
Incorporating Feedback into Tree-based Anomaly Detection
Shubhomoy Das

Oregon State University
Corvallis, Oregon 97330
dassh@oregonstate.edu

Weng-Keen Wong
Oregon State University
Corvallis, Oregon 97330

wongwe@oregonstate.edu

Alan Fern
Oregon State University
Corvallis, Oregon 97330

Alan.Fern@oregonstate.edu

Thomas G. Dietterich
Oregon State University
Corvallis, Oregon 97330
tgd@oregonstate.edu

Md Amran Siddiqui
Oregon State University
Corvallis, Oregon 97330

siddiqmd@oregonstate.edu

ABSTRACT
Anomaly detectors are often used to produce a ranked list of statis-
tical anomalies, which are examined by human analysts in order
to extract the actual anomalies of interest. Unfortunately, in real-
world applications, this process can be exceedingly difficult for the
analyst since a large fraction of high-ranking anomalies are false
positives and not interesting from the application perspective. In
this paper, we aim to make the analyst’s job easier by allowing for
analyst feedback during the investigation process. Ideally, the feed-
back influences the ranking of the anomaly detector in a way that
reduces the number of false positives that must be examined before
discovering the anomalies of interest. In particular, we introduce
a novel technique for incorporating simple binary feedback into
tree-based anomaly detectors. We focus on the Isolation Forest al-
gorithm as a representative tree-based anomaly detector, and show
that we can significantly improve its performance by incorporating
feedback, when compared with the baseline algorithm that does not
incorporate feedback. Our technique is simple and scales well as
the size of the data increases, which makes it suitable for interactive
discovery of anomalies in large datasets.

CCS CONCEPTS
•Computingmethodologies→Active learning settings; Semi-
supervised learning settings;

KEYWORDS
AnomalyDetection, Active Learning, User Feedback, Semi-supervised
Learning, Optimization

ACM Reference format:
Shubhomoy Das, Weng-Keen Wong, Alan Fern, Thomas G. Dietterich,
and Md Amran Siddiqui. 2017. Incorporating Feedback into Tree-based
Anomaly Detection. In Proceedings of , Halifax, Nova Scotia, Canada, August
14th, 2017 (KDD 2017 Workshop on Interactive Data Exploration and Analytics
(IDEA’17)), 9 pages.
https://doi.org/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA’17), August
14th, 2017, Halifax, Nova Scotia, Canada
© 2017 Copyright held by the owner/author(s).
ACM ISBN .
https://doi.org/

1 INTRODUCTION
We define an anomaly as a data instance generated by a different
process than the process generating the nominal data. On the other
hand, we define an outlier as a data instance that has low likeli-
hood according to a model. Anomaly detectors are in general very
good at detecting outliers. However, not all outliers are anomalies.
Some outliers are statistical noise, while others might not interest
the end-users. A class of the state-of-the-art anomaly detectors
dependent on unsupervised tree-based methods [2, 5, 8, 11] are not
naturally immune to this problem. These detectors usually parti-
tion the feature space into multiple (sometimes overlapping and
hierarchical) regions and assign scores to each region individually.
When the scores computed for some of the regions do not reflect
their true relevance to the user’s notion of an anomaly, it creates a
semantic mismatch between what the user considers an anomaly
and what the algorithm considers an outlier. In order to avoid this
mismatch, we need expert-feedback to make outliers more in line
with expert’s idea of an anomaly.

Active Anomaly Discovery (AAD) [3] is one of the most recent
methods for incorporating analyst-feedback into an ensemble of
anomaly detectors. In this paper, we show that tree-based anom-
aly detectors can also be treated as ensembles such that we can
incorporate feedback into them by employing AAD. We present
an implementation of this concept in the specific context of the
tree-based anomaly detector Isolation Forest [5], which is com-
petitive with other state-of-the-art anomaly detectors [4, 5]. One
advantage of the proposed approach is that it allows incorporat-
ing feedback at a finer level than simply combining the outputs of
multiple detectors linearly.

