
M-Boost: Profiling and Refining Deep Neural Networks with
Topological Data Analysis∗

Extended Abstract†

Gregory Naitzat

University of Chicago

Chicago, Illinois

gregn@galton.uchicago.edu

Namita Lokare

SAS Institute, Inc.

Cary, North Carolina

namita.lokare@sas.com

Jorge Silva

SAS Institute, Inc.

Cary, North Carolina

jorge.silva@sas.com

Ilknur Kaynar-Kabul

SAS Institute, Inc.

Cary, North Carolina

ilknur.kaynarkabul@sas.com

ABSTRACT
This extended abstract reports work in progress on a topology-

based approach to the problem of profiling, diagnosing and refining

black-box models, with particular emphasis on deep neural net-

works. The proposed method is named M-Boost and relies on the

mapper algorithm from topology, recursively identifying groups of

observations where the accuracy can be improved.

The advantages of M-Boost are in its conceptual simplicity and

universality: (i) it is universal for any network architecture and data

set type, whether image-based or otherwise; (ii) it has an inherent

notion of resolution going from coarse to fine detail; (iii) it provides

visualization which is straightforward to read and interpret by

non-experts.

The extended abstract includes a detailed description and expe-

rimental results with real data on credit card payment defaults.

CCS CONCEPTS
• Computing methodologies → Machine learning approa-
ches; Neural networks;

KEYWORDS
Deep learning, interpretability, topological data analysis

ACM Reference Format:
Gregory Naitzat, Namita Lokare, Jorge Silva, and Ilknur Kaynar-Kabul. .

M-Boost: Profiling and Refining Deep Neural Networks with Topological

Data Analysis: Extended Abstract. In Proceedings of prepring (KDD), Jennifer
B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.). ACM, New York,

NY, USA, Article 4, 9 pages. https://doi.org/10.475/123_4

∗
Produces the permission block, and copyright information

†
The full version of the author’s guide is available as acmart.pdf document

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD, 2018,
© Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

1 INTRODUCTION
In recent years, much work has been devoted to understanding

what a “black box” model is actually doing. The emerging field

of interpretability strives to understand the reasoning of machine

learning systems. As machine learning algorithms are adopted in

a growing number of applications, the demand for tools to help

interpret and gain confidence in their performance is expected to

continue to grow. This is especially true with the recent advan-

cements in deep neural networks (DNNs), given their complexity.

The terms "interpretability", "reasoning", "confidence" are rather

imprecise, blending a variety of concepts and techniques. Some

techniques can be qualitative —we can reason about performance

of a DNN by looking at visual depictions of the model inner re-

presentations, identify important regions in the input or subset of

crucial parameter values; other techniques are quantitative —where

we seek evidence by using some metric (e.g. accuracy).
The drawback of qualitative methods is that they are highly

subjective and require human involvement. Nevertheless, quali-

tative analysis, seems to be the main currently available way to

interpret any given neural network and to gain more confidence

in its performance. Zeiler et. al.[20] have introduced a visualiza-

tion technique that gives insight into the intermediate layers. The

authors use this tool to analyze the visualizations and then, based

on visual understanding, they modify parameters such as stride

length and filter size to improve performance. Yosinski et. al.[19]

introduce a toolbox to plot activations produced on each layer and

features computed by individual neurons. These visualizations help

understand which features are learned by individual neurons. The

difficulty with those and other approaches is that such investigation

techniques tend to be domain specific, require a bulky setup, and

often rely on specialized or heavily annotated data sets. Moreo-

ver, the interpretation framework is often more complicated than

the examined DNN itself, and therefore the construction of a “test

bench” for analysis of a DNN might be too large of an effort.

The method proposed in this work leverages qualitative and

quantitative approaches: we use topological data analysis to quali-

tative summarize neural network’s inner representations and we

use quantitative metrics to profile regions in the inner features

space. Specifically, we visualize and analyze the output from each

layer of the neural network. We profile the local regions that have

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

KDD, 2018, G. Naitzat et al.

low accuracy scores and, importantly, we are able to further im-

prove the DNN performance by using a local ensemble approach.

Our method is conceptually simple and is applicable to models other

than neural networks. We name the method M-Boost, where the

M- refers to the mapper algorithm from topological data analysis,

and Boost refers to ensembling models trained on local regions of

the input space, for the purpose of enhancing performance.

