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ABSTRACT
Boolean matrix factorization (BMF) has become one of the
standard methods in data mining with applications to fields
such as lifted inference, bioinformatics, and role mining, to
name a few. But the standard formalization of BMF assumes
all errors are equal, at most giving the user a chance to weigh
different types of errors differently. In many cases, however—
and here role mining is a good example—making errors at one
element of the matrix can be inacceptable, while the value
in another element might be rather inconsequential. It is
therefore preferable that the user can express her constraints
to the mining algorithm. Unfortunately, deciding on the
constraints for every element of the matrix easily becomes
infeasible. To solve that problem, we propose to query the
constraints from the user only when they are needed. In this
paper we demonstrate our system for interactive constrained
BMF. We will present the problem and the algorithm, and
in addition to the demonstration, we will also present a short
experimental evaluation showing that our approach can find
good factorizations in the presence of constraints.

CSS Concepts
•Human-centered computing → Interactive systems
and tools; •Information systems → Data mining

Keywords
Boolean matrix factorization; interactive data mining; role
mining

1. INTRODUCTION
In role mining, we are given a relation between a set of

users and a set of rights telling us which user has which right.
Such relation is naturally expressed as a binary matrix, and
an example of such a matrix is presented in Figure 1. In
Figure 1, we have three users, Alice, Bob, and Charles (A,
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A B C( )
p 1 1 0
e 1 0 1
d 0 1 1

Figure 1: Example role mining dataset with three
users, (A)lice, (B)ob, and (C)harles, and three rights,
(p)rint, (e)xecute, and (d)elete

B, and C, respectively) and three rights, print, delete, and
execute (respectively p, d, and e), and Alice, for instance,
has the right to print and execute, but not delete. The goal
of role mining is to find a small collection of roles, that is,
sets of rights, and corresponding collection of sets of users
so that each user of set i has all the rights in role i.

There are two common variants of the general role mining
problem: either every user must get exactly the rights they
held via the roles and the goal is to achieve this with the
minimum number of roles, or we are given the maximum
allowable number of roles, and the goal is minimize the
errors we make (giving users new rights or taking existing
ones away). If the data admits a description using a small
sets of roles, the former variant is clearly more desirable (and
indeed, many real-world data do admit it [2]). But other
data could potentially take hundreds of roles to describe
exactly (e.g. if the users are smartphone applications and the
rights the permissions they ask [3]). In such cases we might
be willing to give some users some new rights, and take some
existing rights away, in an attempt to find a concise set of
roles. Consider the example in Figure 1: to exactly express
every user’s right, we would need three roles, that is, one role
for each user. But if we give Bob the ‘execute’ right, we can
do with just two roles, namely r1 = {p, e} and r2 = {e, d},
and Alice would have only role r1, Charles would have only
role r2, and Bob would have both roles r1 and r2.

But a short moment of thought will immediately tell us
that not every right is of equal importance to every user;
indeed, there might be a very good reason why Bob is not
granted the right to execute. If, instead, we want to describe
the data with just two roles, we have to take away at least
two rights from the users: we can, for instance, remove Bob’s
right to delete and Alice’s right to execute, or we can remove
Bob’s right to print and Charles’ right to execute. Both of
these two cases will cause the same amount of error, but they
might not be equal in other ways. Printing, for example, can
be vital for Bob’s job and he should not loose that right.



The user can enter these constraints before she starts find-
ing the roles and tell the algorithm which user–right pairs
cannot be changed by giving the user the right or taking it
away. But often there are too many constraints to consider:
if the data has n users and m rights, there are nm user-right
combinations, and each of them is a potential constraint.
For example, in Section 5, we report results of our exper-
iments using an Android application permission data that
has 117 036 applications and 173 permissions. Considering
all of the over twenty million application–permission pairs a
priori is practically impossible.

