
Portable In-Browser Data Cube Exploration
Kareem El Gebaly, Lukasz Golab, and Jimmy Lin

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

[kareem.elgebaly,lgolab,jimmylin]@uwaterloo.ca

ABSTRACT
Data cubes, which summarize data across multiple dimensions, have
been a staple of On Line Analytical Processing (OLAP) for well
over a decade. While users typically access data cubes through data
warehouse systems or business intelligence tools, we demonstrate
that data cubes can be explored effectively and efficiently inside a
browser. We provide an overview of the two recent technologies that
enable our portable data cube exploration approach: 1) Afterburner,
an in-browser relational database management system, and 2) ex-
planation tables, an information-theoretic technique for guided data
cube exploration.

1 INTRODUCTION
Since their introduction [6], data cubes have become a staple of On
Line Analytical Processing (OLAP) and decision support. Given a
dataset with multiple dimension attributes and one or more measure
attributes, data cubes compute aggregate functions of the measure
attribute over all subsets of the dimension attributes. Users typically
explore data cubes by selecting different subsets of dimension at-
tributes and viewing the resulting aggregates: e.g., total sales by
store, total sales by product type, total sales by day, total sales by
store and product type, etc.

Data cubes may be very large; e.g., millions of distinct products,
multiplied by hundreds of stores, multiplied by hundreds of days, etc.
Typically, data warehouse systems and business intelligence tools
allow users to “start small” and zoom in (i.e., drill down) to different
dimensions; e.g., a user may start by viewing total sales and then
view a breakdown of sales by store.

We ask the following question: can data cube exploration be
performed effectively and efficiently inside a browser? There are
several compelling reasons for doing this. As evidenced by tools
such as Jupyter Notebook, which integrate code, output, and visu-
alization, the browser is no longer a dumb rendering endpoint and
has become the de-facto front end for data science applications. It
is therefore reasonable to ask if the browser can also eliminate the
need to maintain a local data management system or to obtain ac-
cess to a remote database server, at least for some types of tasks
and users. Furthermore, in keeping with the recent trend of data
democratization, in-browser analytics can facilitate data analysis
democratization as a cross-platform, easy-to-share (across users and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IDEA’17, August 14th, 2017, Halifax, Nova Scotia, Canada
© 2017 Copyright held by the owner/author(s).

organizations) data analysis framework for non-expert users such as
journalists.

In this paper, we show that the answer to the above question is yes,
at least for moderately-sized datasets that fit in the browser’s memory.
We demonstrate our portable in-browser data cube exploration tool
and explain its design, which leverages two recent technologies:

(1) Afterburner: an in-browser relational database management
system (RDBMS) recently demonstrated at the SIGMOD con-
ference [4]. Afterburner is implemented in JavaScript and runs
inside a browser with no external dependencies, taking advan-
tage of column-oriented storage using typed arrays and query
compilation into asm.js, a strictly-typed and easy to optimize
subset of JavaScript. On modestly-sized datasets, the perfor-
mance of Afterburner was shown to be similar to that of the
columnar RDBMS MonetDB [4] on the well-known TPC-H
benchmark.

(2) Explanation tables: an information-theoretic technique for ex-
plaining a measure attribute using combinations of dimension
attributes [3], which, as we will demonstrate, provides a useful
starting point for interactive data cube exploration.

The remainder of this paper is organized as follows: Section 2 gives
an overview of data cubes and the information-theoretic cube ex-
ploration framework we use. In Section 3, we explain the imple-
mentation details of our data cube exploration tool built on top of
Afterburner. Section 4 presents an outline of our demonstration, Sec-
tion 5 discusses related work, and Section 6 concludes the paper
with directions for future work.

2 DATA CUBE EXPLORATION
2.1 Illustrative Example
We illustrate data cubes and their exploration with a simple exam-
ple. Suppose we have collected a dataset from smart refrigerators
indicating which food items were eaten while they were still fresh,
before their expiry dates, and which ones were expired and had to
be thrown away. The dataset is shown in Table 1. Each row consists
of a numeric id which serves as a key but is not relevant for this ex-
ample, and the following three dimension attributes: an item name,
the season when the item was stored, and the location of the
refrigerator. Additionally, the binary measure attribute expires
identifies items which were expired (in general, measure attributes
can be numeric).

