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ABSTRACT
Similarity is an integral part of learning, both human learning and
machine learning. Similarity-driven reasoning, analogy, learning
and explanation are critical for AI to become truly robust. The
complexity in learning a measure of similarity particularly stems
from the fact that there is no single notion of similarity for a set
of objects. The definition of similarity is critically dependent on
the impression of the user performing the task. To truly provide a
similarity service, the system has to be able to learn the notion of
similarity in real-time, interacting with the user. In this paper, we
introduce a vision of generalized similarity service that attempts to
learn an individual’s similarity function. A conceptual framework
describing the system capabilities for such a service is presented.
Implementation of this framework is applied to the domain of com-
pany similarity. A preliminary user study highlights the importance
of generalized similarity service.

CCS CONCEPTS
• Information systems→Users and interactive retrieval; Sim-
ilarity measures; Novelty in information retrieval;

KEYWORDS
Similarity, user intent, user interaction

1 INTRODUCTION
Similarity is fundamental to learning. It is well established that
reasoning and learning by analogy are important aspects of human
cognition [9, 10]. In [26] the author emphasizes the importance of
similarity for problem-solving and reasoning, and for AI systems
of the future. In Machine learning, the problem of similarity has
been addressed in the context of many applications such as those in
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information retrieval, recommendation systems, computer vision,
and natural language processing. Most approaches employ distance
metrics to approximate similarity between two objects (e.g., peo-
ple, images, things etc.). Distance metric learning is accomplished
with input from domain experts, or the presence of large amounts
of data as well as ground truth of pairs of labeled instances. The
distance metric thus learned is applied globally to all instances of
dataset with the underlying assumption that similarity can be uni-
versally defined for all users of the dataset. But human perception
of similarity is complex and often involves subjective judgment. In
[11] the author refers to similarity as a phenomenon that is not
unitary. Similarity not only varies with context, intentions, and
characteristics of the user, but also by how it is calculated in diverse
tasks.

Computing similarity is typically performed in the context of
search and discovery tasks. We suggest that at the time they enter
such an interaction with the system, users have a mental model of
the entity they are seeking. However, the user’s mental model is
almost certain to be an approximation of what they are looking for.
There are a number of reasons for this:

• Complex entity types are represented by 100’s or 1000’s of
dimensions and the user is unlikely to care about all the
attributes of an entity. Instead, a subset of the full represen-
tation of the entity will be "in scope" for a given context.

• Even if a user can accurately specify a subset of the attributes
that they care about, it is likely they will weigh the impor-
tance of each attribute differently. It is non-trivial for a user
to accurately articulate the relative weights of a significant
number of attributes.

• The attributes of interest and their weights are likely to
undergo changes as the search and discovery process unfolds.
Consider a user may have an unrealistic expectation for
individual attributes or combinations of attributes. The user
may initially be interested in finding people who have both
won the Noble Peace prize and won a gold medal in the
Olympics 100M dash. Upon inspection of the search results,
the user’s constraints may be relaxed to something like "find
me people who are smart and fast".
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It is important to provide a user with a similarity service which
is not constrained by one universally applicable distance metric for
all objects in the dataset.

We defineGeneralized Similarity as a computing service, com-
prised of algorithms and tools, that is capable of finding entities
similar to a reference entity (which may be real or idealized), or
to a collection of such reference entities, according to a notion of
similarity that may evolve over the course of a user’s interaction
with that service. The service is capable of interacting with users
in natural, intuitive ways to capture and (at least indirectly) refine
their notions of similarity. Typically, an entity will be represented
as a collection of unstructured and structured attributes. Our vision
is motivated by our work in the field of recommending companies
as acquisition targets to the business development personnel of
a large corporation. Some motivating scenarios are described in
section 1.1.

Our contributions in this work-in-progress paper are:

(1) We introduce a vision of a generalized similarity service, and
present the high-level capabilities that a similarity service
should exhibit.

(2) We describe the application of the similarity service to the
domain of company similarity.