Not only impossible, considering each of these pairs a priori
is also often useless: frequently, the role mining algorithm
will honor the vast majority of the constraints even without
knowing about them. In order to allow the user to concen-
trate on those right assignments whose changing would help
the algorithm to find a smaller set of roles, we propose an
interactive approach, where the algorithm will inform the
user whenever it is about to add a new or remove an existing
right. The user can then decide whether the change can be
done or whether this user–right pair should be left untouched.
In the latter case, the algorithm will never try to change that
pair again.

To formalize our problem, we cast it as an equivalent
Boolean matrix factorization (BMF) problem, and indeed,
our algorithm is designed for interactive constrained BMF. As
BMF has many other applications areas besides role mining,
so has our algorithm. Although we will use role mining as the
motivating application throughout this paper, in Section 5,
we will show that our algorithm can be used with many other
datasets as well.

The main purpose of this paper is to demonstrate our algo-
rithm, iConFaRe (Interactive Constrained Factor Reducer),
and we will explain the proposed demonstration in Section 6.
Let us first, however, formally define BMF in Section 2 and
cover the related work in Section 3. After presenting our al-
gorithm in Section 4, we present our experimental evaluation
in Section 5 before concluding in Section 7.

2. NOTATION AND DEFINITIONS
As we explained, in order to have a general framework,

we will describe our method in the terms of Boolean matrix
factorization. We denote a matrix by upper-case boldface
letters (A), and vectors by lower-case boldface letters (a).
For a matrix A we denote its ith row by Ai and its jth
column by Aj .

We use the shorthand [n] to denote the set of integers up
to n, [n] = {1, 2, . . . , n}.

Let A ∈ {0, 1}n×m, B ∈ {0, 1}n×k and C ∈ {0, 1}k×m.
We denote by B ◦C the n-by-m Boolean product of matrices
B and C. The Boolean matrix product is defined like the
normal product, but over the Boolean semiring, that is,
(B ◦C)ij =

∨k
`=1 Bi`C`j .

Let 〈B,C〉 be an (approximate) Boolean decomposition
of A, A ≈ B ◦ C. We call B and C factors of this de-
composition, and for any 1 ≤ l ≤ k, we refer to the rank-1
matrix formed by the vector pair 〈Bl,Cl〉 as a block. If
X and Y are n-by-m binary matrices, we use X ⊕ Y to
denote their element-wise exclusive or. Finally, we denote
by |A| the number of non-zeros in Boolean matrix A, that
is, |A| =

∑
i,j aij .

The standard Boolean matrix factorization (BMF) problem
is now:

Problem 1. Given A ∈ {0, 1}n×m and k ∈ N, find B ∈
{0, 1}n×k and C ∈ {0, 1}k×m that minimize

|A−B ◦C| . (1)

As we explained, the standard BMF considers all errors
equal, but for example in the role mining application, this
is not what is wanted. To address that problem, we can
formulate the constrained BMF (cBMF) problem, where
we are additionally given a set of index pairs denoting the
locations of A where the factorization is not allowed to make
mistakes:

Problem 2. Given A ∈ {0, 1}n×m, k ∈ N, and a set of
constraints C = {(i, j) : i ∈ [n], j ∈ [m]}, find B ∈ {0, 1}n×k

and C ∈ {0, 1}k×m that minimize (1) while admitting the
constraints, that is,

aij = (B ◦C)ij for all (i, j) ∈ C. (2)

Notice that our definition of cBMF has a significant prob-
lem: it is possible that there exists no valid solution. A simple
example is if we let A to be the n-by-n identity matrix, set
C = [n] × [n] (i.e. require exact decomposition), and set
k < n. We can avoid this problem by requiring that the rank
k is always high-enough, for example, by requiring that k ≥
max{|{i ∈ [n] : (i, j) ∈ C}| , |{j ∈ [m] : (i, j) ∈ C}|}; with this
inequality, we know we can always represent the rows (or
columns) with constraints exactly.