We want to note a similar work [11] which is independent of

our effort and of which the authors have became aware only re-

cently. Unlike the cited work, we extend mapper visualization to

intermediate layers and propose a boosting method.

This paper is organized as follows: Section 2 gives an overview

of the tools that we used in our method, followed by our approach

in Section 3. Experiments and results are discussed in Section 4,

and conclusions are in Section 5.

2 BACKGROUND
In this section we describe the tools that we used in our analysis

mainly neural networks (Section 2.1) the mapper algorithm (Section

2.2).

2.1 Neural networks
Neural networks have a long and rich history, which we do not

detail here. One relevant work (among many) is LeCun et. al.[8]

which applies neural networks handwritten digit classification. For

decades, neural networks have been used in numerous applications,

including but not limited to image classification, face detection and

recognition, and speech recognition. Over the past few years, deep

neural networks (DNN) have developed, and grown in terms of the

number of layers and number of nodes per layer. For example, see

AlexNet[7], GoogLeNet [17], VGG [15] and ResNet [6].

For the sake of establishing notation, we show a feed forward

deep neural network below:

x1

x2

...

xd

σ11

σ12

...

σ1d

σ21

σ22

...

σ2n2

σL1

σL2

...

σLnL

output 1

output 2

output nL

Figure 1: A feedforward neural network of L layers.

Each node, σi j , i = 1, . . . ,L; j = 1, . . . ,k , represents computation

of a neural network, where a continuous nonlinear transformation

σi j (·) is applied on an affine transformation of the input vector. To

simplify our treatment we assume that σi j (·) ≡ σ (·) and we treat

each layer in a vectorized fashion, a single index i ∈ {1, . . . ,L} is

attached to a layer, the nonlinear transformation is applied coor-

dinatewise, and the affine transformation in layer i is given by a

matrixW[i], and a vector b[i] of appropriate dimensions to match

the input and the output widths of the ith layer. Overall, a layer i
operating on its input, x[i], is compactly written as

σ[i](x[i]) := σ
(
W[i]x[i] + b[i]

)
.

The complete network is thus given by the continuous function

N : Rd → RnL of the form

N(x) := σ[L] ◦ · · · ◦ σ[2] ◦ σ[1](x),

or explicitly

N(x) = σ
(
W[L]σ

(
W[L−1]σ (· · ·) + b[L−1]

)
+ b[L]

)
.

Additionally, we denote the operation of the first i layers byN[i](x)
and that of the last i layers by N[−i](x), i.e.,

N[i](x) := σ[i] ◦ · · · ◦ σ[2] ◦ σ[1](x),

N[−i](x) := σ[m] ◦ · · · ◦ σ[m−i+1] ◦ σ[m−i](x).

We set N[0](x) ≡ x .
Note that by our numbering convention, the output of layer i is

the input of layer i + 1, i.e.,

x[i+1] = N[i](x),

and x[1] denotes the initial input to the network; so (2.1) can be

rewritten as

x[i+1] = N[i](x[1]).

2.2 The Mapper Algorithm
The core of the proposed M-Boost technique is the mapper al-

gorithm from topological data analysis (TDA). TDA is a recent

development in the study of computational topology, the purpose

of which is to develop topological and related concepts for data ana-

lysis and other “real-world” problems such as manifold sampling

[10], target enumeration [1], topological signal processing [14], and

many others. For exposition of the main aspects of topological data

analysis we refer the reader to [5] [3] and [21].

Inspired by topological concept of Reeb graph (to learn more

about Reeb graphs we refer to [2]), the mapper algorithm was

introduced in [16] for point cloud visualization. It involves mapping

data through a “lens” or “filter” function, which is an arbitrary

function that maps high dimension point cloud to a low dimensional

space. Perhaps the simplest example of a lens is a projection function

ℓ(x) = πi (x) mapping data point x ∈ Rd to its i-th coordinate

πi (x) 7→ xi . Different kinds of lens allow us to visualize different

aspects of the data. In our work we select an unconventional lens

—this lens is the output of the DNN. It turns the mapper algorithm

into a visualization tool to investigate operation of a given DNN.

The mapper visualizes data asm-simplicial complex. A simpli-

cial complex is a well known combinatorial object that can be

geometrically realized by gluing simplices of dimensions 0 tom.