(3) We present preliminary user study results.

Our work, to date, has been on a single type of entity, namely
companies. Our pursuit of Generalized Similarity envisions an ar-
chitecture that allows many of the core algorithms and tools to be
reused an/or extended to support simple and rapid implementations
of the similarity service for new entity types. A detailed discussion
of the architecture is beyond the scope of this article.

1.1 Motivating Scenarios
Observations of business users in various roles as they compiled lists
of companies makes clear the extent to which context influenced
intent and thus which criteria users would use, often implicitly, to
determine whether a candidate was "similar" to others on a list they
were compiling. This context reflected their role and intended use,
for example whether they were a business development practitioner
searching for potential companies to acquire, a project manager
searching for suppliers, or a salesperson looking for new customers.

In one commonly observed use case, the user begins with a small
set of known companies — or perhaps even a single company —
and looks for others like it. This use case arises in many different
situations, leading to different similarity criteria and thus different
judgments on whether a specific company belongs with others
on their list. Context can influence the extent to which a specific
feature is important or irrelevant, and, if relevant, if the user’s
goal in finding similar companies is to adhere to or expand from
values for that feature currently on their list. Examples based our
observations include:

(1) A user is only interested in companies based in Canada. All
her starting examples are in Canada, and she would
like the others to be there as well.

(2) A firm has partnered successfully with companies in sev-
eral European countries, and hopes to expand by partnering
in other geographies. All their existing examples are in

Europe. They want companies that are like those but
not in Europe.

(3) A user wants to build a comprehensive list of companies
from around the world. He is familiar with the local mar-
ket, so all his examples happen to be in it. He’d like help
filling in the list with companies from a broad range
of countries, so diversity of geography is important to
him.

(4) Geography is irrelevant to the user. No attention should
be paid to where the companies already on the list happen
to be based.

Context can also influence whether the user intends that a spe-
cific feature simply be present in the description of a candidate, or
predominant, as seen in the following examples:

(1) An executive wants to acquire a company that produces
fitness tracking hardware. She would prefer one that focuses
on this as a majority of their business; otherwise she would
have to acquire business operations she doesn’t want.

(2) A sales development practitioner is looking for customers for
health-related components and services, andwould therefore
like to find as many fitness device makers as possible. He
doesn’t care if they have other product lines as well.

(3) A competitive analysis team wants to monitor what all the
players in a market are doing. They want this list to be as
exhaustive as possible so they don’t miss anything.

In many cases, users can describe an ideal candidate. In such
scenarios the user explicitly articulates a set of attributes that are
used by the system to search for a set of similar companies. For
example, the user may express interest in "AI acceleration hardware
vendors who are headquartered in the European Union and who
have between 100 and 300 employees". Even in such cases much is
unstated; users we observed would typically not want a company
currently strongly partnered with a competitor or built on tech-
nology incompatible with that used in their other products. Such
criteria are often understood implicitly by colleagues, but must
be revealed through interaction with the system, and potentially
learned given sufficient examples of past lists compiled in similar
situations. (Here too the question of similarity arises in determining
what makes a situation similar to another.)

Note that even in situations in which users must ultimately de-
cide on a single result, such as the one company to acquire or single
city to choose as their headquarters, showing a list of candidates
is necessary as an intermediate stage. Doing so enables them to
understand the universe of possibilities, helps surface criteria they
did not realize or remember were important, and can be crucial
to increasing confidence in the selected result as the best of the
available options.

2 USER NEEDS AND SYSTEM DESIGN
Our work has been informed throughout by direct involvement
of expert business development practitioners in various divisions
of a large corporation. This has included in-depth semi-structured
interviews with six practitioners who described their current prac-
tices, walked through a typical project and described the materials
they used and lists they were building and maintaining, described
current exploration projects, and identified the main pain-points
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they faced. In addition, we conducted a one-day workshop with
ten practitioners to further probe practices and envision potential
system features. Finally, a dedicated team of four business develop-
ment professionals met with us on a regular basis to review designs
and test prototypes as we iteratively developed the similarity tool.