Another, and arguably more severe, problem of the above
formulation is that it requires the user to pre-specify all
constraints. Our approach is to make the algorithm query
for the constraints when it needs to, and let the rank k
be implicitly set: the algorithm tries to reduce the rank
as much as possible without violating any constraints. To
formalize the process of obtaining the constraints, consider a
functionQA : [n]×[m]→ {0, 1}. For every element (i, j) of A,
function QA(i, j) returns 0 if the element is not constrained,
and 1 if the element is constrained. We assume that our
algorithm does not know the definition of QA, but it does
have a way to evaluate it for any element (by asking the
user). With these, we can define the problem we study in
this paper, the interactive constrained BMF (icBMF):

Problem 3. Given A ∈ {0, 1}n×m and a way to evaluate
the function QA, find B ∈ {0, 1}n×k and C ∈ {0, 1}k×m

such that k is minimized and the factorization B ◦C does
not violate any constraints, that is

n∑
i=1

m∑
j=1

(aij − (B ◦C)ij)QA(i, j) = 0 . (3)

Problem 3 does not consider the error at all. Obviously,
it should be considered, but in the definition of Problem 3,
it is implicit in the constraint query QA: if the user feels
that there is going to be too much error, she can limit it
by imposing more constraints. There are definitely other
possible approaches, and we point the reader to Section 7
for more discussion on this topic.

3. RELATED WORK
Boolean matrix factorizations have received considerable

research interest in data mining. The problem was intro-
duced to the field in [11] together with the Asso algorithm.
Subsequent papers have proposed new algorithms [1, 8], new



Algorithm 1 iConFaRe

Input: matrix A ∈ {0, 1}n×m, a way to evaluate function QA

Output: Factors B ∈ {0, 1}n×k and C ∈ {0, 1}k×m

1: function iConFaRe(A,QA)
2: 〈B,C〉 ← exact Boolean factorization of A
3: repeat
4: d← the block 〈Bd,Cd〉 that causes the least error if

deleted
5: (m1,m2)← the pair of blocks 〈Bm1 ,Cm1 〉,
〈Bm2 ,Cm2 〉 that cause the least error if merged

6: op← the delete or merge operation that causes the
least error

7: query QA if op violates any constraints
8: if op does not violate any constraints then
9: perform op to obtain new B and C

10: mark all elements with errors unconstrained
11: else
12: mark op as inadmissible operation
13: update the constraints
14: end if
15: until there are no admissible operations
16: return B and C
17: end function

optimization goals [12], and new algorithms aiming to opti-
mize these goals [5].

The special cases of exact Boolean matrix factorization
(a.k.a. Boolean rank) and dominated Boolean matrix fac-
torization were studied even earlier [4], although under the
different name of tiling.

The role mining problem and its connections to BMF,
were popularized in [15]. This approach was later extended
in [6, 16], leading to constraint-aware role mining in [7]. No-
tice, however, that in [7], the constraints are something the
algorithm is supposed to mine and express via negative per-
missions, while in our work, the user has to explicitly state the
constraints. On the other hand, [2] provided an algorithm for
computing the optimal Boolean matrix factorization (in ex-
ponential time) and applied it to many real-world user–right
datasets. All of these approaches are based on combinatorial
approaches; recently, [3] proposed a probabilistic approach.

4. OUR ALGORITHM
In this section we will present our approach for the icBMF

problem. We divide our treatise into two parts, the back-
end that is responsible for doing the computation, and the
front-end that provides the user interface and in essence
implements the evaluation of QA, although our front-end
also allows for the user to steer the computation in other
ways, as well.

Our algorithm, including the user interface, is implemented
in Python and it is freely available from http://people.

mpi-inf.mpg.de/~pmiettin/bmf/interactive/.

4.1 The Back-End
The general process of our algorithm, iConFaRe, is straight-

forward: it starts with an exact factorization and then re-
duces the factors, either by removing them, or by merging
them, while making sure that it never violates any constraints.
When it cannot anymore do any changes, it terminates. The
pseudo-code of iConFaRe is presented in Algorithm 1.

