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ABSTRACT
As one critical task in the data analysis pipeline, data cleaning is
notoriously human labor-intensive and error-prone. Knowledge
base-assisted data cleaning has proved a powerful tool for find-
ing and fixing data defects; however, its applicability is inevitably
bounded by the natural limitations of knowledge bases. Meanwhile,
although a vast number of knowledge sources exist in the form of
free-text corpora (e.g., Wikipedia), transforming them into formats
usable by existing data cleaning tools can be prohibitively costly
and error-prone, if not at all impossible.

Here, we present DeepClean, the first end-to-end data cleaning
framework powered by free-text knowledge sources. At a high level,
DeepClean leverages a knowledge source through its question-
answering (QA) interface and achieves high-quality cleaning via
iterative question asking. Specifically, DeepClean detects and re-
pairs data defects in three stages: (i) Pattern extraction - it automat-
ically discovers the semantic types of the data attributes as well as
their correlations; (ii) Question generation - it translates each data
tuple into a minimal set of validation questions; (iii) Completion
and repair - by checking the answers returned by the knowledge
source against the data values, it identifies erroneous cases and
suggests possible fixes. Through extensive empirical studies, we
demonstrate that DeepClean is applicable to a range of domains,
and can effectively repair a variety of data defects, highlighting data
cleaning powered by free-text knowledge sources as a promising
direction for future research.
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1 INTRODUCTION
Real-world datasets often contain various types of defects (e.g., in-
accurate, missing, or duplicate values). Data cleaning, the process of
detecting and fixing data defects, is one critical yet still overlooked
task in the data analysis pipeline. Indeed, it was estimated that
on average data scientists spend over 50 percent of their time on
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a1 a2 a3 a4 a5

t1 M. Curie Poland Nobel Prize in Physics 1911 U of Paris

t2 M. Planck Nobel Prize in Physics 1918 U of Munich

t3 A. Einstein Germany Nobel Prize in Physics 1921 ETH

t4 Banting United States Nobel Prize in  Medicine 1923 U of Toronto

t5 P. Dirac England Nobel Prize in Physics U of Bristol

Figure 1: A relational table T of Nobel Laureates, with miss-
ing and erroneous values highlighted.

massaging and cleaning unruly data, before it can be explored for
useful insights [17].

Recently, knowledge base-assisted data cleaning (e.g., [8]) has
emerged as a promising approach for such tasks. Intuitively, it per-
forms cleaning by aligning the (dirty) data with publicly available
knowledge bases (e.g., Freebase [5], DBPedia [19], and Yago [14]).
Compared with prior art (e.g., [4, 12, 24, 25, 29]), it significantly im-
proves the repair accuracy and reduces the requirement for external
resources (e.g., domain expertise [34] and master data [11]). Yet, the
applicability of this approach is inevitably bounded by the natural
limitations of knowledge bases, such as: (i) their fixed schema are
not expressive to describe many complicated relationships, (ii) they
are sparsely populated with respect to many domains, and (iii) they
often contain stale information, due to infrequent update cycles.

Meanwhile, a vast number of knowledge sources exist in the form
of free-text encyclopedias (e.g., Wikipedia), of which content qual-
ity and format is strictly governed by detailed guidelines. Moreover,
such knowledge sources are constantly maintained and updated.
Compared with traditional knowledge bases, free-text encyclope-
dias often provide larger coverage, richer textual representation,
and more accurate information [32]. However, while knowledge
bases are designed for machines to process, free-text encyclopedias
are designed for humans to read. Transforming them into formats
directly usable for existing data cleaning tools can be prohibitively
costly and error-prone, if not at all impossible.

Interestingly, to date a variety of question-answering (QA) mod-
ules (e.g., [6, 10, 31]) have been built for free-text encyclopedias to
automatically answer natural language questions (e.g., “What Nobel
Prize was awarded to Marie Curie in 1911?”). Built using deep neu-
ral networks (e.g., LSTM) and trained using large question-answer
corpora (e.g., the SQuAD dataset [22]), these modules provide QA
capabilities comparable to human level comprehension1. Thus, in
this paper, we pose the following question:

1As of January 22 2018, the R-NET+ [30] model has outperformed humans on the
SQuAD task in terms of ExactMatch score (http://stanford-qa.com/).
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Can we achieve high-quality data cleaning by leverag-
ing a free-text encyclopedia via its QA interface?

Challenges.While conceptually simple, achieving this goal rep-
resents a set of non-trivial challenges.

First, translating the data cleaning task into a sequence of ques-
tion asking and answer checking is challenging. It requires compre-
hensive understanding of the data semantics (e.g., attribute types
and correlations). Yet, in realistic settings, we often lack reliable,
meaningful labeling of the data.

Second, multiple types of defects (e.g., missing and erroneous
values) are often intertwined in the data. As the data attributes
are interdependent, repairing one value often depends on the pres-
ence and correctness of other values. This leads to the challenging
problem of scheduling the validation order for different values.

Last but not least, to scale up to large number of attributes and
tuples, it is desirable to minimize the number of questions issued
to the QA interface.

