_i - x_j|| - \delta_{i,j})^T.$$
 Nonlinear Unsupervised

- Metric MDS
 - Preserves given ideal distance values
- Nonmetric MDS
 - When you only know/care about ordering of distances
 - Preserves only the orderings of distance values
- Algorithm: gradient-decent type
- c.f. classical MDS is the same as PCA

Intuition

Tries to preserve given ideal pairwise distances in low-dimensional space actual distance ideal distance

Nonlinear

Global

Unsupervised

$$\min_{x_1, \dots, x_I} \sum_{i < j} (\|x_i - x_j\| - \delta_{i,j})^2.$$

- Metric MDS
 - Preserves given ideal distance values
- Nonmetric MDS
 - When you only know/care about ordering of distances
 - Preserves only the orderings of distance values
- Algorithm: gradient-decent type
- c.f. classical MDS is the same as PCA

Intuition

Tries to preserve given ideal pairwise distances in low-dimensional space actual distance ideal distance

Nonlinear

Global

Unsupervised

Similarity input

$$\min_{x_1, \dots, x_I} \sum_{i < j} (\|x_i - x_j\| - \delta_{i,j})^2.$$

- Metric MDS
 - Preserves given ideal distance values
- Nonmetric MDS
 - When you only know/care about ordering of distances
 - Preserves only the orderings of distance values
- Algorithm: gradient-decent type
- c.f. classical MDS is the same as PCA

Multidimensional Scaling Sammon's mapping

Sammon's mapping

- Local version of MDS
- Down-weights errors in large distances

$$E = \frac{1}{\sum_{i < j} d_{ij}^*} \sum_{i < j} \frac{(d_{ij}^* - d_{ij})^2}{d_{ij}^*}.$$

Algorithm: gradient-decent type

Nonlinear
Unsupervised
Local
Similarity input

Multidimensional Scaling Force-directed graph layout

Force-directed graph layout

- Rooted from graph visualization, but essentially variant of metric MDS
- Spring-like attractive + repulsive forces between nodes
- Algorithm: gradient-decent type

Nonlinear

Unsupervised

Global

Similarity input

- Widely-used in visualization
 - Aesthetically pleasing results
 - Simple and intuitive
 - Interactivity

Multidimensional Scaling Force-directed graph layout

Demos

- Prefuse
 - http://prefuse.org/gallery/graphview/
- D3: http://d3js.org/
 - http://bl.ocks.org/4062045

Multidimensional Scaling

In all variants,

Pros: widely-used (works well in general)

Cons: slow

Nonmetric MDS is even much slower than metric MDS

Nonlinear
Unsupervised
Global
Similarity input

Maximally separates clusters by

- Putting different cluster as far as possible
- Putting each cluster as compact as possible

Linear Discriminant Analysis vs. Principal Component Analysis

2D visualization of 7 Gaussian mixture of 1000 dimensions

Linear discriminant analysis

Principal component analysis

(Unsupervised)

Maximally separates clusters by

- Putting different cluster as far as possible
- Putting each cluster as compact as possible
- Algorithm: generalized eigendecomposition
- Pros: better show cluster structure
- Cons: may distort original relationship of data

Maximally separates clusters by

- Putting different cluster as far as possible
- Putting each cluster as compact as possible
- Algorithm: generalized eigendecomposition
- Pros: better show cluster structure
- Cons: may distort original relationship of data

Linear

Maximally separates clusters by

- Putting different cluster as far as possible
- Putting each cluster as compact as possible
- Algorithm: generalized eigendecomposition
- Pros: better show cluster structure
- Cons: may distort original relationship of data

Linear Supervised

Maximally separates clusters by

- Putting different cluster as far as possible
- Putting each cluster as compact as possible
- Algorithm: generalized eigendecomposition
- Pros: better show cluster structure
- Cons: may distort original relationship of data

Linear
Supervised
Global

Maximally separates clusters by

- Putting different cluster as far as possible
- Putting each cluster as compact as possible
- Algorithm: generalized eigendecomposition
- Pros: better show cluster structure
- Cons: may distort original relationship of data

Linear

Supervised

Global

Feature vectors

Linear Discriminant Analysis Testbed Demo – Text Data

Nonnegative Matrix Factorization

Dimension reduction via matrix factorization

Why nonnegativity constraints?

- Better approximation vs. better interpretation
- Often physically/semantically meaningful
- Algorithm: alternating nonnegativity-constrained least squares

Nonnegative Matrix Factorization as clustering

Dimension reduction via matrix factorization

Often NMF performs better and faster than *k*-means

W: centroids, H: soft-clustering membership

In the next lecture...

More interesting topics coming up including

- Advanced methods
 - Isomap, LLE, kernel PCA, t-SNE, ...
- Real-world applications in interactive visualization
- Practitioners' guide
 - What to try first in which situations?