Current methods for identifying companies include perform-
ing Internet searches, reading analyst reports, monitoring news,
patent, and trade publications, and searching specialized company
databases. Especially with established industry segments, articles
identifying “top” companies often exist; while users found these
useful as one source, they were rarely comprehensive and could not
be relied upon alone. With emerging areas such as those in which
startups are often engaged, or with niche areas involving very spe-
cific technologies or applications, no such lists of top companies
typically exist. Users report spending hours, days and in some cases
up to two weeks developing lists of relevant companies before even
starting more in-depth analyses.

Learnings from these sessions with users indicated our service
would need to be fast enough to aid real-time discovery, capable of
integrating into existing workflows and robust enough to distin-
guish between different notions of similarity. Thus, the features,
algorithms, and associated hyperparameters we developed for our
service were driven by real user feedback and motivated by the
use-case of discovering companies.

However, the system we developed served just one domain. In
order to serve a multitude of domains, we formed two hypotheses
which detail the design such a system would need.

First, a generalized similarity service would be required to main-
tain a notion of universal semantic types which could span across
domains. In this way, an entity agnostic generalized similarity ser-
vice could easily encompass a new domain with a basic ontological
understanding of universal types. A company name, person name,
and a song name all share a similar semantic value. Accordingly,
comparisons between names in different domains, whether it be
companies, people, or songs can utilize many of the same opera-
tions.

Second, a generalized similarity service would require domain-
specific comparators tuned via comparison to user judgments. As
an example, domain-specific comparators tuned by users would be
required in order to compare “net-worth” for companies, people or
songs. Streamlined user sessions, like we had with business users,
could be used to extend domains by learning from users.

3 SYSTEM CAPABILITIES
Our research goal is the creation of a generalized similarity service.
The service must include corpora, tools, algorithms, and interaction
mechanisms necessary for users to search for, analyze, and reason
about entities that are similar to one another, to a user’s model of
an entity, or a combination of the two. The service adapts to the
intent and context of the user.

We define a set of capabilities that a Generalized Similarity ser-
vice will exhibit, shown in Figure 1.

3.1 User Mental Model
In the context of generalized similarity, intent is a critical ingredient
to finding similar entities. If a user says, "find me companies bigger

Data Feeds
(Multiple entity types)

Data Management 
(Ingestion, Curation)

User Experience
(Interface, Visualization, Dialog)

User Query and Execution
(Vectorization, Nearest neighbor search)

User Mental Model
(Intent, context)

Semantic Mapping

Similarity 
Learning

Entity 
Linking

(Ontologies, Semantic Types)

Figure 1: Conceptual Model of Generalized Similarity

than XYZ", the user’s main intent here is to find companies along
with an additional requirement that the companies be "bigger"
than XYZ. If, however, the user says "find me employees working
at XYZ who have the skill ABC", the intent is to find employees
along with two additional constraints that the employees have
the skill ABC and that their current employer be XYZ. Intents are
global properties which highlight the goal of the user. Another
task which is closely related to intent recognition is that of slot
detection[3]. Slots are mentions of certain entities within the query,
which together with intent can be used as parameters for similarity.
For example, in the examples above, XYZ is a mention of entity type
Company. Similarly, ABC would be a mention of EmployeeSkill.

Intent recognition is usually treated as a semantic utterance
classification problem whereas slot detection is treated as a se-
quence labeling task. Popular classifiers for the former task include
support vector machines (SVMs) [31] and deep neural network
models [28]. For sequence labeling, popular approaches include con-
ditional random fields (CRFs) [25] and maximum entropy Markov
models (MEMMs)[20]. The current state-of-the-art approaches for
these two tasks make use of Recurrent Neural Networks (RNNs)
[17, 22, 34]. Joint approaches [12, 18, 21], which solve both the
sequence tagging problem (slot detection) as well as the sentence
classification (intent recognition) problemwith a single model, have
been proposed in recent literature which achieve state-of-the-art
as well. Joint models make use of the encoder-decoder architecture
originally proposed for machine translation [7].