Finding the exact decomposition.
We start iConFaRe by finding an exact Boolean matrix

factorization of A in line 2. As this is an NP-hard problem,

we use the heuristic minimum tiling algorithm of Geerts et
al. [4]. That algorithm works essentially by first finding all
closed itemsets of the data, and then solving the minimum set
cover problem on an instance where each 1 of the data is an
element, and each closed itemset is a set. For efficiency we use
a slight modification of that idea, and instead of considering
all closed itemsets, we allow the user to set a minimum-
frequency threshold. To ensure that we can find an exact
decomposition, we add all columns as closed itemsets, even
if their frequency is below the user-set minimum-frequency
threshold.

Instead of using the tiling algorithm, we could of course
use any other algorithm returning an exact BMF; for smaller
matrices, for instance, the method proposed by Ene et al. [2]
can provide the optimal exact decomposition. We could also
use non-exact decompositions, but then we would have to
ensure that we do not violate any constraints as our algorithm
is not guaranteed to fix errors that were committed during
the exact factorization process.

Reducing the rank.
The exact decomposition usually has a rank that is too

high for the application, and the main part of iConFaRe is to
reduce that rank while ensuring it does not violate any con-
straints. It considers two ways of reducing the rank: delete
a block, or merge two blocks (see below for how the blocks
are selected for these operations). Both of these operations
result in a new factorization that has one block less. To
choose which of these operations it should perform, iCon-
FaRe compares the errors the operations cause and selects
the one that causes the least error. While we do not directly
aim at minimizing the error, an operation that causes only
little error is less likely to violate any constraint than an
operation that causes a large error. Therefore, selecting the
operation that causes the least error (lines 4–6) is a sensible
heuristic.

The error is defined to be the number of elements where
the operation would cause an error and that are not known
to be constrained. If the operation would cause an error
on any constrained element, it cannot be performed, and
consequently, iConFaRe does not consider it. On the other
hand, iConFaRe does not penalize operations for causing
errors on known-unconstrained elements. The logic behind
this is that if an element is known to be unconstrained, we
can set it to whatever value we want. Further, iConFaRe
will only consider elements to be unconstrained if it has
already committed errors on those elements, and ignoring
those elements avoids double-counting the errors.

Before iConFaRe commits the operation, it evaluates QA

(i.e. queries the user) to guarantee that it is not violating any
constraints. This querying needs to be done for all new errors
committed by the operation (the user has already allowed
the old errors, so those elements cannot be constrained). If
the operation does not violate any constraints, iConFaRe

commits it in line 9. It also marks all elements where the
new error is committed as unconstrained.

If the operation violates some constraints, iConFaRe marks
it as inadmissible (to avoid considering it again) and updates
the information regarding the constrained elements (in prac-
tise, though, the latter information might not be available;
see Section 4.2).

The main loop, and the algorithm, end when iConFaRe

cannot anymore find any operations that would not violate



some constraints. At that point it simply returns the current
factorization.

The delete and merge operations.
The operation of deleting a block is straightforward, and

so is finding the block to delete. For every block in the
factorization, iConFaRe keeps a list of elements that are 1
only in this block. If that element is 1 also in the data,
we know that removing this block would also commit an
error of not covering the 1 (e.g. removing a right from a
user). Deleting a block, obviously, cannot ever add 1s in
the factorization. An inverted index, matching every 1 in
the data to the blocks in the factorization, can be used to
efficiently update the information whether a block is the only
one covering a 1.

The merge operation is more complicated, and in fact
we consider two different merge operations: and-merge and
or-merge. Consider two blocks

B1 =


1
1
0
0

 C1 =
(
1 1 0 0

)

B2 =


1
0
1
0

 C2 =
(
1 0 1 0

)

The and-merge of the two blocks would result to factors
Band = (1000)T and Cand = (1000)T , while the or-merge
would result to factors Bor = (1110)T and Cor = (1110)T .
Notice that the and-merge can only remove 1s from the
factorization, while the or-merge can only add them.

Finding good blocks to merge is harder than with deletions
as it is hard to know how much error each operation would
cause without first computing all pair-wise merges (or both
types). That, naturally, is infeasible. Rather, we try to find
two rows of C that have a high Jaccard similarity, that is,
the value J(x,y) = |x ∧ y| / |x ∨ y| is high. For such vectors,
both types of merges should yield small errors as the vectors
are already rather similar and hence we will only consider
the pair of vectors with the highest similarity for merging.

