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ABSTRACT
Data visualization and iterative/interactive data mining are
growing rapidly in attention, both in research as well as in
industry. However, integrated methods and tools that com-
bine advanced visualization and/or interaction with data
mining techniques are rare, and those that exist are spe-
cialized to a single problem or domain. We present SIDE,
a generic tool for Subjective Interactive Data Exploration,
which lets users explore high dimensional data via subjec-
tively informative two-dimensional data visualizations. In
contrast to most visualization tools, it is not based on the
traditional dogma of manually zooming and rotating data.
Instead, the tool initially presents the user with an ‘interest-
ing’ projection, and then allows users to flexibly and intu-
itively express their interests or beliefs using visual interac-
tions that update/constrain a background model of the data.
These constraints expressed by the user are then taken into
account by a projection-finding algorithm employing data
randomization to compute a new ‘interesting’ projection.
This process can be iterated until the user runs out of time
or finds that the difference between the randomized data
and the real data is no longer interesting. We present the
tool by means of two case studies, one controlled study on
synthetic data and another on real census data.

Keywords
Exploratory Data Mining; Dimensionality Reduction; Data
Randomization; Subjective Interestingness

1. INTRODUCTION
Data visualization and iterative/interactive data mining

are both mature, actively researched topics of great prac-
tical importance. However, while progress in both fields is
abundant (see Section 4), methods that combine iterative
data mining with visualization and interaction are rare; only
a few tools designed for specific problem domains exist.

Yet, tools that combine state-of-the-art data mining with
visualization and interaction are highly desirable as they
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would maximally exploit the strengths of both human data
analysts and computer algorithms. Humans are unmatched
in spotting interesting patterns in low-dimensional visual
representations, but poor at reading high-dimensional data,
while computers excel in manipulating high-dimensional data
and are weaker at identifying patterns that are truly rele-
vant to the user. A symbiosis of human analysts and well-
designed computer systems thus promises to provide an effi-
cient way of navigating the complex information space hid-
den within high-dimensional data [17].

Contributions.
In this paper we introduce a generically applicable method

for finding interesting projections of data, given some prior
knowledge about that data, and we introduce a tool that
demonstrates the proposed approach for interactive visual
exploration of (high-dimensional) data. The underlying idea
is that the analysis process is iterative, and during each iter-
ation there are three steps. The hypothesis is that through-
out the iterations, the user builds up an increasingly ac-
curate understanding of the data. This understanding is
explicated in the background model, which is used at the
beginning of each iteration in order to find a maximally in-
formative projection. More generally, the background model
is a representation for the user’s belief state. The tool works
as indicated in Figure 1. Details of all steps are given below.
Step 1. The tool initially presents the user with an ‘inter-
esting’ projection of the data, visualized as a scatter plot.
Here, interestingness is formalized with respect to the initial
belief state.
Step 2. On investigation of this scatter plot, the user may
take note of some features of the data that contrast with, or
add to, their beliefs about the data. We will refer to such
features as patterns. The user then interacts with the tool
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Figure 1: The three steps of SIDE’s operation cycle.
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to indicate what patterns they have seen and assimilated.
Step 3. The tool updates the background model according
to the user feedback, in order to reflect the newly assimilated
information.
Next iteration. Then the most interesting projection with
respect to this updated background model can be computed,
and the cyclic process iterates until the user runs out of time
or finds that background model (and thus the user’s belief
state) explains everything the user is currently interested in.

Formalization of the background model.
A crucial challenge in the realization of such a tool is the

formalization of the background model. To allow the process
to be iterative, the formalization has to allow for the model
to be updated after a user has been provided with new in-
formation (i.e., shown a visualization) and given feedback
on it. There exist two frameworks for iterative data mining:
FORSIED [3, 4] and a framework that has no name yet, but
which we will refer to as CORAND [7, 13], for COnstrained
RANDomization. In both cases, the background model is a
probability distribution over data sets and the user beliefs
are modelled as a set of constraints on that distribution.

The CORAND approach is to specify a randomization
procedure that, when applied to the data, does not affect
how plausible the user would deem it to be. That is, the
user’s beliefs should be satisfied, and otherwise the data
should be shuffled as much as possible. Given an appro-
priate randomization scheme, we can then find interesting
remaining structure that is not yet known to the user by con-
trasting the real data against the randomized data. New be-
liefs can be incorporated in the background model by adding
corresponding constraints to the randomization procedure,
ensuring that the patterns observed by the user are present
also in the subsequent randomized data.