Finally, we expect that research in search result diversification [13]
will play an important role in understanding the user’s intent. By
systematically diversifying search results based on an intent model,
it may be possible to infer users’ intent based on their selection of
results.

3.2 User Experience
The interpretation of search results can benefit from novel presen-
tation and interaction techniques, especially when such techniques
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are designed to help users understand aspects of similarity. Our
interest is in complex entity types which are typically characterized
by high dimensionality. We have explored dimensionality reduc-
tion techniques such as t-SNE [19] and heat maps to aid users in
gaining insight into search results. We believe the ability to inter-
actively explore high dimensional spaces [5] is highly beneficial to
a generalized similarity service.

Engaging in natural language dialog with a user will be impor-
tant. Language is the natural basis for generalized communication
and it is likely that in the future, systems able to communicate in
this way will be distinguished not by any notion of user interface
but by howwell they act upon the user’s intent. Since we are dealing
with high dimensional data and complex user mental models, we
posit that multi-modal [24] conversational interfaces [15] will ulti-
mately provide the most natural and effective means of interaction
for Generalized Similarity services.

3.3 User Query and Execution
Similarity search is focused on finding an instance of an entity that
is close to a query entity[32]. Our use cases involve the discovery of
a set of instances close to the query, hence techniques that identify a
set of neighbors, i.e. approximate nearest neighbor (ANN) search al-
gorithms, are central to generalized similarity. One relevant family
of algorithms is Locality Sensitive Hashing (LSH). In LSH, hashes
(codes) of entities are created with the express goal of maintaining
relative distance in the input space in the hash codes themselves.
Ideally, very close neighbors in the input space are hashed to the
same code, making it very efficient to determine close neighbors.
LSH was introduced in 1997 [4]. Since then there has been a steady
progression of LSH algorithms (e.g. Simhash [6], Spectral hashing
[33], Cover Trees [2], Product Quantization [14]). We are experi-
menting with different LSH algorithms to understand their efficacy
with generalized similarity.

Capability to handle nearly all forms of information including
unstructured information will be essential. Entities are ultimately
considered to be a collection of attributes (features, dimensions)
that are typically a combination of structured and unstructured
data.

Each of the aforementioned hashing functions are predicated
on being able to represent entities in a vector space. Since our
interest is in highly complex entities (e.g. people and companies),
the data that are associated with the entities occupy a wide range
of representations including structured and unstructured data (text,
image, video, etc). These data formats must be converted to a vector
representation in order to be useful to existing ANN algorithms. Our
current implementation focuses on text.We have implemented tf-idf
[27] as our text vectorization technique. We have also explored the
use ofWord2Vec [23] but it did not achievemeasurable performance
improvements over tf-idf. Other techniques we anticipate using are
one hot encoding (for categorical data) and Simhashing for nominal
data. The vectorization methods we intend to explore in the future
are likely to be most effective when they encode semantics of the
entity attributes in a way that ANN algorithms can meaningfully
discriminate among entities based on the relevance of the encoded
semantics. A complete review of vectorization techniques for all
modalities (e.g. text, image, video, sound, etc.) is beyond the scope

of this paper. We anticipate a lot of experimentation to determine
the best techniques for the various data types and use cases that
are ultimately required for generalized similarity.

3.4 Semantic Mapping
Semantic mapping is an abstraction that allows us to operate across
a broad range of real-world concepts without directly interacting
with the raw data and their formats. The representation of ‘real-
world’ data is manifold and its management is a long-standing
challenge of software engineering. Semantic mapping allows us
to utilize a standard representation for a particular meaning and
transparently provide transformations of actual data to a normal
form (without changing the sourced representation) at time of
access. This capability focuses on the replacement of data with
meaning at a foundational level, and in so doing propagates a natural
semantic model that permeates the entire system; not just the user
interface. This is not an entirely new idea; the work of the W3C
Semantic Web project is directly concerned with this principle, and
much work has already been done to establish thesauri (ISO 25964)
that formalize this principle.