Finding pairs of vectors with high Jaccard similarity will
still require us to consider all

(
k
2

)
pairs of rows of C for every

run of the loop. As iConFaRe is supposed to be an interactive
algorithm, we might not be able to wait so long. To speed
up the processing, we use the minhash signatures [14, Ch. 3]:
we use the min-wise hashing (or minhashing) to compute a
short signature for each row of C, and the similarity between
these signatures gives us a good approximation of the Jaccard
similarity of the rows.

After iConFaRe has selected the pair of blocks for merging,
it simply checks which of and-merge or or-merge yields the
smallest error and recommends it to the user.

4.2 The Front-End
The back-end of iConFaRe is essentially non-interactive,

and all of the interaction happens during the evaluation of
the function QA: this evaluation is done by the front-end
that queries the user whether the recommended operation
is admissible. The front-end will then inform the back-end
whether it can commit the operation or not. Computing the
exact decomposition is not done in an interactive way, and

as it can be time-consuming, we have implemented it as a
separate pre-processing step.

The front-end allows for other types of interaction than just
verifying the recommended operations. In particular, it lets
the user mark full rows or columns restricted and remove and
merge blocks herself, even if iConFaRe did not recommend
those operations. Our goal here is to allow the user to use
her domain knowledge and semantic understanding of the
data to perform operations that might seem sub-optimal
for the back-end, but that the user knows are admissible in
the domain. For example, the user might know that certain
users have a right to use machinery that is decommissioned.
Removing that right, then, will not harm the user’s capability
to carry on their duties, but it can help iConFaRe to find
more concise set of roles. On the other hand, being able to
mark the whole column (or row) restricted will reduce the
number of unnecessarily proposed deletes and merges. This
can be useful if some rights are considered very sensitive.

The main user interface.
The main user interface of iConFaRe’s front-end consists

of a list view showing the current blocks (see Figure 2).
This view allows the user to see all of the factors, sort them
using different criteria, and manually perform merge and
delete operations. It also allows the user to interact with
the back-end, asking it to produce the next recommended
operation (i.e. run one iteration of the main loop until the
next evaluation of the constraints). The next tabs of the
main view allow the user to see more information on the
rows and columns in the data, and specify entire rows and
columns as constraints in a fashion similar to constrained
clustering.

A simple but powerful application of the main list view
is to quickly delete a number of blocks. In particular, the
exact initial decomposition can yield an excessive number of
very small blocks (covering only few, or just one, rows and
columns). In many applications, they can be deleted with
only minimal consideration. In the main view, the user can
easily sort the blocks based on their size and quickly delete
all small blocks from the list.

In addition to the list view, iConFaRe has also a persistent
global view of the data (Figure 3). This view shows the
effects of operations on the full data. The main information
this visualization conveys is the effects of the operations on
the current factorization. For example, if we want to delete
a block, we can see which 1s in the current factorization
would turn into 0s (e.g. which rights would be removed from
which users), which 1s would be covered by only one block
(removal of which would remove the 1s from the factorization),
and which other 1s this block covers (together with at least
two other blocks). Further information is shown for merge
operations. This allows the user to do long-term planning
beyond that of iConFaRe: if an operation is going to make
many 1s dependable on one other block only, the user might
cancel the operation to allow for deleting other factors in the
future.

Especially with big datasets, the global view might not be
detailed enough and the effects scattered around the data
can be hard to interpret. For that purpose, iConFaRe also
includes a local view (Figure 4) that shows only the elements
that the operation is going to affect.

Figure 4 shows a case of or-merge where few elements
would turn into 1 in the factorization (denoted using blue



Figure 2: The main user interface of iConFaRe. The list shows the current factors with associated statistics,
and the space at the bottom-left shows detailed statistics for the selected factor. At the middle, the buttons
allow the user to commit a delete or merge operation, with relevant statistics shown next to the button, or
to ask the iConFaRe to propose the next operation. This view shows factors from the AndroidApps data.