Suppose we want to understand the reasons why some food
items are consumed and some expire: is it the item type, the sea-
son, the location, or some combination of these? To do so, we
compute a data cube over Table 1, as shown in Table 2. The two
aggregate functions are count and average of the expires val-
ues, denoting how likely a subset of items is to expire. The first

35

IDEA’17, August 14th, 2017, Halifax, Nova Scotia, Canada Kareem El Gebaly, Lukasz Golab, and Jimmy Lin

Table 1: Example dataset

id item season location expires?

1 Cheese Winter Kitchen 0
2 Cherries Summer Summer house 1
3 Chocolate Summer Summer house 0
4 Chocolate Spring Bedroom 0
5 Chocolate Winter Office 0
6 Chocolate Summer Basement 0
7 Chocolate Fall Winter house 0
8 Eggs Fall Kitchen 1
9 Eggs Winter Winter house 1

10 Juice Spring Office 0
11 Milk Spring Office 1
12 Milk Summer Winter house 1
13 Veggies Spring Summer house 1
14 Veggies Winter Winter house 1

Table 2: Fragments of a data cube over the example dataset

id item season location count AVG(exp.)

1 * * * 14 0.5

2 Cheese * * 1 0
3 Cherries * * 1 1

9 * Winter * 4 0.5
10 * Summer * 4 0.5

13 * * Kitchen 2 0.5
14 * * Bedroom 1 0

19 Cheese Winter * 1 0
20 Chocolate Summer * 2 0

32 Cheese * Kitchen 1 0
33 Eggs * Kitchen 1 0

46 * Winter Kitchen 1 0
47 * Spring Office 2 0.5

57 Cheese Winter Kitchen 1 0
58 Chocolate Spring Bedroom 1 0

row of the data cube corresponds to the values of the two aggre-
gates over the entire dataset, with stars denoting all possible values.
Row ids 2 and 3 correspond to an SQL GROUP BY query over
the item column; row ids 9 and 10 to GROUP BY season; row
ids 13 and 14 to GROUP BY location; row ids 19 and 20 to
GROUP BY item, season, and so on. The entire data cube con-
sists of 70 rows and corresponds to a union of aggregation queries
over all possible subsets of dimension attributes.

Two fundamental data cube operations are drill down and roll
up, corresponding to adding or removing a dimension attribute,
respectively. For example, starting from row id 1, we can drill down
into the item dimension attribute and obtain more details about
different items. Conversely, starting, say, from row id 19, we can roll
up the item attribute, leaving only season (row ids 9 and 10).

2.2 Explanation Tables
Since data cubes may be very large, a useful data exploration tech-
nique is to identify interesting or informative parts of a data cube

Table 3: An explanation table over the example dataset

item season location count AVG(expires)

* * * 14 0.5
Chocolate * * 5 0

* * Winter house 4 0.75
* * Summer house 3 0.67

that users should examine. One such technique is the explanation
table [3], which identifies rows from the data cube that provide the
most information about the distribution of the measure attribute.

Table 3 shows an explanation table over our example dataset. Each
row of an explanation table is a row from the data cube and includes
the aggregates computed over the measure attributes; from now on,
we refer to explanation table rows as patterns. The first pattern states
that, on average, half of the items in the dataset have expired. The
second pattern states that none of the five chocolates have expired
and is included in the explanation table because it provides the most
additional information about the distribution of the measure attribute.
Intuitively, this is because chocolates are far less likely to expire
than other products, and there are sufficiently many chocolates in
the dataset. The third and fourth patterns, respectively, indicate that
items located in the winter house and the summer house are more
likely to expire. Again, they are included because they provide the
most additional information about the distribution of the measure
attribute.