A k-dimensional simplex in Rm is convex hull of k + 1 affinely

independent points in Rm . Namely, a zero dimensional simplex is a

point, a one dimensional simplex is a line segments, two and higher

dimension simplices are triangles, and their higher dimensional

counterparts.

M-Boost: Profiling and Refining Deep Neural Networks with Topological Data Analysis KDD, 2018,

The simplices in the simplicial complex are allowed to intersect

only along their facets and for any k dimensional simplex, the

simplicial complex must also include all its faces as a separate

simplices in their own right (see Figure 2 for illustration).

Construction of the simplicial complex by the mapper starts with

a local clustering of the data, and aggregation of the clusters into a

full shape based on the overlapping points between clusters. The

local regions for clustering are determined by the lens - points with

similar lens values are grouped, each of those groups is clustered

separately. Thus, if two points are close in the input space but far

apart under lens mapping, they will not be put in the same cluster.

Therefore, a prerequisite for two data samples to be put in the same

cluster is that their lens value is not too far apart.

With a slight abuse of notation we will represent a k simplex by

listing the set of its vertices (v1, . . . ,vk+1) a zero simplex (a vertex)

is then written as (vi).
For clarity of exposition, from now on, we will assume that the

lens function ℓ(·)maps to n-unit square [0, 1]n . Setting ℓ(x) = N(x),
where N is a binary classifier network yields ℓ(x) 7→ [0, 1], if the
lens is taken to be a ternary classifier, then we obtain ℓ(x) that maps

to a subset of [0, 1]2 and so on.

Next, we give a step by step description of the mapper algorithm

(for a complete description we refer to [16]). We start with the

definition of Nerve of a set

Definition (Nerve of data point sets). Let a finite collection of
sets of data pointsD j ⊂ R

d , j = 1, . . . ,K (i.e. eachD j is a collection of
points). The nerve of sets {D j }

K
j=1 is a simplicial complex constructed

as the following:

• First, consider a finite collection of tuples of indexes such that
a tuple Ji = (j1, . . . , j | Ji |) is in the collection N = {Ji } if and
only if, the intersection of the corresponding sets {D j } is non
empty, i.e: ⋃

j ∈Ji

D j , ∅.

• The nerve of {D j } is the simplicial complex S formed by sim-
plicies: {

(vi1 , . . . ,vi | J |) : J ∈ N
}
∪
{
(vj)

}K
j=1 ,

where vj is an arbitrary vertex associated with each point set
D j .

Mapper algorithm,M.

Input: Data point cloud D = {xi }
N
i=1,xi ∈ R

d
; lens ℓ(·) : Rd →

[0, 1]n ; a clustering algorithm C(·) : input→ {0, 1, . . . ,C} (where
c is a number of clusters, with C = 0 meaning no clusters were

identified).

Result: Simplicial complex S .

(1) Slice the range of the lens l(·) into an overlapping regions

[0, 1]n = R1 ∪ · · · ∪ RK .

e

f

д

h

a
ℓ

b

c

d

i

j
k

a
ℓ

b

c

d

i

j
k

Figure 2: A 3 dimensional simplicial complex, (a,b, c,d) is 3-
simplex, while (e, f ,д) is 2-simplex as well as all the 2 dimen-
sional facets of the 3-simplex, 1-simplices are formed by ver-
tices (e,b), (д,h), (c, ℓ), (ℓ,a) and (j,k) as well as all edges of the
higher simplices, finally the zero simplices are the 12 verti-
ces.

For example, let ℓ(·) → [0, 1]. Then for j = 1, . . . ,K , take

Rj :=
[
(j − 1)(1/n) − ε, j(1/n) + ε

]
∩ [0, 1],

where ε is small and determines how much the intervals

overlap.

(2) For each region, Rj , find data points in D whose lens values

fall within the region, i.e.

D j := {x ∈ D : ℓ(x) ∈ Rj }.

Number of regions Rj controls visualization resolution.

(3) Apply clustering algorithm C on each set of data points D j
and split data points according to which cluster they belong

to. That it, setting Cj ≥ 0 to be the number of the resulting

clusters in D j , obtain:

D jc :=
{
x ∈ D j : x in cluster c

}
, c = 1, . . . ,Cj .

(4) Simplicial complex S is a nerve of the sets

{D11, . . . ,D1C1
,D12, . . . ,D2C2

. . . ,DK1, . . . ,DKCK }.