Not having semantic abstraction means that the user of the
system is only able to express intent in ways allowed by the system’s
implementation. This has the disadvantage that it both reveals, and
is dependent upon, the specific nature of the underlying system;
making any attempt to evolve the system disruptive to the user,
exposing the effects of intentional and unintentional obsolescence
on existing results.

Semantic mapping also helps in analyzing collection of entities.
We have observed use caseswhere usersmaintain list of entities, like
companies that are under consideration for acquisition, partnership
or as potential customers. In all such scenarios, it is useful to be able
to understand what makes the companies on the list similar and
use that knowledge to search for other companies that naturally
belong on the list.

The ingestion of data from multiple data sources (see subsection
on Data Sources) requires the linking of data to entity instances.
We include entity resolution in the semantic mapping subsection
because an understanding of the semantics of attributes greatly
enhances our ability to accurately link attributes to an entity. The
entity resolution problem is a challenging area of research in its
own right. [29][8]

Semantic abstraction suggests a way that we can use natural
language and ontologies to establish context, and guide interaction
with the underlying information models, based upon a derived
representation of the user’s mental model and intended query. Not
all of this needs to be implemented at once, and any implementation
is expected to be gradual. In contrast, the principles must permeate
both architecture and design from the start.

Ontologies are used as a way to represent entity types such as
company, organization, or industry with each ontology containing
zero or more elements representing the "ideas" that constitute the
entity. For example, a company may be described using ideas of
location, size, industry, funding, and so on.

From a practical perspective this ontological model fits conve-
niently with the principles of an object-relational model normally
used to isolate a program from the physical realities of how data
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is stored. We extend this paradigm to provide operations that use
the semantic representation of the data with a set of contextually
appropriate operations. Every semantic value is represented as an
object and raw data is never accessed directly.

3.5 Data Management
Management of data in AI systems, including ingestion, curation,
annotation and entity resolution, is known to present substantial
challenges and account for much of the effort when developing
new AI solutions.

Data sources can include public data, licensed data, data ex-
tracted from web crawls and many other sources. Many data are
“noisy”(web, crowd sourced data, news, blog, etc.). It is also common
to encounter conflicting data, which should be managed in ways
that are common across entity types. For a generalized similarity
service to provide valuable results, it is necessary to keep the in-
formation in the system "fresh". The data management subsystem
must therefore be capable of efficiently and periodically refreshing
the data from a disparate set of data sources.

3.6 Data Sources
We envision an engine that can work with multiple entity types
(People, Companies, Charities, Schools, Countries, Houses, etc.).
The engine’s core components will be agnostic to any individual
entity type. We do expect that some modification of the ontological
model will be required for each new entity type, but the goal is to
create an engine that minimizes the development cost of implement-
ing a similarity capability for new entity types or use cases. The
intent here is that semantic mapping be a continuum that connects
the language of the request to the entities and operations used to
satisfy it; an exciting possibility being that a simple restatement
may be all that is required when intent is misunderstood. In rare
cases specialization may require that new entities be introduced,
but in general it is limited to new operations over existing entities.
An example of where we have observed specialization in the com-
pany domain is when we pre-process descriptive data to remove
"noisy" terms such as Corp. and Inc.

Our experience with building a similarity service for companies
taught us that a robust representation of companies requires the
integration of multiple data sources in order to provide coverage
across the world of companies and deep knowledge of individual
companies. Coverage refers to having as complete a set of entities
as possible. When dealing with companies, we found that different
data sources had strengths and weaknesses with respect to the
completeness of their data stemming from geographic, industry,
company type and other focii. Similarly, individual data sources
tended to focus on different attributes of companies, e.g. some
had relatively complete data on company financials and others on
venture capital and/or private equity funding. No single data source
contained all the data we required, necessitating integration and
entity resolution of data from multiple sources.