An illustrative example.
As an example, consider a synthetic data set that consists

of 1000 ten-dimensional data vectors of which dimensions
1–4 can be clustered into five clusters, dimensions 5–6 into
four clusters involving different subsets of data points, and of
which dimensions 7–10 are Gaussian noise. All dimensions
have equal variance.

We designed this example to illustrate the two types of
feedback that a user can give in the current implementation
of our tool. Additionally, it shows how the tool succeeds
in finding interesting projections given previously identified
patterns. Thirdly, it also demonstrates how the user in-
teractions meaningfully affect subsequent visualizations. In
this example we aim to provide an overview of how the tool
works, technical details are presented in Section 2.

We observe that the first projection computed by SIDE
maps the data onto a two-dimensional (2D) subspace of the
dimensions 1–4 (Figure 2a), i.e., to a subspace of the space
where the data is clustered into 5 clusters. This is indeed
sensible, as the structure within this 4D subspace is arguably
the most striking.

We then consider two possible user actions (Step 2, Fig-
ure 2b). In the first scenario (Figure 2 left path), the user
marks all points within each cluster (one cluster at a time),
indicating they have taken note of the positions of these
groups of points within this particular projection. In the
second scenario (Figure 2 right path), the user gives the
feedback that these points appear to be clustered in this

projection and possibly also in other dimensions.
Both these ‘pattern types’ lead to a set of constraints on

the randomization procedure. The effect of these constraints
is identical with respect to the current 2D projection (Fig-
ure 2c): the projections of the randomized points onto this
plane are identical to the projections of the original points
onto this plane. Not visible though is that in the second
scenario the randomization is restricted also in orthogonal
dimensions (possibly different ones for different clusters), to
account for the user feedback that also orthogonal subspaces
that yield the same clusters are not interesting anymore.

The subsequent most interesting projection is different in
the two scenarios (Figure 2d). In the first scenario, the
remaining cluster structure within dimensions 1–4 is shown.
However, in the second scenario this cluster structure is fully
explained by the constraints, and as a result, the cluster
structure in dimensions 5–6 being is shown instead.

The difference can be observed in the visualization be-
cause on the left three clusters are pure and one is mixed
(an artefact of how we chose the cluster centers). Yet, on the
right all clusters are mixed with respect the previous clus-
tering. This indeed shows the two clusterings in dimensions
1–4 and dimensions 5–6 are unrelated.

Outline of this paper.
As discussed in Section 2, three challenges had to be ad-

dressed to use the CORAND approach: (1) defining intuitive
pattern types (constraints) that can be observed and speci-
fied based on a scatter plot of a two-dimensional projection
of the data; (2) defining a suitable randomization scheme,
that can be constrained to take account of such patterns;
and (3) a way to identify the most interesting projections
given the background model. The evaluation with respect
to usefulness as well as computational properties of the re-
sulting system is presented in Section 3. Experiments were
conducted both on synthetic data and on a census dataset.
Finally, related work and conclusions are discussed in Sec-
tions 4 and 5, respectively.

NB. This manuscript is an integration of two publications
that are to appear in the Proceedings of the European Con-
ference on Machine Learning and Principles and Practice of
Knowledge Discovery [10, 16].

2. METHODS
We will use the notational convention that upper case bold

face symbols represent matrices, lower case bold face sym-
bols represent column vectors, and lower case standard face
symbols represent scalars. We assume that our data set
consists of n d-dimensional data vectors xi. The data set is
represented by a real matrix X =

(
xT1 xT2 · · · xTn

)T ∈
Rn×d. More generally, we will denote the transpose of the
ith row of any matrix A as ai (i.e., ai is a column vector).
Finally, we will use the shorthand notation [n] = {1, . . . , n}.