Return: Simplicial complex S .

The mapper algorithm can be thought of as a transformation of

point cloud to a simplicial complex S :

M(D) 7→ S .

When lens is a scalar function the resulting simplicial complex is

undirected graph. If we think of point cloud data as sampled from

a high dimensional manifold, this graph can be interpreted as a

discrete version of Reeb graph. Which retains certain topological

features of the underlying manifold, for details we refer the reader

to [4] and references there in.

3 M-BOOST
We are now at the position to introduce M-Boost method. A single

iteration of the method is conceptually described in Figure 3. The

steps of the method are quite straightforward, however we hope

that the formal exposition does not make them appear complicated

and obscured. For clarity of exposition, we will consider a binary

classification neural network. Using our notation from section 2

KDD, 2018, G. Naitzat et al.

Trained neural
network

The Mapper
Algorithm

Draw simp-
licial complex

Profile simpli-
ces in the
complex

Boost the
network

Figure 3: Conceptual summary of M-Boost technique, the
drawing describes a work flow of a single iteration of the
method.

the M-boost technique is described below.

M-Boost method, B

Input: Validation set D = {xi }
N
i=1,xi ∈ R

d
; trained binary clas-

sifier neural network N(·) : Rd → [0, 1]; a decision tree T(·) :

input→ {0, 1}; the mapper algorithmM.

Result: Improved classifier B.

(0) Initialize B ← N .

(1) For a desired layer k = 1, . . . ,L map

{xi }
N
i=1 7→ {N[k](xi)}

N
i=1.

(2) ApplyM on point cloud {N[k](xi)}
N
i=1 to obtain simplicial

complex. Since N has scaler output, the resulting complex

is a graph G = (V ,E).
(3) For each node v ∈ V , calculate the cross entropy error

vH := −
∑
xi ∈v 1A(xi) logN(xi) where 1A(xi) = 1 when

xi belongs to classA and zero otherwise. The value ofN(xi)
is interpreted as the predicted probability to belong to class

A.
(4) For a desired threshold t > 0, denote V− := {v ∈ V |vH > t}

and V+ := V \V−.
(5) Use the structure of complex S (graph G) to profile nodes

in V− and V+ and select features that best distinct between

those nodes. This is a crucial step which makes M-Boost

distinct from other ensemble methods. We will explain this

step separately at the end of this subsection.

(6) Train a decision tree T(·) on the identified features from the

previous step to predict xi ∈ V+ or xi ∈ V− (when T(xi) = 1

or T(xi) = 0).

(7) Regenerate training and validation sets, split the training set

into two separate data sets according to the prediction of

the decision tree T(·) obtained above. Re-train two neural

networks on the separated training data sets.

(8) Stronger classifierB is obtained by replacingN with the two

neural networks and the decision tree (that decides which

of the two networks to activate).

(9) Repeat from step (1), on each newly appended network in

B until no node in the generated graph appears below a

threshold t or there is no improvement in the performance

of the resulting model.

Return: Classifier B.

Figure 4 illustrates the original network, and the output of the

method after one cycle and Figure 5 illustrates the output at the

end of second iteration of the method.

Now we expand on step (5), graph G (or in general the simplex

S) represents topology of the point cloud data after it has been

transformed by the neural network. If the network were perfectly

trained, we would expect to see only two distinct clusters, one

per class. In general, the network is not perfectly trained in this

sense, and therefore we see variations in the shape of the clusters.

This way we can understand what information the neural network

captures and what information is not used – this is key in making

sense of the operation of the neural network at a local level. We

investigate different nodes on the graph and look for nodes with

poor performance. The location of the poorly performing regions

(V−) and the good performing regions (V+) on the graphG is taken

into account in our profiling in step step (5) of the method. A simple

way to do this profiling is to color the graph according to different

features values. Coloring that come up aligned with nodes V− and
V+ can provide for the desired features for boosting. This feature

selection approach is similar to the one describe in [9], where the

authors profile the output of the mapper to find patterns among

groups of cancer patients. Combinatorial structure of the simplicial

complex allows for potential future automation of the profiling

step.

Before we conclude this subsection we want to stress one last

point: while we have limited our treatment to network with scaler

output and therefore the simplicial complex is of maximal dimen-

sion one, i.e. a graph, themethod applies to a vector valued networks

that can produce simplicial complexes of higher dimensions.