An explanation table provides a useful starting point for data cube
exploration: each of its patterns is informative and may be explored
further by the user for additional insight. For example, the second
pattern in Table 3 reveals that chocolates tend not to expire. The
user may then drill down by season and/or location to see
if chocolates purchased in different seasons or stored in different
locations are more or less likely to expire. This is exactly how we
leverage explanation tables in our data cube exploration tool.

2.3 Constructing Explanation Tables
We now give a brief overview of the algorithm for constructing
informative explanation tables; see El Gebaly et al. [3] for full
details.

The idea is to maintain maximum-entropy estimates for the val-
ues of the measure attribute and refine them as new patterns are
added to the explanation table. In each iteration of the algorithm,
we greedily add a pattern to the explanation table that gives the
greatest information gain, more precisely, the greatest reduction in
the Kullback-Leibler Divergence between the actual measure values
and the estimated ones. We stop after k iterations, where k is a user-
supplied parameter, yielding an explanation table with k patterns.

Consider Table 3. Based on the first pattern (the all-stars pattern),
the maximum-entropy estimate of the true expires values is to
set each value (of each of the 14 rows in Table 1) to 0.5. Of course,
the actual expires values are binary, but we allow the estimates
to be real numbers between zero and one. This maximum-entropy
estimate only uses the information implied by the first pattern of
the explanation table, which is that AVG(expires)=0.5, without
making any other assumptions.

36

Portable In-Browser Data Cube Exploration IDEA’17, August 14th, 2017, Halifax, Nova Scotia, Canada

As it turns out, the pattern (Chocolate,*,*) is then added to the
explanation table because it provides the greatest information gain.
As a result, we update the estimates of expires as follows. Since
the second pattern implies that all chocolates have expires=0, we
set the estimates for rows 3 through 7 to zero. Next, for consistency
with the first pattern, which requires the average value of expires
over the whole dataset to be 0.5, we must set the estimates for all
non-chocolate rows to 7

9 each. This gives us a maximum-entropy
estimate that only considers the information contained in the first
two patterns of the explanation table. As in El Gebaly et al. [3], we
use iterative scaling to compute updated estimates whenever a new
pattern is added to the explanation table.

To summarize, the greedy algorithm for constructing an explana-
tion table works as follows. We iterate k times, once for each pattern.
In each iteration, we 1) compute the information gain of a set of
candidate patterns, 2) add to the explanation table the pattern with
the greatest gain, and 3) update the maximum-entropy estimates.
To compute the information gain in step 1), we build a data cube
with the average of the estimated measure attribute as the aggregate
function, and compare the estimates with the actual values. For ef-
ficiency, our implementation uses sampling to compute these data
cubes, following El Gebaly et al. [3].

3 IN-BROWSER IMPLEMENTATION
At a high level, our data cube exploration tool issues and consumes
the output of SQL queries executed by the Afterburner RDBMS.
Both explanation table construction and subsequent drill-down into
individual patterns are accomplished with a series of SQL group-
by/aggregation queries. Our implementation handles interactive data
cube exploration of moderately-sized datasets (around 10 million
records) in sub-second time.

Afterburner (and our tool running on top of it) is implemented as a
JavaScript library and runs completely stand-alone inside a browser.
Datasets are loaded from the local file system or from a remote
server. Once loaded, data are immutable and stored in memory in
column-oriented format. As discussed below, Afterburner exploits
two JavaScript features: typed arrays for memory-efficient storage
and asm.js for fast compiled queries.

3.1 Columnar Storage Using Typed Arrays
Array objects in JavaScript can store elements of any type and are not
arrays in a traditional sense (compared to say, C) since consecutive
elements may not be contiguous; furthermore, the array itself can
dynamically grow and shrink. This flexibility limits the optimizations
that the JavaScript engine can perform both during compilation and
at runtime. In contrast, typed arrays in JavaScript are comprised
of buffers, which simply represent untyped binary data, and views,
which impose a read context on the buffer.