Our Work. Here, we present the design, implementation, and
evaluation of DeepClean, the first end-to-end data cleaning frame-
work powered by free-text knowledge sources. At a high level,
DeepClean achieves high-quality data cleaning in three major
stages, as illustrated in Figure 2.

(i) Pattern Extraction - We assume a “cold-start” setting wherein
the data semantics is unknown a priori. In this stage, DeepClean
automatically discovers the attribute types and correlations by
bridging the data with the knowledge source through its QA inter-
face, without requiring any manual annotations.

(ii) Question Generation - Based on the discovered data semantics,
DeepClean defines a set of question templates, each designed to
verify one attribute. Using these templates, DeepClean is able to
generate a set of validation questions for each data tuple.

Example 1.1. In Figure 1, to verify the third attribute of the first
tuple in the table (i.e., “Nobel Prize in Physics”), DeepClean gener-
ates the question as: “Which Nobel Prize for Laureate M. Curie and
Year 1911?”.

(iii) Completion and Repair - Finally, DeepClean performs clean-
ing by iteratively issuing validation questions to the QA interface,
checking returned answers against data values, identifying defects,
and suggesting possible fixes. To maximize the cleaning effective-
ness and to minimize the QA overhead, DeepClean carefully sched-
ules the execution order of validation questions.

Example 1.2. To the question in Example 1.1, the QA interface
returns the answer of “she won the 1911 Nobel Prize in Chemistry”,
with the most likely answer underlined. Given the conflict between
this answer and t1[a3], an error is pinpointed and the possible repair
of “Nobel Prize in Chemistry” is suggested.

We prototype DeepClean and evaluate its efficacy using a vari-
ety of real datasets. It is shown that DeepClean is applicable to a
range of domains, and can effectively identify and fix a variety of
data defects (including missing and erroneous values), thanks to
the extensive coverage and rich contextual evidence bestowed by
free-text knowledge sources.

Contributions. The main contributions of this paper can be
summarized as follows.
• We envision the paradigm of data cleaning by exploiting vastly
available free-text knowledge sources through QA interfaces, and
present DeepClean, the first end-to-end design that realizes this
paradigm.

• We prototype DeepClean and propose a suite of optimization
strategies that significantly improve its usability and applicability
in realistic settings.

• We conduct extensive empirical evaluation on the efficacy ofDeep-
Clean using a variety of real datasets. The results highlight data
cleaning powered by free-text knowledge sources as a promising
direction for further research.

It is worth emphasizing that we are not arguing to replace exist-
ing data cleaning tools with DeepClean. Indeed, as shown in our
empirical evaluation, DeepClean well complements existing tools,
especially in repairing values that exist in complicated interdepen-
dencies with other values. Thus, integrating DeepClean with these
tools is a future research topic with strong practical relevance.

2 OVERVIEW OF DEEPCLEAN
In this section, we motivate the overall design of DeepClean.

2.1 Preliminaries
We first introduce a set of fundamental concepts and assumptions
used throughout the paper.

Data TableWe assume that the (dirty) data is stored in a tabular
form, which is one of the most widely used data formats (e.g.,
SQL databases, Web tables, spreadsheets). In general, a table T
describes one type of entities (e.g., “Nobel Laureate”); each row
(tuple) of T represents one instance of that entity type (e.g., “Albert
Einstein”), and each column of T represents one attribute of that
entity type (e.g., “Alma mater”). A schematic table is shown in
Figure 1. For simplicity, we assume a single table T in the data,
while the discussion can be generalized to the case of multiple
tables.

LetA be the set of attributes in T . Given a tuple t ∈ T , its value
with respect to an attribute a ∈ A is called a cell, denoted by t[a].

Table Pattern. We assume a cold-start scenario in which T ’s
semantics is unknown a priori. There are two types of semantics
that DeepClean is designed to uncover: (i) the semantic type tp(a)
of each attribute a ∈ A, which is defined as its categorization in
the free-text knowledge source, and (ii) a’s correlation with other
attributes A \ {a}, which is defined as the subset of A \ {a}, cr(a),
that are highly correlated with a.

Example 2.1. In Figure 1, tp(a1) = “Laureate”, tp(a2) = “Nobel
Prize”, and tp(a3) = “Year”; cr(a3) = {a1,a4}, because the type of
Nobel Prize (a3) is highly correlated with both the laureate (a1) and
the award year (a3).

We refer to this collection of type and correlation information
G = {tp(a), cr(a)}a∈A asT ’s table pattern. For example, the pattern
of the table in Figure 1 is illustrated in Figure 3.
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t1 M. Curie Poland Nobel Prize in Physics 1911 U of Paris

t2 M. Planck Nobel Prize in Physics 1918 U of Munich

t3 A. Einstein Germany Nobel Prize in Physics 1921 ETH

t4 Banting United States Nobel Prize in  Medicine 1923 U of Toronto
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Figure 2: Illustration of DeepClean framework.

Laureate
a1

a2

a3

a4

a5

Country

University

Year

Nobel Prize

Figure 3: The table pattern of T in Figure 1.