3.7 Iteration and Learning
The Generalized Similarity use case described in Section 1.1, Moti-
vating Use Cases, are fundamentally iterative in nature. In all cases,
users refine their understanding of the entities they are working

with, informed through exploration of the space. There are several
opportunities to employ learning techniques as these iterations oc-
cur. There are opportunities to learn the users’ intent, and to learn
how other users with the same intent altered their understanding
of what they were searching for. As an example, if a user rejects
all suggestions of companies with fewer than 100 employees, the
system can infer that their intent is to focus on larger options. This
can be tested by probing with other suggestions, or by explicitly
requesting confirmation. We also expect that different intents will
result in weighing the importance of entity attributes, which can
be learned through machine learning. This knowledge can then be
applied to support new users with similar intents.

As is detailed in section 4.2, we also employed learning tech-
niques to tune the similarity algorithm.

4 IMPLEMENTATION FOR COMPANY
SIMILARITY

Our initial foray in building a system integrating similarity was in
the context of a tool we built to assist business users with construc-
tion of lists of companies, and discovery of additional companies
that would be good candidates for addition to their lists.We describe
here the prototype system we built for them.

Users can create named lists, and manually add companies they
already know about to their lists by searching for their names in
a database of approximately 2.5 million known companies. The
company corpus is an integration of two commercially available
data sets (Crunchbase 1 and CapitalIQ 2) and is being augmented
with publically available data from other sources. By clicking on
a search result, a user can see a summary of information about
the company as shown in Figure 2. A user can choose to add the
company to a list, or view more details about it. Searches are stored
and can be later utilized throughout the system.

Once a user has added companies to a list, they can apply a
match-multiple algorithm (section 4.4) to find companies similar to
the list overall. After selecting the "Similar Companies" tab, a user
will be presented with suggested companies. By default, suggested
companies are shown in a matrix in descending order with the most
similar on top as shown in Figure 3. A user can refine the suggested
companies shown by applying filters and sorting the remaining
results. Additionally, a user can select to see the full details for a
suggested company, or add it to their list. Filtering and ordering
which is applied is stored such that it can be utilized throughout
the system. This interaction is one of many examples employed for
capturing user intent.

A user can also view a visualization of the list of suggested com-
panies (Figure 4). In this view, the set of suggested companies is
displayed on a heat map, showing how similar each suggested com-
pany is to companies on the original list. The original companies
are listed on the left and suggestions are across the top; each square
is colored based on the pairwise similarity of the companies whose
intersection it represents. Hovering over a company displays a brief
description of it, and users can add companies to their list directly
from the visualization.

1https://www.crunchbase.com/
2https://www.capitaliq.com
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Figure 2: Dropdown showing the summary view of a company.

Figure 3: Set of companies similar in description to a list as awhole. This set can be filtered or sorted by several of the company’s
properties

Figure 4: Heatmap view showing similarity of list recommendations to items already on the list
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Figure 5: Heatmap view with suggested companies sorted by similarity to the first company already on the list

Figure 6: View showing news articles related to key topics associated with the list, with one article entry expanded, showing
main text and company entities found in the article

Users can sort the heat map by clicking on any of the list com-
panies on the left, letting them easily see which of the suggested
companies are most similar to it (Figure 5).

4.1 News Monitoring
A user can view news stories [1] topically related to the companies
on the list as in Figure 6. These topics are selected from a list
of thirty automatically extracted concepts; users can also enter
concepts manually. Topics which are selected are stored, and can
be used for determining user intent.

Users can optionally specify that news results should focus on
specific categories of events, such as those related to legal or fi-
nancial issues. Additionally, we extract and display names of any
companies mentioned in the article so they can be easily added to
the list.

4.2 Computing Company Similarity
Our company similarity calculations are based on the assumption
that similar companies have overlapping key words in their descrip-
tions. We estimate the similarity between two companies via the
following steps.
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Figure 7: t-SNE visualization showing companies and recommendations for three lists. Those similar to multiple lists are
repeated, connected with black lines. Hovering on a node highlights the lists in the legend (right) for which it is suggested.