Typed arrays allow the developer to create multiple views over
the same buffer. Afterburner takes advantage of this feature to pack
relational data into a columnar layout. In our implementation, each
column is laid out end-to-end in the underlying buffer, which can be
traversed with a view of the corresponding type. The table itself is a
group of pointers to the offsets of the beginning of the data in each
column. Intermediate data for query execution are also stored using
typed arrays.

3.2 Query Compilation into Asm.js
In conjunction with typed arrays, Afterburner takes advantage of
asm.js, a strictly-typed subset of JavaScript that is designed to be
easily optimizable by an execution engine. Any JavaScript function
can request validation of a block of code as valid asm.js via a spe-
cial prologue directive, use asm, which happens when the source
code is loaded. Validated asm.js code (typically referred to as an
asm.js module) is amenable to ahead-of-time (AOT) compilation,
in contrast to just-in-time (JIT) compilation in vanilla JavaScript.
Executable code generated by AOT compilers can be quite efficient,
through the removal of runtime type checks (since everything is
statically typed), operation on unboxed (i.e., primitive) types, and
the removal of garbage collection.

Afterburner translates SQL queries into the string representation
of an asm.js module (i.e., the physical query plan), calls eval on
the code, which triggers AOT compilation and links the module to
the calling JavaScript code, and finally executes the module (i.e.,
executes the query plan). The typed array storing all the tables is
passed into the module as a parameter, and the query results are
returned by the module.

3.3 Query Operators and Materialization
Supported SQL operators include selection/filters, aggregates, group
by (using hashing) and joins (also using hashing). Notably, After-
burner avoids materialization of intermediate results as much as
possible in order to fit inside a web browser memory. For example,
we only store record identifiers in hash tables instead of copying the
values in order to minimize the memory footprint of the hash-based
operators such as joins and group bys.

For data cube exploration, we need to materialize fragments of
the data cube. To reduce the memory footprint, we use dictionary
encoding for dimension attribute values.

4 DEMONSTRATION SCENARIOS
In our demonstration, participants will create explanation tables
to help guide their data cube exploration. We will prepare several
real-world datasets for the demonstration, including airline upgrades
(where the goal will be to understand what makes a passenger more
likely to have their seat upgraded to first class) and U.S. census
data (where the goal will be to understand what makes a person
more likely to earn an annual income over $50,000). Most of our
demonstration datasets are downloaded from the UCI archive.1

Figure 1 shows a screenshot of an explanation table with k = 5
patterns over the census dataset. The dimension attributes include
workclass, education level, marital status, occupation, relationship
to the head of the household, race, sex, and country. COUNT(*)
refers to the number of rows in the dataset covered by a pattern and
AVG(p) is the average value of the binary indicator attribute whose
value is one if the income exceeds $50,000. The column labeled
distribution visualizes the proportion of the (binary) measure
attribute values that are one (in green) vs. zero (in red).

Clicking on the explore link at the end of each pattern allows
users to drill into the rows captured by the pattern. For example, a
user may want to learn more about the third pattern, which indicates

1http://archive.ics.uci.edu/ml/datasets/

37

http://archive.ics.uci.edu/ml/datasets/

IDEA’17, August 14th, 2017, Halifax, Nova Scotia, Canada Kareem El Gebaly, Lukasz Golab, and Jimmy Lin

Figure 1: A five-pattern explanation table over the U.S. census dataset.

Figure 2: Drilling into a pattern.

Figure 3: Manually drilling into a pattern.

that married people with a Bachelor’s degree are more likely to earn
a high salary. Figure 2 shows a screenshot of the corresponding
exploration panel. The user can select one or more attributes to
drill into. In the figure, workclass=ALL will compute separate
aggregates for married people with a Bachelor’s degree and for
each workclass. Rather than selecting ALL, the user can also specify
selected values of interest of additional attributes such as workclass.
For example, Figure 3 shows a dropdown menu with all the values
of workclass in the dataset.

Figure 4 shows the results of drilling into the third pattern, as
specified in Figure 2. The user can now explore the distribution of
the measure attribute for each workclass of married people with a
Bachelor’s degree.

Figure 4: A drill-down of the different patterns.