2.1 Projection tile patterns in two flavours
In the interaction step, the proposed system allows users

to declare that they have become aware of (and thus are no
longer interested in seeing) the value of the projections of a
set of points onto a specific subspace of the data space. We
call such information a projection tile pattern for reasons
that will become clear later. A projection tile parametrizes
a set of constraints to the randomization.
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Figure 2: Two user interaction scenarios for the toy data set. Solid dots represent actual data vectors, whereas open circles
represent vectors from the randomized data. Row (a) shows the first visualization, which is the starting point for both
scenarios. Row (b) shows the sets of data points marked by the user. Although not shown, on the left the user gives feedback
to incorporate the selected cluster structure in the currently shown dimensions, while on the right the feedback is that the
user expects the cluster structure to generalize to other unshown dimensions. Row (c) shows the newly randomized data and
the original data projected still in the same subspace. As expected, the randomized data fully aligns with the real data. Then,
row (d) shows the most interesting visualization given the specified patterns (constraints). The left path shows the scenario
when the user assumes nothing beyond the values of the data points in the projection in row (a), whereas the right path shows
the scenario when the user assumes each of these sets of points may be clustered in other dimensions as well.
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Formally, a projection tile pattern, denoted τ , is defined
by a k-dimensional (with k ≤ d and k = 2 in the simplest
case) subspace of Rd, and a subset of data points Iτ ⊆ [n].
We will formalize the k-dimensional subspace as the column
space of an orthonormal matrix Wτ ∈ Rd×k with WT

τ Wτ =
I, and can thus denote the projection tile as τ = (Wτ , Iτ ).
The proposed tool provides two ways in which the user can
define the projection vectors Wτ for a projection tile τ .

2D tiles.
The first approach simply chooses Wτ as the two weight

vectors defining the projection within which the data vec-
tors belonging to Iτ were marked. This approach allows the
user to simply specify that they have taken note of the po-
sitions of that set of data points within this projection. The
user makes no further assumptions—they assimilate solely
what they see without drawing conclusions not supported
by direct evidence, see Figure 2b (left).

Clustering tiles.
It seems plausible, however, that when the marked points

are tightly clustered, the user concludes that these points
are clustered not just within the two dimensions shown in
the scatter plot. To allow the user to express such belief, the
second approach takes Wτ to additionally include a basis for
other dimensions along which these data points are strongly
clustered, see Figure 2b (right). This is achieved as follows.

Let X(Iτ , :) represent a matrix containing the rows in-
dexed by elements from Iτ from X. Let W ∈ Rd×2 contain
the two weight vectors onto which the data was projected
for the current scatter plot. In addition to W, we want
to find any other dimensions along which these data vectors
are clustered. These dimensions can be found as those along
which the variance of these data points is not much larger
than the variance of the projection X(Iτ , :)W.

To find these dimensions, we first project the data onto the
subspace orthogonal to W. Let us represent this subspace
by a matrix with orthonormal columns, further denoted as

W⊥. Thus, W⊥TW⊥ = I and WTW⊥ = 0. Then, Princi-
pal Component Analysis (PCA) is applied to the resulting
matrix X(Iτ , :)W⊥. The principal directions corresponding
to a variance smaller than a threshold are then selected and
stored as columns in a matrix V. In other words, the vari-
ance of each of the columns of X(Iτ , :)W⊥V is below the
threshold.

The matrix Wτ associated to the projection tile pattern
is then taken to be:

Wτ =
(
W W⊥V

)
.

The threshold on the variance used could be a tunable pa-
rameter, but was set here to twice the average of the variance
of the two dimensions of X(Iτ , :)W.

2.2 The randomization procedure
Here we describe the approach to randomizing the data.

The randomized data should represent a sample from an im-
plicitly defined background model that represents the user’s
belief state about the data. Initially, our approach assumes
the user merely has an idea about the overall scale of the
data. However, throughout the interactive exploration, the
patterns in the data described by the projection tiles will be
maintained in the randomization.

Initial randomization.
The proposed randomization procedure is parametrized

by n orthogonal rotation matrices Ui ∈ Rd×d, where i ∈
[n], and the matrices satisfy (Ui)

T = (Ui)
−1. We further

assume that we have a bijective mapping f : [n] × [d] 7→
[n]× [d] that can be used to permute the indices of the data
matrix. The randomization proceeds in three steps:

Random rotation of the rows Each data vector xi is ro-
tated by multiplication with its corresponding random
rotation matrix Ui, leading to a randomised matrix Y
with rows yTi that are defined by:

∀i : yi = Uixi.

Global permutation The matrix Y is further randomized
by randomly permuting all its elements, leading to the
matrix Z defined as:

∀i, j : Zi,j = Yf(i,j).