3.1 Methodology
In this sections we discuss some practical details related to the

visualizations of neural networks and M-Boost.

The simplicial complex produced by the mapper algorithms sum-

marizes the shape of point cloud, we can investigate the shape

directly on the input data or we can slice the neural network and

look on its inner representations . We found it most useful to inves-

tigate top layers in the neural network (which amount so setting

k ≈ L in step (1) of the Mapper) those have lower dimensionality

than the bottom layers and the representation in those layer is more

consolidated. However it is interesting to examine the shape of ot-

her inner layers as well and trace how the representation changes

as we move up the layers. We will return to this point at the end of

this subsection.

There are two main parameters for the mapper algorithm:

M-Boost: Profiling and Refining Deep Neural Networks with Topological Data Analysis KDD, 2018,

Figure 4: Left: the input to the M-boost method. Right: the
output of the method after one cycle.

Figure 5: Output of the method after two cycles.

• Resolution - the number of slices in the domain of the lens

(How changing resolution effects mapper output is illustra-

ted in Figures 8 and 9, where the mapper is applied on the

same input with the difference only due to change in the

resolution. We will return to those figures shortly when we

talk about the kind of visualization they illustrate.)

• Clustering radius – specific to the particular clustering algo-

rithm selected (How different clustering radius effect opera-

tion of the mapper is show in Figure 10).

Once the radius and the resolution are appropriately selected,

we can proceed to analyze the graph to select the feature to be used

for boosting. To this end we perform the following:

• Apply coloring schemes to visualize how features of the

input are mapped on the graph.

• Identify and attribute meaning to different regions on the

graph.

Figure 6: Output of the mapper representing the shape
of the output for one layer before the final layer in the
network, colored according to ground truth percentage
of defaults.

Figure 7: Same graph as in Figure 6, this time colored ac-
cording to neural network prediction accuracy.

• Apply coloring schemes to trace how the performance of the

neural network changes locally on the graph and how its

performance is aligned with the distribution of the features.

To finalize this section we present another plot where we trace

the change in the inner representation between different layers of

the DNN. We select the node that we are interested in exploring,

and trace its representations across four different layers. This is

shown in Figures 8 and 9. The figures only differ in the selected

resolution of the mapper algorithm, the red lines on the figure trace

samples within the selected node starting from one layer before

the final layer, then the fifth layer, the third layer and finally the

first layer. The width of the line corresponds to the proportion of

the samples shared by the nodes.

We can learn several things from this plot i) Qualitatively, moving

up the layers we see consolidation of different nodes into one larger

node ii) The shapes of the lower layer are more intricate they have

more branching nodes, and remain fragmented for a larger range

of clustering radius (this is also reflected in the tables 1 to 6, which

summarize our selection of the clustering radius for different layers,

observe that in the top layers the change in the number of cluster

is gradual while in bottom layers the change is abrupt).

KDD, 2018, G. Naitzat et al.

Figure 8: Samples tracing across different layers. The coloring
reflects the accuracy of the neural network prediction. Width
of the line reflect the number of samples shares between nodes.

Figure 9: Samples tracing across different layers, same plot as
in Figure 8 but with lower resolution, i.e. the range of the lens
is split into less regions.

4 EXPERIMENTS
4.1 Dataset
We use the credit card default payment dataset from [18]. The data

set consists of cardholder data from a bank in Taiwan. This data set

has a total of approximately 25,000 observations, of which 5529 ob-

servations correspond to the card holders with defaults. The binary

response variable correspond to defaulted payment (Yes = 1, No = 0).

The authors of the cited study compare different modeling techni-

ques, and report (= 0.17) error rate for a neural network model

which preforms best among the compared data mining techniques:

Neural networks, Decision trees, Naive Bayesian Classifier, Discri-

minant analysis, logistic regression, K-nearest neighbors classifier.

We extract 210 features from the existing 23 explanatory varia-

bles. The dataset is split randomly into training, validation and test

set (0.4, 0.4, 0.2 ratio).