Free-Text Knowledge Source. In this paper, we use Wikipedia
as a concrete instance of free-text knowledge sources, due to its
popularity and public nature.

Wikipedia is an online encyclopedia, of which content quality
and format is strictly governed by detailed guidelines. Unlike tradi-
tional knowledge bases, Wikipedia articles are constantly updated,
making it an ideal knowledge source for data cleaning tasks.

Wikipedia is organized as a repository of pages: each page de-
scribes one distinct topic (e.g., a person, a place, an organization),
while pages may be linked through page-links [1]. In addition to
topic pages, Wikipedia also maintains “redirect” pages, which list
alternative representations of given topics (e.g., “Marie Curie” ver-
sus “Marie Sklodowska-Curie”), and “disambiguation” pages, which
list pages of topics possibly referred to by ambiguous terms (e.g.,
Marie Curie may refer to either a physicist or a Polish film).

To organize the vast number of pages, Wikipedia also maintains
a hierarchical category system, in which each category groups
together pages on similar topics. Note that each page is possibly
associated with multiple categories. The fields of a Wikipedia page
used in DeepClean are summarized in Table 1.

Question Answering. To make better use of free-text knowl-
edge sources, a plethora of question-answering (QA) modules have
been built to automatically answer natural language questions
posed by users (e.g., “Which year was Albert Einstein awarded the
Nobel Prize?”). For Wikipedia, a variety of QA modules have been

Field Definition
title unique name
text detailed description

category categorization
page-link hyperlinks to other pages

Table 1. Fields of a Wikipedia page used in DeepClean.

proposed (e.g., [6, 10, 31]). Built upon deep neural networks (e.g.,
bidirectional LSTM) and trained using large question-answer cor-
pora (e.g., the SQuAD dataset [22]), these modules provide QA
capabilities comparable to human level comprehension.

Despite their significant variations, all the QA modules provide
two fundamental functions: (i) page retriever - given a retrieval
query q (e.g., “M. Curie”), it extracts a set of Wikipedia pages most
relevant to q; (ii) page reader - given a natural language question q
(e.g., “Which year was M. Curie awarded the Nobel Prize?”, it predicts
the span (i.e., a small piece of text within a Wikipedia page) in
which the answer to q most likely lies. For example, to the question
above, the QA module may predict the span of “she won the 1911
Nobel Prize in Chemistry”.

In implementing DeepClean, we treat the QA module as a black
box. Thus, the concrete QA module is immaterial, provided that it
offers accurate prediction for answer spans. In the following, we
instantiate the QA module with the DrQA model, which achieves
F1 score of 79.353 on the SQuAD dataset [6].

2.2 DeepClean in A Nutshell
Intuitively, DeepClean performs high-quality data cleaning by
translates this task into a sequence of question asking and answer
checking via the QA interface of the knowledge source. As illus-
trated in Figure 2, the high-level design of DeepClean consists of
three major stages, namely, pattern extraction, question generation,
and completion and repair.

Pattern Extraction. To make DeepClean applicable to real-
istic settings, we assume that T ’s semantics (attribute types and
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correlations) is completely unknown. In this stage, DeepClean
automatically discovers T ’s table pattern G by bridging T with the
knowledge source through its QA interface. Specifically, to identify
attribute types, we propose an instance-based “bootstrapping” ap-
proach; to find attribute correlations, we apply a weakly supervised
reward-guided search.

Question Generation. According to T ’s table pattern G, Deep-
Clean defines a set of question templates, each designed to verify
one attribute. Note that one attribute may be associated with mul-
tiple question templates, which enables (i) higher chance to find
relevant information in the knowledge source and (ii) more flexi-
bility in scheduling the question execution order in the next stage.
Based on such question templates, for each tuple, DeepClean gen-
erates a set of validation questions to verify each of its cells.

Completion and Repair. In this stage, DeepClean compares
answers returned by the knowledge source against actual cell values.
If conflicts are found, DeepClean pinpoints errors and further
suggest possible repairs (e.g., the most likely answer found in the
knowledge source).

Tomaximize the repair effectiveness and to minimize the number
of questions issued to the knowledge source, DeepClean carefully
schedules the question execution order by prioritizing questions
whose answers maximally reduce a tuple’s overall uncertainty.

Note that in addition to suggesting possible repairs, DeepClean
also provides the contexts within which the repairs are found (i.e.,
the answer spans). Such contextual information can be valuable for
the data analysts to make final repair decisions.

In § 3, § 4, and § 5, we elaborate on each of DeepClean’s core
components.

3 PATTERN EXTRACTION
We assume a “cold-start” scenario in which T ’s semantics is either
unavailable or unusable (an example is shown in Figure 1), which
is especially true for data constructed from Web resources where
cryptic naming conventions are often used. In the stage of pattern
extraction, DeepClean automatically discovers T ’s semantics by
bridging it with knowledge source through its QA interface.

Following existing work (e.g., [8, 12, 25]), our running assump-
tion is as follow: in realistic settings, the number of erroneous tuples
is relatively small, compared with the total number of tuples in T ;
thus, the aggregated information across a majority of the tuples
tend to be accurate.