In Section 2, we present our view of the general structure of
tree-based anomaly detectors, and illustrate this view with Isola-
tion Forest as an example. Section 3 presents an overview of AAD
and then extends AAD to incorporate feedback into the Isolation
Forest. We refer to this new algorithm as IF-AAD. Section 4 presents
quantitative empirical results on eight benchmark datasets and pro-
vides a visualization of the feedback process in order to gain further
insight into how the feedback affects which instances are queried.
Finally, we summarize the contributions and results in Section 5.

2 TREE-BASED ANOMALY DETECTORS
We consider an anomaly detection setting where an anomaly de-
tector is used to assign anomaly scores to data instances, which
are assumed to be feature vectors in Rn . The instances can then

https://doi.org/
https://doi.org/

KDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA’17), August 14th, 2017, Halifax, Nova Scotia, Canada Das et al.

Table 1: Node weights for tree-based algorithms.

Name Internal node weight Leaf node weight
Isolation Forest [5] −1 −1
HS-Trees [8] 0 anomaly score as defined in Tan et al. [8]
RS-Forest [11] 0 anomaly score as defined in Wu et al. [11]
RPAD (‘AVG’ variant) [7] normalized pattern frequency [7] normalized pattern frequency [7]
Random Projection Forest [2] log-probability at the node [2] log-probability at the leaf [2]

be presented to an analyst in ranked order, starting with the most
anomalous instance. Our work is motivated by the observation
that a number of state-of-the-art anomaly detectors are based on
decision-tree ensembles, or forests. The internal nodes of each tree
correspond to threshold tests on selected features. Thus, a given
instance x will follow a unique path from the root to a leaf in each
tree.

Each tree node ν in the tree-based anomaly detector stores a real-
valued weight wν , which is used to calculate the anomaly scores.
The anomaly score of an instance x is simply equal to the average
over weights of all tree nodes that the instance follows in the forest.
Note that each node in the forest can be viewed as defining a
distinct volume in Rn and thus the total score is a combination of
the weights of these overlapping volumes.

Despite the simplicity of this anomaly detection structure, a
number of state-of-the-art algorithms can be represented as a par-
ticular choice of weight values and methods to construct the trees
(generally highly randomized trees). Table 1 illustrates the weight
values that correspond to a number of algorithms. As one example
and as described in detail below, the Isolation Forest [5] algorithm
assigns a constant weight of −1 to all tree nodes.1 The anomaly
score then evaluates to be the average path length traversed by an
instance across trees in the forest.

As another example, the HS-Trees[8] algorithm, assigns a weight
of νr × 2νk to each leaf node ν , where νr is the number of training
instances at the node ν , and νk is the node’s depth. In addition,
HS-Trees assigns weight 0 to all non-leaf nodes. Thus, in this case
the anomaly score of an instance x is the average of the weights at
leaves it reaches.

In practice, there is no uniformly best anomaly detector (or equiv-
alently, a fixed setting of the weights) across the possible applica-
tions. Rather, the best performing detector for a given application
will depend on how well a detector’s notion of “outlier” matches
the analyst’s notion of “interesting anomaly”. This is difficult to
predict for a given application. Further, it is unlikely that any of the
weight settings corresponding to state-of-the-art detectors will be
optimal for a given application when considering the entire range
of possible weight settings.

The above motivates incorporating user feedback during use of
an anomaly detector to attempt to tune the weights toward the
ideal application-specific detector. In Section 4, we show that this
approach often increases the number true anomalies discovered
within a particular budget of instances that can be examined by an
analyst. In this paper, we treat Isolation Forest as a representative

1This assumes the trees are grown to a depth where instances are isolated. Otherwise
the leaf nodes would have alternative weights that depend on the amount of data
arriving at each leaf.

tree-based anomaly detector, and explain our method for incorpo-
rating feedback, where the detector is initialized to the Isolation
Forest weights. Below we describe in detail the Isolation Forest
algorithm for concreteness and illustrate how it is easily captured
in our tree-based anomaly detection framework.