5 RELATED WORK
This paper is related to two bodies of work: data cube exploration
and query plan compilation.

As we explained earlier, we use explanation tables for guided data
cube exploration. The idea of information-theoretic data summariza-
tion initially appeared in Sarawagi et al. [13] and was then expressed
in the form of explanation tables in subsequent work [3, 5]. We use
the technique from El Gebaly et al. [3] in our demonstration. We note
that there are other data cube exploration techniques such as smart
drill-down [7], which can be added to future versions of our tool.
Beyond data cubes, there is a wide variety of data exploration, data
explanation, and outlier detection approaches (see, e.g., [1, 2, 11]),
and it will be interesting to study whether they can be implemented
efficiently in our in-browser framework.

Afterburner is based on the compiled query approach to query
execution, similar to systems such as HIQUE [10], LegoBase [9, 14],
Proteus [8], and HyPer [12]. Our query compilation techniques are
relatively standard, with the exception of targeting JavaScript and
using query plans that fit into a browser’s limited memory.

38

Portable In-Browser Data Cube Exploration IDEA’17, August 14th, 2017, Halifax, Nova Scotia, Canada

6 CONCLUSIONS
In this paper, we motivated and described our tool for in-browser
data cube exploration. We take advantage of modern browsers, which
have become much more than dumb rendering endpoints, to provide
a cross-platform, maintenance-free solution for exploring small to
medium datasets. We believe that our approach is useful to “amateur
data scientists” and non-expert users. In future work, we plan to en-
hance the effectiveness of our tool by including new data exploration
techniques, and improve its efficiency by studying new optimizations
within Afterburner itself.

REFERENCES
[1] Azza Abouzied, Joseph M. Hellerstein, and Avi Silberschatz. 2012. Playful Query

Specification with DataPlay. PVLDB 5, 12 (2012), 1938–1941.
[2] Peter Bailis, Edward Gan, Kexin Rong, and Sahaana Suri. 2017. Demonstration:

MacroBase, A Fast Data Analysis Engine. In SIGMOD. 1699–1702.
[3] Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Divesh Srivas-

tava. 2014. Interpretable and Informative Explanations of Outcomes. PVLDB 8, 1
(2014), 61–72.

[4] Kareem El Gebaly and Jimmy Lin. 2017. In-Browser Interactive SQL Analytics
with Afterburner. In SIGMOD. 1623–1626.

[5] Guoyao Feng, Lukasz Golab, and Divesh Srivastava. 2017. Scalable Informative
Rule Mining. In ICDE. 437–448.

[6] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. 1996. Data
Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and
Sub-Total. In ICDE. 152–159.

[7] Manas Joglekar, Hector Garcia-Molina, and Aditya G. Parameswaran. 2016. In-
teractive Data Exploration with Smart Drill-Down. In ICDE. 906–917.

[8] Manos Karpathiotakis, Ioannis Alagiannis, and Anastasia Ailamaki. 2016. Fast
Queries Over Heterogeneous Data Through Engine Customization. PVLDB 9, 12
(2016), 972–983.

[9] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Building
Efficient Query Engines in a High-level Language. PVLDB 7, 10 (2014), 853–864.

[10] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. 2010. Generating
Code for Holistic Query Evaluation. In ICDE. 613–624.

[11] Arnab Nandi. 2013. Querying Without Keyboards. In CIDR.
[12] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern

Hardware. PVLDB 4, 9 (2011), 539–550.
[13] Sunita Sarawagi. 2000. User-Adaptive Exploration of Multidimensional Data. In

VLDB. 307–316.
[14] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad

Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In
SIGMOD. 1907–1922.

39

	Abstract
	1 Introduction
	2 Data Cube Exploration
	2.1 Illustrative Example
	2.2 Explanation Tables
	2.3 Constructing Explanation Tables

	3 In-Browser Implementation
	3.1 Columnar Storage Using Typed Arrays
	3.2 Query Compilation into Asm.js
	3.3 Query Operators and Materialization

	4 Demonstration Scenarios
	5 Related work
	6 Conclusions
	References