We divide pattern extraction into two subtasks, discovering at-
tribute types and discovering attribute correlations, detailed in § 3.1
and § 3.2 respectively.

3.1 Discovering Attribute Types
Let A denote T ’s attributes. We define A’s semantic types using
Wikipedia categories (e.g., “Nobel Prize”). To discover A’s seman-
tic types, we adopt an instance-based “bootstrapping” approach,
which does not require any manual annotations. Intuitively, for
each attribute a ∈ A, we find the set of Wikipedia pages P(a)most
relevant to a and infer a’s Wikipedia categories by aggregating the
categories of the pages in P(a).

Disambiguation. For each cell value t[a] of tuple t ∈ T , we
fetch the set of Wikipedia pages P(t[a]) related to t[a] through the
page retriever of the QA interface (§ 2.1). We then classify t[a] into
three possible classes.
• Topic value, which corresponds to a specific topics in Wikipedia
(e.g., “Nobel Prize in Physics”). In this case, P(t[a]) contains one
unique page as t[a]’s topic page, denoted by pta .

• Ambiguous value, which potentially refers to multiple topics in
Wikipedia (e.g., “Banting”). In this case, P(t[a]) contains more
than one page. To find the exact one pointed to by t[a], a disam-
biguation process is necessary.

• Literal value, which is neither a topic nor an ambiguous value. In
this case, P(t[a]) is empty. Literal values tend to appear in the
text of other topic pages.
For an ambiguous value t[a], we perform two disambiguation

operations to identify its exact topic page among the set of candi-
dates P(t[a]). Recall that each Wikipedia page p is associated with
a set of fields (see Table 1). Below we use C(p) and L(p) to denote
p’s categories and page-links respectively.

Algorithm 1: Discovering Attribute Types
Input: relevant Wikipedia pages {P(t[a])}t ∈T,a∈A
Output: A’s semantic types
// disambiguation

1 Lqueued ← {t[a]}t ∈T,a∈A;
2 while not converged do
3 for t[a] ∈ Lqueued do
4 for each p ∈ P(t[a]) do

// attribute- and tuple-filtering

5 compute a-score(p) and t-score(p);
6 if a-score(p) = 0 or t-score(p) = 0 then
7 remove p from P(t[a]);

8 if pta is found then remove t[a] from Lqueued;

// categorization

9 for each a ∈ A do
10 Ta ← {t ∈ T |p

t
a is identified};

11 if |Ta |
|T |
> 0.5 then

12 for t ∈ Ta do populate C(pta ) ;
13 pick c∗ = argmaxc tf-idf(c,a);
14 else pick c∗ = the majority NER type of {t[a]}t ∈T ;

[Attribute-Level Filtering] In this operation, we examine the cell
values {t ′[a]}t ′ of other tuples t ′ ∈ T . Let T ′ represent the subset
of tuples such that for each t ′ ∈ T ′, t ′[a] is a topic value. We
then identify the set of categories shared by their corresponding
topic pages, denoted by

⋂
t ′∈T′ C(p

t ′
a ). Among P(t[a]), we search

for the pages whose categories maximally match
⋂
t ′∈T′ C(p

t ′
a ), as

measured by their attribute-level scores:

a-score(p) =

���(⋂t ′∈T′ C(p
t ′
a )

) ⋂
C(p)

�����⋂t ′∈T′ C(p
t ′
a )

�� (1)

where p is a page in P(t[a]).
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Example 3.1. In Figure 1, as a surname, t4[a1] (“Banting”) is an
ambiguous value, possibly referring to multiple notable figures. Yet,
all of t1[a1], t2[a1], t3[a1], and t5[a1] are topic values, which share
the category of “Nobel Laureates”. Among t4[a1]’s candidate pages,
only the page of “Frederick Banting” matches this category, which
we consider as t4[a1]’s topic page.

[Tuple-Level Filtering] In this operation, to disambiguate t[a],
we examine t ’s values with respect to attributes other than a. Let
A ′ be the subset of attributes such that t[a′] is a topic value for
a′ ∈ A ′ and L(pta′) be the set of pages pointed by some page-links
in pta′ . Then among P(t[a]), we search for the pages that frequently
appear in the sets {L(pta′)}a′∈A′ , as measured by their tuple-level
scores:

t-score(p) =

∑
a′∈A′ IL(pta′ )

(p)

|A ′ |
(2)

where IΩ(x) is an indicator function, which returns 1 if x ∈ Ω and
0 otherwise.

Example 3.2. In Figure 1, t3[a5] is an ambiguous value (e.g., it
may potentially refer to Ethiopia), while t3[a1] is a topic value.
Among t3[a5]’s candidate pages, only the page of “ETH Zurich”
appears in L(pt3a5 ), which is thus considered as t3[a5]’s topic page.

In practice, we interleave attribute-level filtering with tuple-
level filtering to maximize the effectiveness of disambiguation. In-
tuitively, as more topic values are uncovered, there emerge more
opportunities to apply the attribute- or tuple-level filtering.