• Each description is preprocessed to filter out unimportant
text, stop words, and boilerplate phrases. We also remove
names of specific companies and locations, which generally
don’t contribute to functional similarity. We identify these
words and phrases with a publicly available Natural Lan-
guage Understanding service3. The remaining text is then
lemmatized and this process is repeated for the description
of all companies in the database.

• A term frequency-inverse document frequency (tf-idf) model
is built using the preprocessed descriptions. Each company
is now represented by a row in the tf-idf matrix. A tf-idf
model has various parameters such as the minimum number
of documents a token must appear in for it to be consid-
ered in the vocabulary,mindf, and similarly, the maximum
number of documents a token must appear in to consider
it important, maxdf. As there is no well-defined heuristic
to tune these parameters, we defined a surrogate metric to
evaluate the performance of the tf-idf model and used this
metric to choose the best parameters for our model. (We
discuss this further in the next section).

• We define the similarity between two companies as the co-
sine of their tf-idf vectors.

sim(companyA, companyB ) = cos(tf-idfA, tf-idfB )

If we want to find the n most similar companies to company
A, we need to find the similarity between company A and
all companies in the tf-idf matrix. This can be done with a
simple matrix multiplication.

sim(companyA, all companies) = cos(tf-idfA, tf-idfmatrix)

This gives us a column of all similarity scores, from which
we pick and return the top n corresponding companies.

3https://www.ibm.com/watson/services/natural-language-understanding/

4.3 Refinement using ground truth (expert
ratings)

As discussed above, we define an evaluation metric to measure the
performance of the tf-idf model. For this, we needed ground truth
data.We annotated 3000 pairs of company descriptions by assigning
each pair a rank of 1 (strong), 2 or 3 (weak). We considered 5 and 7
point scales, but based on the experience our subject matter domain
experts had with annotating the ground truth, we settled on the
3 point scale. The simpler 3 point scale also matched how they
think about company similarity. To evaluate the performance of the
model, we got the similarity scores from the model (as described
in the previous section) for all 3000 pairs and then calculated the
Spearman’s rank correlation coefficient. We iterated over several
values ofmindf andmaxdf, and picked the values that resulted in
the best Spearman score.

4.4 Similarity Algorithms for Lists
Our approach to finding the top companies that match a list L of
companies is done in three steps.

• For each company inL, find its similar companies, each
with its similarity score We employ our similarity algo-
rithm based on company description text, as explained in the
previous section. We have developed similarity techniques
that also take into account structured data, such as number
of employees, revenue and location, but this is outside the
scope of the work reported here.

• For each matching company found in step 1, find its
aggregate score, based on the individual similarity scores
obtained in step 1 Each possibly matching company mi
now has an array of similarity scores, Si , one for each com-
pany in the input list L. An aggregation function is applied
to Si to produce the aggregate score aggi formi . We have
experimented with three aggregation schemes: Borda, Aver-
age, and Best. Average and Best are derived directly from the
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array or scores, where Best uses the highest score and Aver-
age uses the average of all scores. Borda is a voting scheme
based on the ranks of companies on the match lists: each
company in the original list ranks its matches, and the Borda
count of a matched company is the sum of all its ranks, such
that lower is better.

• Sort thematching companies by their aggregate scores,
aggi , and return the top ones.

The initial list input by the user can be used to tune the weights
of the similarity function to realize a weighted cosine similarity
function [16].

4.5 Visualizing Similarity Across Lists
To help the user find matching companies of interest based on
similarity to one or more lists, we employ a t-SNE based [19] visual-
ization. One variant takes the pairwise similarity matrix, converts
it to a distance matrix, and uses t-SNE to produce 2D coordinates,
so that companies are positioned closest to the ones most similar.
When several lists are provided as input (as shown in Figure 7), the
visualization helps identify matching companies that are similar to
more than one list.