We build a feedforward neural network for prediction of the

default payments and train it on the data set. The feedforward

network consists of 7 layers (L = 7) of varying width. The last two

layers (layer 7 and 6) are activated by softmax non-linearity while

the other layers are activated with ReLU non-linearity. Writing

N for the width of the first layer, i.e. n1 = N , the width of the

subsequent layers is adjusted as the following n2 = N ,n3 = n4 =
N
4
,n5 = n6 = ⌊

N
25
⌋, and the final layer has only one unit. We report

or experimentation results for the case where N = 512.

4.2 Mapper parameters
We apply the M-boost algorithm based on the output of one layer

before the final output of the neural networks ({N[−1](xi)}) and
pick the lens to be ℓ(·) = N(·). We start our investigation with a

very aggressive clustering (small clustering radius). This produces

a highly fragmented graphs in the output of the mapper step, as

we increase the radius, two distinct stable clusters appear. This

is illustrated in Figure 10. The coloring of the figure corresponds

to the performance of the neural network going from blueish to

reddish, where red corresponds to lower accuracy.

We can glean a few observations from this short analysis: i) The

larger cluster corresponds mostly to the non-default population.

The smaller cluster corresponds to the default population. ii) Accu-

racy of the model on default cluster is worse than on non default

cluster. The non-default cluster goes from high accuracy in one

end of the cluster to lower accuracy towards the other end of the

cluster. At our next step, we will profile the nodes with weak accu-

racy in order to find out which features can be used to boost the

performance of the DNN.

4.3 Profiling
a We focus on the two stable clusters (see Figures 6, 7) and apply

coloring scheme that is based on the ground truth - blue is where

the default probability is low, - red is for clusters with high default

probability, this is shown in Figure 6. We profile the clusters that

have higher mis-classification rate by using LIME [13] and standard

statistical methods (bar plots). But, we are particularly interested in

finding features which might not be picked by traditional feature

selection. From the LIME plots we saw that gender has a significant

weight that decides whether the prediction is default or non-default.

We also notice that gender does not come up as significant feature

after using sklearn [12] to select the best features from this data

set (based solely on explained variance, age and gender appear at

place 53 and 65 in the features importance list, respectively).

This suggest that we might be able to use age as a boosting

feature to enhance the model (how the age is locally aligned with

the graph is shown in Figure 16). With additional experimentations

with different color schemes we have picked gender as another

candidate feature to be used for boosting (see Figure 11). In the next

section we describe how we apply M-Boost.

4.4 M-Boosting
Here we demonstrate application of the M-Boost as described in

section 3. We use the setup describe in section 4.2. Clustering radius

is set to produces two distinct isolated clusters as on Figure 11. For

boosting we train the decision tree T(·) to predict default or non-

default outcome based solemnly on the features picked by local

M-Boost: Profiling and Refining Deep Neural Networks with Topological Data Analysis KDD, 2018,

Figure 10: Inner representation for decreasing clustering radius. Top left an aggressive clustering (small clustering radius),
bottom right a mild clustering (large clustering radius). The coloring of the figure corresponds to the accuracy of the neural
network.

Table 1: Layer 1

radius # of cluster

0.01 35

0.015 12

0.02 5

0.025 4

0.03 3

0.035 3

0.04 2

Table 2: Layer 2

radius # of cluster

0.25 54

0.3 12

0.35 7

0.4 5

0.45 3

0.5 3

0.55 2

Table 3: Layer 3

radius # of cluster

0.35 31

0.4 16

0.45 4

0.5 9

0.55 7

0.6 5

0.65 3

Table 4: Layer 4

radius # of cluster

0.4 25

0.5 29

0.6 27

0.75 21

0.8 8

0.85 6

0.9 4

Table 5: Layer 5

radius # of cluster

0.85 70>

0.9 61

0.95 44

1.0 28

1.1 13

1.2 8

1.3 12

Table 6: Layer 6

radius # of cluster

1.5 15

1.6 14

1.7 14

1.8 13

1.9 12

2.0 16

2.1 6

KDD, 2018, G. Naitzat et al.

Figure 11: Profiling nodes with lower accuracy from top to
bottom: Accuracy, percentage of females, predicted probabi-
lity for default.

profiling of weakly performing nodes that we discussed at in the

previous section.

4.4.1 Boosting by age. The run of the M-boost method produces

the results shown in Figure 13.

4.4.2 Boosting by gender. The run of the M-boost method pro-

duces the output shown in Figure 15.

The plots referenced above show an improvement in the fre-

quency of well-classified observations for the boosted model, when

boosting by either age or gender (locally).