Categorization. After maximally reducing the number of am-
biguous values, we proceed to discovering the attribute types. Given
attribute a, let Ta be the subset of tuples such that for t ∈ Ta , its
topic page pta is identified. We find a’s semantic type as the optimal
category by aggregating the categories of all the pages {pta }t ∈Ta .

Recall that the categories in Wikipedia form a hierarchy, while
each page is likely associated with multiple categories. To select
the optimal category, we preform the following procedure.

(1) For each t ∈ Ta , we first populate its category set C(pta ) by
including all their ancestor categories in the hierarchy (e.g., “Nobel
Laureates” as an ancestor category of “Nobel Laureates in Physics”);

(2) We then compute the term frequency-inverse document
frequency score tf-idf(c,a) = tf(c,a) · idf(c) for each category c .
The term frequency tf(c,a) measures how frequently c appears in
{C(pta )}t ∈Ta , while the inverse document frequency idf(c) mea-
sures how important c is. Specifically, we define tf(c,a) and idf(c)
as follows:

tf(c,a) =

∑
t ∈Ta IC(pta )(c)

|Ta |
idf(c) = log

ntotal
nc

where ntotal is the total number of pages in Wikipedia and nc is the
number of pages associated with c .

(3) Finally, we pick the category c∗ with the highest tf-idf score
as a’s semantic type.

In the case that most of {t[a]}t ∈T are literal values, we resort
to named entity recognition (NER) categories [20]. To detect t[a]’s
NER category, we search for t[a] in the topic pages of other cell
values {t[a′]}a′,a and apply the NER extractor of the Stanford
OpenIE library [2]. We define a’s semantic type as the majority
NER category among {t[a]}t ∈T .

Putting everything together, Algorithm 1 sketches the procedure
of discovering A’s semantic types.

3.2 Discovering Attribute Correlations
As will be shown in § 4, to generate questions effective for data
cleaning, it is crucial to understand the correlations between dif-
ferent attributes. For given attribute a∗ ∈ A, we are interested in
finding a minimal subset of A \ {a∗}, denoted by cr(a∗), such that
for tuple t ∈ T , t[cr(a∗)] (i.e., t ’s values projected on cr(a∗)) and
t[a∗] appear in the same semantic context (e.g., the same sentence)
with high probability. We refer to cr(a∗) as a∗’s correlation set. Fur-
ther, by aggregating such correlation sets, we groupA into a set of
“cliques”, similar to undirected graphical models.

Example 3.3. In Figure 1, a3 represents the type of Nobel Prize,
which is highly correlated with a1 (“Laureate”) and a4 (“Year”), while
a1 or a4 alone is insufficient to determine a3 (e.g., M. Curie won the
Nobel Prize in Physics in 1903 and the Nobel Prize in Chemistry in
2011). Thus, cr(a3) = {a1,a4}.

Reward-Guided Search. To find the optimal cr(a∗) for given
attribute a∗, we apply a weakly supervised reward-guided search.
Wemodel the search as a sequence of actions of adding one attribute
a time from A \ {a} to a set Aa∗ (which is initialized as an empty
set), and define the state space to be all the possible assignments of
Aa∗ (i.e., all the subsets of A \ {a}). Each action moves the search
from one state to another.

The value function measures Aa∗ ’s quality, which is defined in
a recursive form:{

v(Aa∗
⋃
{a}) = v(Aa∗ ) + π (Aa∗ ,a)

v(∅) = 0 (3)

where a represents the attribute added to Aa and the policy func-
tion π (Aa∗ ,a) scores the action of adding a to Aa∗ . Note that we
disallow adding duplicate attributes to Aa∗ .

We use a beam search strategy to find a state with the highest
value, which represents the optimal assignment of cra∗.

Implementation. Next we detail the implementation of this
search strategy.

Intuitively, we measure Aa∗ ’s quality with respect to a∗ as fol-
lows: for tuple t ∈ T , we generate a question asking for t[a∗]
conditioned on t[Aa∗ ] (the details of question generation are de-
ferred to § 4); if the QA interface is able to find the correct answer
with high probability, we consider that a∗ is highly correlated with
Aa∗ .

Thus we measure the value function v(Aa∗ ) as the overall accu-
racy of retrieving correct answers for t[a∗] given t[Aa∗ ] for each
t ∈ T , while the policy function π (Aa∗ ,a) is trivially the change of
accuracy due to adding a to Aa∗ . Using the beam search strategy,
the search for optimal Aa∗ is reduced to a sequence of question
asking and answer checking.

4 QUESTION GENERATION
Next we show how to generate validation questions to verify each
value of T .

Let G = {tp(a), cr(a)}a denote T ’s table pattern. For given tuple
t and attribute a∗, we verify the value of t[a∗] by generating one or
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more validation questions (which is dependent on the number of
correlation sets found for a∗). For simplicity of discussion, here we
assume cr(a∗) contains only one correlation set.

