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Table 2: Common model classes ordered top to bottom by popularity per domain. GLM = generalized linear models (e.g., logistic B SVM S

regression); RF = random forest; SVM = support vector machine; R/CNN = recursive/convolutional neural networks.
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reuse In future iterations

Estimator for # data prep. iterations tppr = np
Estimator for # ML iterations tr; = (nap — 1) + (np — 1)
Estimator for # post proc. iter. tppr = min (ng, niapie + M figure)

Accelerate lterative Execution
via Intermediates Reuse

More on Helix in the technical report @
http://data-people.cs.illinois.edu/helix-tr.pdf

Open source dataset at https://github.com/helix-ml/AppliedMLSurvey