2.1 Isolation Forest (IF)
Isolation Forest (IF) [5] comprises of a set of t trees denoted by
T = {T1; :::;Tt } constructed in a randomized manner as outlined in
Algorithm 1, and illustrated in Figure 1a. Each tree is constructed
from the root to leaves by randomly partitioning the data at each
node by selecting a feature and a threshold both at uniformly ran-
dom. The trees are grown until each instance is isolated in a leaf.
IF is based on the idea that anomalous instances are few, and they
are well-separated from clusters of nominal instances in the feature
space. Because of this, anomalous instances very quickly reach leaf
nodes through random partitioning. On the other hand, nominal
instances, which form dense clusters, require many more splits to
finally reach leaf nodes. Therefore, the length of the path traversed
by an instance from the root node to the leaf, also known as the
isolation depth, is shorter (on average) for anomalous instances
than it is for nominal instances. The anomaly score assigned to an
instance is simply the average isolation depth across the forest.

It is straightforward now to describe IF as a particular way of
setting the weights of a tree-based anomaly detector. In particular,
the weight of each node ν iswν = −1 (constant). Given an instance
x , it is easy to see that the anomaly score assigned by the tree-based
detector is simply negative of the average number of nodes on paths
traversed by x in the forest, i.e. negative of the average isolation
depth. Note that, the main purpose to make scores negative is to
ensure that higher scores indicate more anomalous and lower scores
indicate more nominal.

In order to describe our algorithm for feedback, it is convenient to
view the score assigned by the detector as a linear score function. To
do this, for each tree node ν define an indicator feature zν ∈ {0; 1}.
The anomaly score is then simply the dot product of feature and
weight vectors, that is,

score(x) = z ·w;

where the dimension of each vector is the number of nodes in the
forest.

Figure 1 illustrates the anomaly score contours for IF with a
single tree on synthetic data. The anomaly score contours in Fig-
ure 1d show that a single isolation tree is not very informative.
However, if we increase the number of trees in the ensemble, their
combined scores can be fairly accurate even without feedback. This
is illustrated in Figure 2a where the number of trees is 100.

Incorporating Feedback into Tree-based Anomaly DetectionKDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA'17), August 14th, 2017, Halifax, Nova Scotia, Canada

(a) Isolation Tree Construction

(b) Synthetic dataset (c) 1 Tree (d) Contours with 1 Tree

Figure 1: Random trees in Isolation Forest (IF) for synthetic data. The points in red are true anomalies; points in gray are true
nominals. Figure 1c shows the leaf node regions for a single tree generated by random IF splits. Figure 1d shows the contours
of anomaly scores assigned to the nodes of this tree. Deeper red means more anomalous; deeper blue means more nominal.
The red circles are the true anomalies among the top ranked 35 instances. The green circles are the true nominals among the
top ranked 35 instances. The left sidebar in Figure 1d shows the ranking of true anomalies (red dots). Ideally, true anomalies
should be near the top on this bar.

Algorithm 1 Generating randomized trees in Isolation Forest

Input: D, sub-sample size:N, number of trees:t
T = ;
for i = 1:::t do

LetSi = a sub-sample ofN instances fromD
Build treeTi as follows, by starting with all instances inSi at
the root node:

LetU � Si be the set of instances at the current node
if jU j == 1 then

return
else

Let f be a feature sampled at random
Let fmin = min. value off across all instances inU
Let fmax = max. value off across all instances inU
Letpf = value sampled unif. random in»fmin ; fmax ¼
PartitionU into two parts on the basis ofpf and recurse
on both partitions

end if
T = T [Ti

end for

3 RE-WEIGHTING TREE PARTITIONS
We now describe our approach for adjusting the weights in the
above score function based on feedback from the analyst.