In our empirical evaluation, we find the following question tem-
plate particularly effective for extracting relevant answers. The
question template comprises a header and a body:

question(a∗, cr(a∗), t) → header(a∗) FOR body(cr(a∗), t)

Specifically, the header header(a∗) is generated from a∗ using
the following rule:

header(a∗) → Which tp(a∗) (tp(a∗) ∈ Wikipedia)
| Where (tp(a∗) = LOCATION)
| When (tp(a∗) = TIME)
| Who (tp(a∗) = PERSON)
| What (tp(a∗) = MISC)

Intuitively, if a∗’s semantic type tp(a∗) is described by Wikipedia
categories, we use “which tp(a∗)” as the question header; if tp(a∗)
is described by NER categories [20], we use the corresponding
question word directly.

The question body body(cr(a∗)) is generated from cr(a∗) and t
in a recursive manner:

body(cr(a∗), t) → tp(a) t[a] AND body(cr(a∗) \ {a})

Note that here we assume the attribute order in cr(a∗) is already
optimized as in § 3.2.

Example 4.1. In Figure 1, with a∗ = a3, cr(a∗) = {a1,a4}, and
t = t1, following the rules above,DeepClean generates the question
of “Which Nobel Prize for Laureate M. Curie and Year 1911”.

5 COMPLETION AND REPAIR
In the stage, DeepClean performs effective data cleaning by itera-
tively (i) submitting validation questions to the QA interface, (ii)
comparing returned answers against data values, and (iii) identify-
ing defects and suggesting possible fixes.

In DeepClean, we consider two types of defects, missing values
and erroneous values, which often co-exist in the data. Because
fixing a given attribute value depends on the existence and correct-
ness of other attribute values, it is crucial to carefully schedule the
execution order of validation questions.

A Unified Framework. Without loss of generality, consider a
given tuple t ∈ T that contains both missing and erroneous values.
Note that while missing values are obvious, erroneous values need
to be detected. We present a labeling-based algorithm that fills
t ’s missing values (completion) and corrects t ’s erroneous values
(repair) in a unified framework, as sketched in Algorithm 2.

Specifically, when attribute a∗’s correlation set cr(a∗) is empty,
there is no rule available to fix t[a∗], we thus assume t[a∗] is either
correct by default if t[a∗] is present, or unfixable if t[a∗] is missing
(line 3-6).

We fix the remaining attribute values in an iterative manner. if
for attribute a∗, the values of {t[a]}a∈cr(a∗) are all fixed, we consider
t[a∗] as ready, and submit question(a∗, cr(a∗), t) to the QA interface
and fix t[a∗] (line 15 - 16).

There may exist deadlock cases wherein two (or multiple) unfixed
attributes appear in each others’ correlation sets, while all the

Algorithm 2: Fixing Data Defects
Input: tuple t , table pattern G = {tp(a), cr(a)}a
Output: fixed tuple t”

1 Lqueued ← A, Lfixed ← ∅;
2 for a∗ ∈ Lqueued do
3 if cr(a∗) = ∅ then
4 if t[a∗] is missing then report t[a∗] as “unfixable”;
5 else add a to Lfixed;
6 remove a from Lqueued;

7 while Lqueued , ∅ do
8 Lready ← ∅;

// t[a∗] is ready to be fixed

9 if ∃a∗ ∈ Lqueued, cr(a∗)
⋂
Lfixed = cr(a∗) then add a∗ to

Lready ;
// resolve deadlock

10 else if attributes {a} are in deadlock then
11 pick a∗ = argmaxa |cr(a)

⋂
Lfixed |

|cr(a) | ;
12 add a∗ to Lready;

13 if Lready = ∅ then break;
14 for a∗ ∈ Lready do
15 execute question(a∗, cr(a∗), t) to fix t[a∗];
16 move a∗ from Lqueued to Lfixed;

17 for a ∈ Lqueued do report t[a∗] as “unfixable”;

attribute values of their dependency sets are present (no missing
values). In this case, we pick t[a∗] with the least uncertainty in
its correlation set (i.e., most of {t[a]}a∈cr(a∗) are fixed) as the next
value to be fixed (line 10 - 12).

In addition to suggesting possible fixes,DeepClean also presents
the answer spans from Wikipedia as contextual information to the
data analysts, who may then make final repair decisions.

6 EMPIRICAL STUDY
In this section, we empirically evaluate DeepClean using real-life
tabular data. The experiments are designed along three dimensions:
(i) the efficacy of pattern extraction, (ii) the efficacy of completion
and repair, and (iii) case studies.

6.1 Experimental Setting
We first describe the setting of our experiments.

Free-text knowledge source. We use the SQL dump of the
English Wikipedia as of 11/03/2017 as the free-text knowledge
source, and adopt the DrQA model [6] as its question-answering
(QA) interface, which together constitute DeepClean’s backend,
as shown in Figure 2.

Datasets. As currently there still lack benchmark datasets for
data cleaning tasks, we collect four datasets from Web for evalua-
tion:WikiTables,2 DBPedia,3 WebTables, and RelationalTables.
• WikiTables includes tables extracted from Wikipedia pages.
• DBPedia contains tables from the DBPedia knowledge base.
2http://downey-n1.cs.northwestern.edu/public/
3http://web.informatik.uni-mannheim.de/DBpediaAsTables/
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dataset # tables # tuples # attributes
WikiTables 19 668 54
DBPedia 10 417 24

WebTables 26 1,730 71
RelationalTables 2 9,949 5

Table 2. Statistics of the datasets used in the experiments.