A second variant uses a force-based layout for a graph, in which
each company is a node, and two nodes are connected if their simi-
larity is above a given threshold. As wemove a threshold slider from
0 to 1, the graph gets sparser, and one can identify neighborhoods
and clusters of interest.(as shown in Figure 8) Our implementation
uses a back-end service to compute the similarity matrix between
all pairs of companies before rendering the graph. By running a
simple analytic on the similarity matrix we can derive a reasonable
starting value for the slider. For example, we can target an initial
density of 30% by choosing a threshold that is just above 30% of the
set of values in the matrix.

5 USER FEEDBACK
Initial feedback from business users has been quite positive, de-
scribed as naturally fitting how they often approach their task
and a faster way of identifying companies than the searches and
document perusal they typically do. Users often start with several
known companies in mind; in fact, in some cases their goal is even
described as "finding more companies like X and Y". Users reported
that the system recommended companies they knew about and ex-
pected to see, as well as making them aware of relevant companies
that they had missed in their earlier searches. Some users also said
that they would use our system’s similar companies feature as a
final check for any list they created, to catch companies they may
have missed in their other research.

We conducted a preliminary test with 6 subjects creating 3 lists
each. Subjects were asked to create lists of 10 companies starting
with 3 or 4 seed companies. Subjects were asked to create lists of

(1) Companies producing meatless meat substitutes,
(2) Companies creating smart headphones with AI assistance,

and
(3) Companies developing helmets with integrated heads-up

displays.
Despite the fact that the corpus of company information for sim-
ilarity comparisons available to us was limited (both in terms of

companies covered and depth of description), all subjects discovered
relevant candidate companies that had not been found by subjects
performing traditional web searches. This supports the potential
use of our tool as an accompaniment to other searches.

6 FUTUREWORK
Our planned future work falls into four general categories: improv-
ing text-similarity scoring, developing visualization and interaction
mechanisms that help users define and refine their similarity crite-
ria, conducting more formal and extensive user studies to assess
and improve the overall usefulness of our generalized similarity
service, and demonstrating generality by applying the service to
multiple domains.

Thus far, our text similarity scoring has been based mainly on
simple variations of tf-idf. While not reported here, preliminary
experiments with neural nets suggest that they hold promise. Given
recent successes in applying deep learning networks with long
short-term memory (LSTM) to natural language processing [35],
we plan to pursue such approaches, possibly combining them with
other established techniques such as locality-sensitive hashing and
other approximate nearest-neighbor algorithms. Distance metrics
such as Weighted Cosine Similarity[16] are also something we plan
to experiment with.

Another important area for further research and development
will be to capture users’ mental models through multi-modal, con-
versational interfaces and to translate those models through the
semantic abstraction layer. We plan to add mechanisms for users
to see and explicitly refine the system’s understanding of their sim-
ilarity intent including the use of structured information (number
of employees, revenue, location etc.) This will include specifying
goals for judging similarity and recommending similar items that
differ from those based on items already on the list (for example,
to indicate the desire to add items from a geography not currently
included). Other planned features include learning from negative
feedback, for example by adjusting the weights of outlier companies
similar to rejected companies, as well as mechanisms for collab-
orative list building. We will draw on the rich body of literature
in relevance feedback for improving the retrieval performance, es-
pecially techniques that yield high recall [30]. Additional research
will revolve around learning from implicit feedback and interaction
traces stored during the search and exploration process in order to
improve suggestions.

Furthermore, we plan to conduct additional studies evaluating
the quality of lists created using our system by comparison to lists
created through other means, including expert ratings of appro-
priateness of included items, identification of any obvious missed
items, and comprehensiveness of the list overall.

Finally, as we believe our approach generalizes readily to appli-
cations that require creating lists from among a large set of candid
ates, we intend to explore creating lists in other domains such as of
people, projects, grant offerings, and studies.
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Figure 8: Force directed graph showing similar companies to a single company. The number of companies connected by black
lines is controlled by the slider in the upper left. Hovering on a node displays the company descriptive text.
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