Figure 3: Visualization of the full data. One factor is selected, and the visualization shows how it effects the
current factorization. For example, deleting this factor would mean that all the red dots in the data would
turn to 0 in the factorization. The dataset shown is the Mammals data.



Figure 4: Visualization of the local view. Two factors are to be merged with or-merge, and the visualization
shows how it effects the current factorization. The colors are the same as in Figure 3. The dataset shown is
the Mammals data.

color). As the overall area of the blue color is rather small,
the user might as well decide to merge these two blocks
unless she knows that Eptesicus nilssonii (a type of a bat)
should never appear in the areas corresponding to the rows,
for example, in square 35SKD3 (latitude 39.26, longitude
24.00, close to the East coast of Greece); indeed, E. nilssonii
is not supposed to live so south, and the user might well
reject this block for being unintuitive.

Communicating with the back-end.
When the user clicks the “Recommend” button at the main

view, iConFaRe computes the next recommended operation
that is then shown to the user. If the user commits the
operation, iConFaRe knows that all errors committed are
allowed, and consequently marks all those elements to be
unconstrained. If, on the other hand, the user skips the
operation, iConFaRe does not know what was the reason:
not all errors might have been in the constrained elements,
or the user might have decided to skip the recommended
operation for other reasons. Hence, by default, iConFaRe will
not mark any elements constrained even if the user does not
allow an operation. However, iConFaRe does not recommend
the same operation again as the user skipped it before, but
recommends the user the next operation resulting in the
smallest error.

To mark elements as constrained, the user must take spe-
cific action. In particular, she has to select the row on which
the element is, and left-click the element on the local view to
constrain it. This extra step is needed as otherwise iConFaRe

cannot infer the constraints. Also, in many situations the
user might elect to not give the constraints explicitly the first
time they are violated. It might be simplest to just skip the
recommended operation, and only mark it as a constraint if
iConFaRe repeatedly recommends violating it.

To mark full rows or columns constrained, the user can
use the two other tabs of iConFaRe’s main interface. These
tabs show information regarding all the rows and columns of
the data, and also allow the user to mark them constrained.

5. EXPERIMENTAL EVALUATIONS
While the main purpose of this manuscript is to demon-

strate the interactive iConFaRe system, we have also run
some off-line experiments to validate our approach.

5.1 Real-World Datasets
We have tested iConFaRe with three real-world datasets.

We summarize the characteristics of the datasets in Table 1.
The first is the DBLP dataset. It contains the names of

6 980 authors and which of the 19 conferences they have
published to. The dataset was collected from the DBLP
database1, and is pre-processed as in [9]. It is the first dataset
on which iConFaRe was tested to see its performance as a
system for constrained Boolean matrix factorization given
user’s constraints, because it is sparse and has less features
(only 19 columns, corresponding to the 19 conferences).

The second real-world dataset that iConFaRe was tested on
is the Mammals dataset. It consists of presence–absence data2

of European mammals with geographical areas of 50-by-50
kilometers [13]. This dataset is denser than the DBLP dataset
and has far more features (194 columns).

The third real-world dataset that we used is the An-
droidApps dataset3 [3]. For each application, the dataset
provides the permissions requested by the application, the
price, the number of downloads, the average user rating,
and a short prosaic description. The original data was pre-

1http://www.informatik.uni-trier.de/~ley/db/
2Available for research purposes from the Societas Europaea
Mammalogica at http://www.european-mammals.org
3http://www.mariofrank.net/andrApps/



Dataset Rows Columns Density (%)

DBLP 6 980 19 13
Mammals 2 618 194 16
AndroidApps 117 036 173 2

Table 1: Real world datasets overview.

Dataset Rank

DBLP 11
Mammals 129
AndroidApps 67

Table 2: Factorization ranks returned by iConFaRe

with real-world data.

processed by removing all applications with ratings and
number of downloads less than the average rating and num-
ber of downloads. We also removed all applications which
request no permission at all during the pre-processing step.
Additionally, all columns which are not permissions (the
price, the number of downloads, the average user rating, and
a short prosaic description) were removed from the data.
After the pre-processing step, the dataset contained 117 036
android applications and the presence (1) or absence (0) of
173 permission. This dataset is a good use-case for the role
mining application of iConFaRe.