3.1 Active Anomaly Discovery (AAD)
AAD is an algorithm (Algorithm 2) that tries to maximize the num-
ber of true anomalies presented to the analyst in an interactive
feedback loop. It assigns an anomaly score to each instance such
that a higher score means more anomalous. The instances are in-
ternally ranked in descending order of the scores. In each feedback
iteration, AAD presents the most anomalous instance to the analyst
and asks for its true label, eitheranomalousor nominal. In prior
work, the AAD algorithm was developed to learn the weighting
among an ensemble of anomaly detectors, in particular ensembles
produced by the LODA [6] anomaly detector. Here we show that
the same approach can be used to re-weight nodes within the trees
of a forest.

Assume that we have a dataset instanceH = f z1; :::;zn g, where
zi 2 R M . Note that here we think of the instances as being rep-
resented by the vector of indicator features corresponding to tree

KDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA'17), August 14th, 2017, Halifax, Nova Scotia, Canada Das et al.

nodes. When the label is known for an instancezi , we will de-
note the label byyi 2 fanomaly;nominalg. LetHF � H be the set
of instances for which the analyst has already provided feedback,
HA � HF be the set of labeled anomalies, and letHN � HF be
the set of labeled nominals. The anomaly score of an instancez is
score¹zº = z � w, and our goal is to learn the weightsw that will
most likely rank the true anomalies near the top.

The AAD algorithm takes a quantile parameter as input� 2 »0; 1¼.
The instance that has the� -th ranked score (in descending order)
is denoted byz� , and its corresponding score is denoted byq� .
The weight vectorw must ensure that scores of labeled anomalies
z 2 HA are higher thanq� while, at the same time, the scores of
labeled nominalsz 2 HN are lower thanq� . Additionally, AAD adds
soft pairwise constraints which encourage every labeled anomaly
to have a higher score than every labeled nominal under the new
weights that are learned.

The weight vectorw is learned through a constrained optimiza-
tion problem (described below). This problem is the same as the
one introduced for the original AAD algorithm [3], except for the
following di�erences:

(1) Instead of introducing all pairwise constraints between anom-
alies and nominals, we only add constraints relative to the
current� -th ranked instance. We found that this change does
not degrade the accuracy of AAD in detecting anomalies,
but makes the computation signi�cantly faster.

(2) Since the pairwise constraints are `soft', each violated con-
straint is multiplied by a slack penalty termC� . We can then
re-formulate the objective by adding additional terms to the
loss function that correspond to the constraints. This allows
optimization by gradient descent, which is helpful when the
number of features is very high � as will be the case in our
proposed algorithm.

Before formulating the optimization problem, we �rst de�ne the
following hinge loss̀ ¹q;w; ¹zi ;yi ºº:

` ¹q;w; ¹zi ;yi ºº =

8>>>><

>>>>
:

0 w � zi � q andyi =`anomaly'
0 w � zi < q andyi =`nominal'
¹q � w � zi º w � zi < q andyi =`anomaly'
¹w � zi � qº w � zi � q andyi =`nominal'

(1)

The modi�ed unconstrained optimization problem for learning
the optimal weights is then formulated as:

w¹t º = arg min
w;�

CA

jHA j
©

«

Õ

zi 2HA

` ¹q̂� ¹w¹t � 1ºº;w; ¹zi ;yi ºº
ª
®
¬

+
1

jHN j
©

«

Õ

zi 2HN

` ¹q̂� ¹w¹t � 1ºº;w; ¹zi ;yi ºº
ª
®
¬

+
C�

jHA j
©

«

Õ

zi 2HA

` ¹z¹t � 1º
� � w;w; ¹zi ;yi ºº

ª
®
¬

+
C�

jHN j
©

«

Õ

zi 2HN

` ¹z¹t � 1º
� � w;w; ¹zi ;yi ºº

ª
®
¬

+ kw � wp k2 (2)