5 CONCLUSION
We have described work in progress on profiling, diagnosing and

improving deep neural networks based on topological data analysis.

Using the mapper algorithm, we are able to generate meaningful

visualizations of the output of each layer. We automatically identify

groups of observations that have the highest mis-classification,

and refine the model by constructing an ensemble of locally valid

networks in a recursive and automated manner. The method is

simpler and more universal than other interpretability frameworks.

We have validated the proposed method, named M-Boost, on real

data and obtained promising results. For further work, we intend

to conduct broader experiments on a wider variety of data sets.

Additionally, we hope to glean deeper insights from tracing nodes

of the topological graphs (obtained via the mapper) across each

successive network layer. Finally, we plan to adapt the technique for

use with other classes of black-box models besides DNNs, namely

gradient boosting and random forest models.

Figure 12: M-boost devised solution, decision tree splits the in-
put according to age

Figure 13: Histogram for comparison of the accuracy of the ini-
tial model vs boosted model (boost by age)

REFERENCES
[1] Yuliy Baryshnikov and Robert Ghrist. 2009. Target enumeration via Euler cha-

racteristic integrals. SIAM J. Appl. Math. 70, 3 (2009), 825–844.
[2] Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, and Bianca Falcidieno. 2008.

Reeb graphs for shape analysis and applications. Theoretical Computer Science
392, 1-3 (2008), 5–22.

[3] Gunnar Carlsson. 2009. Topology and data. Bull. Amer. Math. Soc. 46, 2 (2009),
255–308.

[4] Mathieu Carriere and Steve Oudot. 2017. Structure and stability of the one-

dimensional mapper. Foundations of Computational Mathematics (2017), 1–64.
[5] R. Ghrist. 2014. Elementary Applied Topology. Createspace Independent Pub.

https://books.google.com/books?id=Z5ATogEACAAJ

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[8] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hubbard, and L. D.

Jackel. 1989. Backpropagation Applied to Handwritten Zip Code Recognition.

Neural Comput. 1, 4 (Dec. 1989), 541–551. https://doi.org/10.1162/neco.1989.1.4.

541

[9] Monica Nicolau, Arnold J Levine, and Gunnar Carlsson. 2011. Topology based

data analysis identifies a subgroup of breast cancers with a unique mutational

https://books.google.com/books?id=Z5ATogEACAAJ
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541

M-Boost: Profiling and Refining Deep Neural Networks with Topological Data Analysis KDD, 2018,

Figure 14: M-boost devised solution, decision tree splits the in-
put according to gender

Figure 15: Histogram for comparison of the accuracy of the ini-
tial model vs boosted model (boost by gender)

profile and excellent survival. Proceedings of the National Academy of Sciences
108, 17 (2011), 7265–7270.

[10] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. 2008. Finding the ho-

mology of submanifolds with high confidence from random samples. Discrete &
Computational Geometry 39, 1-3 (2008), 419–441.

[11] Paul T Pearson. 2013. Visualizing clusters in artificial neural networks using

morse theory. Advances in Artificial Neural Systems 2013 (2013), 6.
[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[13] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I

Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’16). ACM, New York, NY, USA, 1135–1144. https://doi.org/10.

1145/2939672.2939778

[14] Michael Robinson. 2014. Topological signal processing. Springer.
[15] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Figure 16: Age histogram profiling of nodes.

[16] Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson. 2007. Topological

methods for the analysis of high dimensional data sets and 3d object recognition..

In SPBG. 91–100.
[17] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.

Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[18] I-Cheng Yeh and Che-hui Lien. 2009. The comparisons of data mining techniques

for the predictive accuracy of probability of default of credit card clients. Expert
Systems with Applications 36, 2 (2009), 2473–2480.

[19] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.

Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579 (2015).

[20] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-

tional networks. In European conference on computer vision. Springer, 818–833.
[21] Afra J Zomorodian. 2005. Topology for computing. Vol. 16. Cambridge university

press.

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778

	Abstract
	1 Introduction
	2 Background
	2.1 Neural networks
	2.2 The Mapper Algorithm

	3 M-Boost
	3.1 Methodology

	4 Experiments
	4.1 Dataset
	4.2 Mapper parameters
	4.3 Profiling
	4.4 M-Boosting

	5 Conclusion
	References