5.2 Algorithms Used
To test iConFaRe in a controlled manner, we used it in a

non-interactive way. Namely, we sampled random constraints
for the data and replaced the evaluation ofQA with a function
that checked whether the proposed option would violate the
constraints or not.

To the best of our knowledge, iConFaRe is the first algo-
rithm for icBMF (or cBMF). To compare it against other
algorithms, we took Asso [11], a popular algorithm for stan-
dard BMF, and edited it to accept pre-defined constraints.
This edit was done essentially by adjusting the evaluation
function of Asso to make any factorization that would violate
the constraints infinitely bad. Notice however, that as Asso

builds the factorization from bottom up (i.e. it starts with
an empty factorization), it cannot guarantee that the final
factorization does cover all constrained 1s in the data.

5.3 Results
To test these two algorithms, we computed the cBMF

factorizations with both algorithms using the same sets of
random constraints. As Asso requires the rank as an input,
we could not compare the methods based on the rank they
returned. Instead, we first ran iConFaRe with the given
datasets to obtain the error it gave and the rank it returned
(iConFaRe was reducing the rank until it could not find any
admissible operations). The ranks proposed by iConFaRe are
listed in Table 2. We want to emphasize that these ranks
do not denote any kind of “latent rank” of the data (see,
e.g. [5,12]) as they depend heavily on the constraints we have
randomly set.

After we got the ranks, we ran the modified Asso with the
same ranks and constraints, and recorded the error. Errors
for both iConFaRe and Asso are reported in Table 3. In DBLP,
the modified Asso algorithm obtains smaller reconstruction

Dataset iConFaRe Asso

DBLP 78.3148 68.3515
Mammals 44.7505 48.5783
AndroidApps 1.3058 3.7815

Table 3: Errors in percentages of 1s in the data for
iConFaRe and a constrained version of Asso on real-
world datasets.

error, but in the other datasets, Mammals and AndroidApps,
iConFaRe is actually better.

The error especially on DBLP, and arguably also on Mam-
mals, is high with both systems. This is probably due to
the constraints that we imposed as the standard version of
Asso is known to perform relatively well on both of these
datasets. Hence, in this experiment the actual error is much
less important than the error relative to modified Asso. In
this respect iConFaRe performs very well especially as, unlike
Asso, it actually guarantees to admit all constraints.

In our final experiment we tested the effects of the differ-
ent constraint sets. For this experiment, we generated five
different random sets of constraints and ran both iConFaRe

and the modified Asso on all of them. The average error
of iConFaRe was 1.31% (with standard deviation of ±0.01),
while for Asso the average error was 6.62 (±3.28), showing
that not only is iConFaRe significantly better than Asso, but
also more consistent.

6. THE DEMONSTRATION
iConFaRe is inherently interactive, and hence best demon-

strated in a way that allows the audience to have hands-on
time with it. On the other hand, the initial pre-processing
step can be time-consuming, and consequently unsuitable for
demonstrations. Hence we have to limit the demonstration
to the pre-processed datasets, for which we are planning to
use the three datasets used in the experiments.

At the beginning of the demonstration, the audience is
explained the goal of constrained BMF and the general ideas
behind iConFaRe. They can then choose one of the pre-
processed datasets based on their interests. For the purpose
of the demonstration, we plan to use the AndroidApps dataset,
as most audience members are expected to have at least a
passing familiarity with smartphone application permissions.
Hence, barring special request from the audience, we will
use it. The demonstrator will then walk them through the
basic functionality of iConFaRe by means of example merges
and deletions. This step also explains the visualizations
and their interpretations. The audience could then come up
with constraints as they see fit, and test if iConFaRe indeed
recommends operations which do not violate any of those
constraints.