where,wp = wU
kwU k = » 1p

m
; : : : ; 1p

m
¼T , z¹t � 1º

� andq̂� ¹w¹t � 1ºº are

computed by ranking anomaly scores withw = w¹t � 1º.CA andC�
are constant weight hyper-parameters. WhenCA is set to a value
larger than1, as is typically the case, it causes the hinge loss for
anomalies inHA to be higher than those associated with nominals.
C� encourages a) the scores of anomalies inHA to be higher than
that of the� -th ranked instance from the previous iteration, and
b) the scores of nominals inHN to be lower than that of the� -th
ranked instance from the previous iteration.

We apply gradient descent to learn the optimal weightsw for
Equation 2, in Line 15 of Algorithm 2.

Algorithm 2 Active Anomaly Discovery (AAD)

Input: DatasetH, budgetB
Initialize the weightsw¹0º = f 1p

m
; :::; 1p

m
g

Sett = 0
SetHA = HN = ;
while t � B do

t = t + 1
Seta = H � w (i.e.,a is the vector of anomaly scores)
Let zi = instance with highest anomaly score (wherei =
arg maxi ¹ai º)
Get feedbackf `anomaly'• `nominal'gon zi
if zi is anomalythen

HA = f zi g [HA
else

HN = f zi g [HN
end if

15: w¹t º = compute new weights; normalizekw¹t ºk = 1
end while

3.2 Re-weighting IF Partitions (IF-AAD)
Our experiments consider starting with IF and tuning the weights
based on feedback. This can simply be done by initializing the
weights to all be constant values. The AAD algorithm can then
be employeed with a regularization term that encourages weights
to not depart too far from those initial values. We will refer to

Incorporating Feedback into Tree-based Anomaly DetectionKDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA'17), August 14th, 2017, Halifax, Nova Scotia, Canada

(a) Initial (b) 8 Iterations (c) 16 Iterations

(d) 24 Iterations (e) 32 Iterations (f) Anomalies discovered

Figure 2: Incorporating feedback in Isolation Forest (IF) for synthetic data (Figure 1b). Figures 2a � 2e show anomaly score
contours in the same way as explained in Figure 1. The red and green circles are the instances that have been presented for
labeling. The x-axis in Figure 2f represents the number of instances presented to the analyst, and the y-axis represents the
number of true anomalies discovered. The red curve in Figure 2f shows the number of true anomalies discovered when we
incorporate feedback; the blue curve in Figure 2f shows the number of true anomalies discovered when no feedback was
incorporated.

this algorithm asIF-AAD. We assume that the forest is constructed
exactly as in the original IF algorithm and the trees are kept �xed
throughout the entire interaction with the analyst. That is, the
feedback is employed only to re-weight the tree-partitions; the
partitions themselves are never modi�ed.

Figure 2 shows the result of incorporating feedback on the syn-
thetic data. As the algorithm receives feedback, it alters the contours
of the anomaly scores and focuses on the more relevant regions
of the feature space. In all experiments we have set the number
of treest = 100. For the AAD parameters, we set� = 0:03, and
CA = 100, as recommended in Das et al. [3]. We setC� = 0:001in
all experiments. A very largeC� makes the algorithm focus more
on regions where anomalies have already been found previously,
and discourages exploration.

4 EXPERIMENTS
In our experiments, we used theMammography[10] dataset as well
as seven datasets from the UCI repository [1]: Abalone, Cardiotocog-
raphy, Thyroid (ANN-Thyroid), Forest Cover (Covtype), KDD-Cup-99,
ShuttleandYeast. For each dataset, the classes were divided into
two sets, one representing the nominal instances and a smaller
set representing the anomlous instances. For theCardiotocography
dataset, we retained all instances from thenominalclass as in the

original dataset, but down-sampled theanomalyinstances so that
they represent only around 2% of the total data. The rest of the
datasets were used in their entirety. The number of true anomalies
and true nominals in each dataset along with the division of classes
into nominals and anomalies are shown in Table 2.