• WebTables is a set of tables scraped from Web pages.
• RelationalTables contains two tables: Soccer4 describes soccer
players, their clubs, and nationalities; University5 describes US
universities and their addresses.

The statistics of the datasets are summarized in Table 2.
The attribute types (in terms of Wikipedia categories) and at-

tribute correlations in all the tables are manually annotated, which
we use as ground truth to measure DeepClean’s performance.

All the algorithms are implemented in Python.

6.2 Experimental Results
Next we present the results of our empirical study. Due to space
limitations. More details are referred to our technical report [36].

Pattern Extraction. Recall that in the pattern extraction stage,
DeepClean automatically discovers the data semantics (including
attribute types and correlations). For each attribute, we compare its
attribute type and correlation set found by DeepClean against the
human-annotated ground truth. As in realistic environments, we
face possibly dirty data. To simulate such settings, we inject errors
into the data by randomly selecting 10% cells in all the tables and
modifying their values.

dataset type correlation
WikiTables 0.84 0.81
DBPedia 0.88 0.81

WebTables 0.77 1.0
RelationalTables 0.69 0.84

Table 3. DeepClean’s accuracy of extracting attribute types
and correlations (error rate = 10%).

Table 3 summarizes DeepClean’s performance of extracting at-
tribute types and correlations. It is noted that DeepClean attains
reliable accuracy in terms of discovering types and correlations,
with average accuracy above 0.6 and 0.84 across all the datasets.
Especially in theWebTables dataset, DeepClean successfully dis-
covers correct correlations for all the attributes.

dataset type correlation
WikiTables 0.72 0.83
DBPedia 0.76 0.92

WebTables 0.68 1.0
RelationalTables 0.60 0.84

Table 4. DeepClean’s accuracy of extracting attribute types
and correlations (error rate = 20%).

To assess the impact of data quality, we increase the error rate to
20% and report DeepClean’s accuracy in Table 4. As expected, the
accuracy of type extraction decreases modestly. Counterintuitively,
4https://www.premierleague.com/
5https://ope.ed.gov/accreditation/
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Figure 4: DeepClean’s accuracy of filling missing values ver-
sus the setting of k .

the accuracy of correlation extraction increases slightly! This phe-
nomenon may be explained as follows: DeepClean is designed to
find highly correlated attributes; the random errors reduce spurious
correlations and make true correlations more evident.

Note that as we define its attribute types in terms of Wikipedia
categories, it is difficult to directly compare DeepClean with other
existing methods (e.g., [8, 16, 28]), which all require knowledge
bases to define attribute types.

Completion and Repair. We differentiate two types of data
cleaning tasks. In the completion task, DeepClean fills missing
values using answered returned by the knowledge source. In the
repair task, DeepClean first detects erroneous values and then
replace them with returned answers. Next we report DeepClean’s
performance in both tasks.

[Completion Tasks] To evaluate DeepClean’s performance in the
completion task. We randomly select and delete 10% cells in all the
tables; that is, each cell has 10% chance of being removed. We then
estimate DeepClean’s accuracy in terms of finding right answers
for these missing values.

accuracy =
# correctly filled values

# missing values

dataset mean std
WikiTables 0.71 ± 0.11
DBPedia 0.68 ± 0.15

WebTables 0.83 ± 0.12
RelationalTables 0.88 ± 0.01

Table 5. DeepClean’s accuracy of filling missing values.

Table 5 summarizes the results. Observe that across all the datasets,
DeepClean achieves accuracy above 0.68 in filling missing cells.
Interestingly, DeepClean does not achieve the highest accuracy
in theWikiTables dataset, which comprises tables extracted from
Wikipedia pages. This may be explained by that DeepClean inter-
acts with Wikipedia solely through its QA interface, which mainly
relies on text content and ignores other structured information (e.g.,
tables) in Wikipedia pages.

In addition, we examine the impact of the parameter k on Deep-
Clean’s accuracy. Recall that k controls the number of candidate
values suggested by DeepClean. We count a completion operation
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as correct only if the ground-truth value appears in the top k can-
didate values. Figure 4 shows DeepClean’s completion accuracy
as k varies from 1 to 10. It is noticed that in general DeepClean’s
performance is insensitive to the setting of k and the correct value
appears in the top candidate values with high probability. In the
following, we set k = 5 by default.

[Repair Tasks] As the repair task consists of two parts, detecting
erroneous values and correcting them, in which the correction
step is similar to the completion task. Therefore here we focus on
DeepClean’s performance of detecting erroneous values. To inject
errors into the data, we randomly select and modify 10% cells in all
the tables.