After the user has become used to the system—and pro-
vided that they are interested—we can load a new dataset
(or re-load the AndroidApps data) and set the user a task:
come up with the least-error decomposition of given rank (to
be defined later) and admitting some constraints (also to be
defined). The goal of this experiment is two-fold: for one, it
should give the user better understanding of iConFaRe, but
it should also give us important data on how well iConFaRe
performs in these situations. Furthermore, it is interesting to
see whether the humans with their semantic understanding



and pattern recognition skills can perform better than the
automated iConFaRe setup.

7. CONCLUSIONS
In this paper we have presented our system called iConFaRe

for interactive constrained Boolean matrix factorization. In
some sense iConFaRe presents a first-order system: after
starting with an exact decomposition, it always considers
only one step ahead. Hence, it never tries to add any new
blocks but only to merge or delete the existing ones—adding a
new block will never be an optimal move alone. On the other
hand, a higher-order system would consider multiple steps
ahead, and it could consider adding new blocks if they would
allow it to remove many existing blocks in the subsequent
steps. Such higher-order systems are, however, significantly
more complicated, and it is also unclear how to present their
operations to the user.

As of now, iConFaRe attempts only to minimize the rank.
This was partially done to avoid the problematic bi-opti-
mization criterium that tries to balance the rank and the
error. This criterium is problematic as it requires us to
decide the relative weights between reducing the rank and
increasing the error. One way to do that, though, would be
to use the Minimum Description Length (MDL) principle.
Using the MDL principle for BMF was pioneered in [12], and
algorithms optimizing MDL directly have been proposed in
recent years [5, 8].

Systems similar to iConFaRe could use the MDL principle
to choose which operation to perform and when to stop. We
argue, however, that in the iConFaRe system this would be
unlikely to provide much, or any, benefits. For one, being
able to infer the rank is a less important problem in iConFaRe

as the user is able to stop the algorithm when she feels it
has obtained small-enough decomposition. The selection of
the next operation, on the other hand, would probably not
see much changes: in a first-order system like iConFaRe, the
MDL-optimal way to reduce the rank by 1 is often to do that
in a way that minimizes the increase in the error. Here a
higher-order system could behave differently.

Another aspect omitted from iConFaRe’s formal problem
statement is the amount of user-involvement required. In
practical terms, an interactive system like iConFaRe should
aim to minimize the cases the user needs to consider. This is
not explicitly stated in the definition of Problem 3, but we
have designed iConFaRe to follow these guidelines as much
as possible. In particular, the goal to minimize the error the
operation causes implies that the user needs to consider the
least number of elements for constraints.

The goal of minimizing the user involvement could be
formalized in a budgeted problem, where the system has a fixed
budged B and each query of QA reduces it. This budged-
based approach could allow for more principled approaches
on selecting which operation to perform. In particular, when
in iConFaRe we select the operation that tries to minimize
the amount of error, a potential approach to the budgeted
approach could be to first query the status of few elements
that, if unrestricted, would let the algorithm reduce the
number of factors the most. We leave the study of the
budgeted version and its algorithms as a future work.

Another very interesting direction of future work would
involve the user as a helper for the algorithm. Particularly,
we could approach the unconstrained Boolean matrix fac-
torization as a human-assisted data mining problem where

the algorithm could ask from the user which operation she
would think would be the best. The greedy algorithms often
involved in BMF-style problems try to make locally optimal
decisions, but these can lead into globally very sub-optimal
outcomes. It could be that by involving the human in the
decision-making process (in a limited manner), the overall
quality of the results would improve.

We believe that iConFaRe is capable of providing practi-
cal benefits to real-world applications of BMF beyond our
poster child application of role mining. Being able to tell
the algorithm to avoid non-intuitive factors before they are
being created, but without having to pre-specify what “non-
intuitive” means, can greatly improve the usability of the
results to the end-user. On the other hand, such great powers
come with great responsibly, and there is a real risk that
when iConFaRe (and similar tools) are applied to general
data mining, the user inadvertently guides the system to
find only results she knew a priori [10]. Designing checks to
prevent such outcomes is an interesting direction of future
work.
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