We evaluate an anomaly detector based on the rate that a sim-
ulated analyst is able to �nd true anomalies. In particular, each
iteration of anomaly detection involves giving the analyst the top
ranked instance and then receiving the feedback asanomalousor
nominal. We compare our proposed algorithm, IF-AAD, against the
following baselines:

(1) IForest Baseline: For the baseline, we present instances in
decreasing order of anomaly score computed with the IF
algorithm with uniform weights. This algorithm ignores the
analyst feedback and thus the ranking is constant across
iteration. This baseline captures the performance of an unsu-
pervised anomaly detector that does not incorporate expert
feedback. The trees were constructed by the original IF imple-
mentation available as part of thePython scikit-learnlibrary.

(2) LODA-AAD: This corresponds to the original AAD approach
[3], where AAD was applied to the ensemble of anomaly
detectors created by the LODA anomaly detector [6]. Each
anomaly detector in the ensemble corresponds to a random

KDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA'17), August 14th, 2017, Halifax, Nova Scotia, Canada Das et al.

Table 2: Datasets used in our experiments, along with their characteristics.

Dataset Nominal Class Anomaly Class Total Dims # Anomalies(%)

Abalone 8, 9, 10 3, 21 1920 9 29 (1.5%)

ANN-Thyroid-1v3 3 1 3251 21 73 (2.25%)

Cardiotocography 1 (Normal) 3 (Pathological) 1700 22 45 (2.65%)

Covtype 2 4 286048 54 2747 (0.9%)

KDD-Cup-99 `normal' `u2r', `probe' 63009 91 2416 (3.83%)

Mammography -1 +1 11183 6 260 (2.32%)

Shuttle 1 2, 3, 5, 6, 7 12345 9 867 (7.02%)

Yeast CYT, NUC, MIT ERL, POX, VAC 1191 8 55 (4.6%)

projection that maps each instance to 1D, bins the data to
form a histogram, and then measures the anomaly score ac-
cording to frequency of the histogram bin an instance falls
into.

Figure 3 shows the quantitative results for all of the data sets.
Each graph plots the number of discovered anomalies versus the
number of iterations. The best possible result is a line with slope
1, indicating that an anomaly is discovered at each iteration. The
curves are averaged over 10 independent runs of the algorithm and
95% con�dence intervals are shown. Overall, we see that IF-AAD
never hurts the performance of IF and in most cases signi�cantly
increases the number of anomalies discovered over time compared
to both IF and LODA-AAD.

In order to gain more insight into how the feedback in�uences the
algorithm on real-world datasets, we computed the two-dimensional
representations of the datasets witht-SNE[9] for visualization. Fig-
ure 4 shows the t-SNE plots of two representative datasets,Abalone
andANN-Thyroid-1v3. We then marked the points on which the
algorithm focused its queries in the �rst60feedback iterations. We
observe two ways by which the feedback in�uenced the queries.
First, it reduced focus on the regions where the queried outliers were
labeled nominal (e.g., location¹30; � 50º in Abalone, and¹60; � 60º in
ANN-Thyroid-1v3). Second, it increased focus on regions that con-
tained previously labeled true anomalies (e.g.,¹� 20; � 20º in Abalone
and¹0; � 10º in ANN-Thyroid-1v3).

The time taken by IF-AAD in each feedback iteration depends
on the particular data set and increases linearly with the number
of labeled instances. As an example, forANN-Thyroid-1v3, IF-AAD
took less than one second for the �rst feedback which involved one
labeled instance, and took approx. 40 seconds to incorporate 100
labeled instances.