Recall that DeepClean verifies cell values via iterative question
asking and reports suspicious cases if answers conflict with cell
values. We measure DeepClean’s accuracy in terms of precision
and recall:

precision =
# correct detection
# all detection

recall =
# correct detection

# all errors
dataset precision recall

WikiTables 0.82 0.82
DBPedia 0.47 0.73

WebTables 0.70 1.0
RelationalTables 0.60 1.0

Table 6. DeepClean’s accuracy of detecting erroneous cases.

dataset precision recall
WikiTables 1.0 0.30
WebTables 1.0 0.46

Table 7. Katara’s accuracy of repairing erroneous cases.

Table 6 summarizes DeepClean’s accuracy of detecting erro-
neous values. It is observed that DeepClean enjoys high detection
accuracy in most of the cases, which especially manifests in its
recall. For comparison purpose, Table 7 lists the performance of
Katara [8],6 a knowledge base-assisted data cleaning method, on
similar datasets. Interestingly, the comparison shows the strengths
and limitations of the two classes of approaches. Thanks to the
broader coverage of free-text encyclopedias, DeepClean is able to
detect a larger number of erroneous cases. Meanwhile, knowledge
bases offer more strict knowledge representation, which enables
Katara to pinpoint a subset of erroneous cases with higher pre-
cision. This observation implies the possible synergistic effects of
integrating DeepClean with knowledge base-assisted methods to
deliver more effective data cleaning tools.

Case Studies. Next we compare two concrete cases, in one case
DeepClean achieves high repair accuracy while in the other it does
not perform well, and discuss its strengths and limitations.

We pick two tables from the WebTables dataset, Table 1 - Amer-
ican Films and Actresses and Table 2 - National Film Awards, in
which DeepClean’s accuracy of filling missing values is 0.33 and
0.81 respectively. Figure 5 shows the table patterns found by Deep-
Clean for the two tables.

Notice that Table 1 describes the simple relationships between
actresses and their films. However, since such relationships are often
6As Katara requires crowdsourcing, Table 7 copies the results reported in [8].

Actress

a1

a2

Film

a1 a3

a4

Year

a2

(Applause)

(Helen Morgan)

Director

(Agathiyan)

(1997)

Film

(Kadhal Kottai)

Language

(Tamil)

Table 1 Table 2

Figure 5: Patterns of two sample tables (the values in the
parenthesis represent one data instance).

non-bijectional (often n-to-n), it is challenging for DeepClean to
extract relevant answers to verify given data. In contrast, Table
2 describes the complicated relationships of film directors, award
winning films, award years, and film languages. For example, the
award year is correlated with both the director and the film, while
the director or the film alone is insufficient to determine the award
year. Given suchmultiple constraints,DeepClean is able to perform
effective question asking by using such constraints as rich contexts.

We can therefore conclude that DeepClean is especially suitable
for dataset with complicated inter-attribute dependencies.

7 RELATEDWORK
In this section, we review three categories of related work, namely,
data cleaning, machine comprehension of text, andWikipedia-based
knowledge discovery.

In response to the practical need of automated and dependable
data cleaning, a plethora of solutions have been proposed. One line
of work solely relies on internal information of the datasets, such
as integrity constraints [4, 7, 12, 21, 25] and statistics [18, 24, 33].
Despite their generality, such best-effort solutions often fail to pre-
cisely identify and correct errors, due to the limitations of available
information. Another line of work exploits external information,
such as master data [11], domain expertise [23, 34], crowdsourc-
ing [29], and knowledge bases [8]. Some recent work [35] further
considers the populating tabular data with the assistance of such
knowledge sources. However, such resources are often scarce, ex-
pensive to employ, or limited by incompleteness and fixed schema.
In comparison, free-text knowledge sources are much more abun-
dant, expressive, and updated, making them ideal backends for data
cleaning tasks.

Machine comprehension of text is the problem of answering
questions after reading short texts. Thanks to advances in deep
neural network models (e.g., attention- and memory-augmented
networks [3, 26]) and newly available datasets (e.g., CNN/Daily
Mail [13] and SQuAD [22]), machine comprehension models have
achieved capabilities comparable to humans on some QA tasks [30],
opening the opportunity of building user-friendly QA interfaces for
free-text knowledge sources [6, 10, 31]. To our best knowledge, this
work is the first to exploit such QA interfaces for data cleaning.

Finally, besides serving as knowledge sources for QA, Wikipedia
is also widely used in other knowledge discovery tasks, such as
document clustering [15], named entity disambiguation [9], and in-
formation diffusion tracking [27]. However, to our best knowledge,
this work is among the first to perform high-quality data cleaning
based on Wikipedia through its question-answering interface.
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8 CONCLUSION AND FUTUREWORK
We propose DeepClean, the first end-to-end data cleaning frame-
work powered by free-text knowledge sources. Designed for a
cold-start setting wherein the data semantics is unknown a priori,
DeepClean automatically discovers the attribute types and corre-
lations by bridging the data with the knowledge source through
its question-answering interface. Each data tuple is validated and
repaired by issuing a minimal set of questions to the knowledge
source and checking the returned answers against the tuple values.
Extensive experiments on real datasets demonstrate that Deep-
Clean is applicable to a range of domains and can effectively repair
a variety of data defects.
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