Finally, we note that a number of tree-based anomaly detectors
are based on having non-zero weights only at the leaves (see Table
1). In order to evaluate the importance of having non-zero weights
on internal nodes, we evaluated a version of IF-AAD that keeps all
weights equal to zero except for the leaf nodes, which are updated by

AAD. This new algorithm is called IF-AAD-Leaf and is implemented
by only including indicator features and weights for leaf nodes in
our formulation. Figure 5 shows a comparison between IF-AAD
and IF-AAD-Leaf on three data sets that are representative of the
results across all data sets. We observed that IF-AAD-Leaf has
slightly worse performance than IF-AAD, showing that there is
utility in weighting internal nodes, but the majority of the impact
of feedback can be achieved by focusing just on leaf nodes.

5 SUMMARY
We presented a new anomaly detection algorithm, IF-AAD, which
�ne-tunes the output of an Isolation Forest in a feedback loop. It
treats the regions de�ned by the nodes of the isolation trees as
components of an ensemble and re-weights them on the basis of
feedback received from an analyst. IF-AAD is consistently one
of the top performers in our experiments with real-world data.
It sometimes detects twice the number of true anomalies as the
baseline isolation forest algorithm. In future work we intend to
extend our approach to other tree-based anomaly detectors.

ACKNOWLEDGMENTS
Funding was provided by Defense Advanced Research Projects
Agency Contracts W911NF-11-C-0088 and FA8650-15-C-7557. The
content of the information in this document does not necessar-
ily re�ect the position or the policy of the Government, and no
o�cial endorsement should be inferred. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on. This
paper is based upon work while Weng-Keen Wong was serving at
the National Science Foundation. Any opinion, �ndings, and con-
clusions or recommendations expressed in this material are those of
the authors and do not necessarily re�ect the views of the National
Science Foundation.

Incorporating Feedback into Tree-based Anomaly DetectionKDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA'17), August 14th, 2017, Halifax, Nova Scotia, Canada

(a) Abalone (b) ANN-Thyroid-1v3 (c) Cardiotocography

(d) Yeast (e) Covtype (f) KDD-Cup-99

(g) Mammography (h) Shu�le

Figure 3: The total number of true anomalies seen vs. the number of queries for all datasets. Total number of queries for the
smaller datasets (Abalone, Cardiotocography, ANN-Thyroid-1v3 , and Yeast) is 60. Total number of queries for the larger datasets
(Covtype, KDD-Cup-99, Mammography , and Shu�le) is 100. Results were averaged over 10 runs. The error-bars represent 95%
con�dence intervals.

REFERENCES
[1] 2007. UC Irvine Machine Learning Repository. http://archive.ics.uci.edu/ml/.

(2007).
[2] Fan Chen, Zicheng Liu, and Ming-ting Sun. 2015. Anomaly detection by us-

ing Random Projection Forest. In2015 IEEE International Conference on Image
Processing (ICIP). 1210�1214.

[3] Shubhomoy Das, Weng-Keen Wong, Thomas G. Dietterich, Alan Fern, and An-
drew Emmott. 2016. Incorporating Expert Feedback into Active Anomaly Discov-
ery. In Proceedings of the IEEE International Conference on Data Mining. 853�858.

[4] Andrew Emmott, Shubhomoy Das, Thomas G. Dietterich, Alan Fern, and Weng-
Keen Wong. 2015. Systematic Construction of Anomaly Detection Benchmarks
from Real Data.CoRRabs/1503.01158 (2015). http://arxiv.org/abs/1503.01158

[5] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In
Proceedings of the Eighth IEEE International Conference on Data Mining. 413�422.

	Abstract
	1 Introduction
	2 Tree-based Anomaly Detectors
	2.1 Isolation Forest (IF)

	3 Re-weighting Tree Partitions
	3.1 Active Anomaly Discovery (AAD)
	3.2 Re-weighting IF Partitions (IF-AAD)

	4 Experiments
	5 Summary
	Acknowledgments
	References