Inverse rotation of the rows Each randomised data vec-
tor in Z is rotated with the inverse rotation applied in
step 1, leading to the fully randomised matrix X∗ with
rows x∗i defined as follows in terms of the rows zTi of
Z:

∀i : x∗i = Ui
T zi.

The random rotations Ui and the permutation f are sam-
pled uniformly at random from all possible rotation matrices
and permutations, respectively.

Intuitively, this randomization scheme preserves the scale
of the data points. Indeed, the random rotations leave their
lengths unchanged, and the global permutation subsequently
shuffles the values of the d components of the rotated data
points. Note that without the permutation step, the two
rotation steps would undo each other such that X∗ = X.
Thus, it is the combined effect that results in a randomiza-
tion of the data set.

The random rotations may seem superfluous: the global
permutation randomizes the data so dramatically that the
added effect of the rotations is relatively unimportant. How-
ever, their role is to make it possible to formalize the grow-
ing understanding of the user as simple constraints on this
randomization procedure, as discussed next.

Accounting for one projection tile.
Once the user has assimilated the information in a pro-

jection tile τ = (Wτ , Iτ ), the randomization scheme should
incorporate this information by ensuring that it is present
also in all randomized versions of the data. This ensures
that the randomized data is a sample from a distribution
representing the user’s belief state about the data. This is
achieved by imposing the following constraints on the pa-
rameters defining the randomization:

Rotation matrix constraints For each i ∈ Iτ , the com-
ponent of xi that is within the column space of Wτ

must be mapped onto the first k dimensions of yi =
Uixi by the rotation matrix Ui. This can be achieved
by ensuring that:

∀i ∈ Iτ : WT
τ Ui = (I 0) . (1)

This explains the name projection tile: the information
to be preserved in the randomization is concentrated
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in a ‘tile’ (i.e. the intersection of a set of rows and a
set of columns) in the intermediate matrix Y created
during the randomization procedure.

Permutation constraints The permutation should not af-
fect any matrix cells with row indices i ∈ Iτ and
columns indices j ∈ [k]:

∀i ∈ Iτ , j ∈ [k] : f(i, j) = (i, j). (2)

Proposition 1. Using the above constraints on the rota-
tion matrices Ui and the permutation f , it holds that:

∀i ∈ Iτ ,xTi Wτ = x∗i
T
Wτ . (3)

Thus, the values of the projections of the points in the pro-
jection tile remain unaltered by the constrained random-
ization. Hence, the randomization keeps the user’s beliefs
intact. We omit the proof as the more general Proposition 2
is provided with proof further below.

Accounting for multiple projection tiles.
Throughout subsequent iterations, additional projection

tile patterns will be specified by the user. A set of tiles τi
for which Iτi∩Iτj = ∅ if i 6= j is straightforwardly combined
by applying the relevant constraints on the rotation matrices
to the respective rows. When the sets of data points affected
by the projection tiles overlap though, the constraints on the
rotation matrices need to be combined. The aim of such a
combined constraint should be to preserve the values of the
projections onto the projection directions for each of the
projection tiles a data vector was part of.

The combined effect of a set of tiles will thus be that
the constraint on the rotation matrix Ui will vary per data
vector, and depends on the set of projections Wτ for which
i ∈ Iτ . More specifically, we propose to use the following
constraint on the rotation matrices:

Rotation matrix constraints Let Wi ∈ Rd×di denote a
matrix of which the columns are an orthonormal basis
for space spanned by the union of the columns of the
matrices Wτ for τ with i ∈ Iτ . Thus, for any i and
τ : i ∈ Iτ , it holds that Wτ = Wivτ for some vτ ∈
Rdi . Then, for each data vector i, the rotation matrix
Ui must satisfy:

∀i ∈ Iτ : WT
i Ui = (I 0) . (4)

Permutation constraints Then the permutation should
not affect any matrix cells in row i and columns [di]:

∀i ∈ [n], j ∈ [di] : f(i, j) = (i, j).

Proposition 2. Using the above constraints on the rota-
tion matrices Ui and the permutation f , it holds that:

∀τ,∀i ∈ Iτ ,xTi Wτ = x∗i
T
Wτ .

Proof. We first show that x∗i
TWi = xTi Wi:

x∗i
T
Wi = zTi U

T
i Wi = zTi

(
I
0

)
= zi(1 : di)

T = yi(1 : di)
T = yTi

(
I
0

)
= xTi Wi.

The result now follows from the fact that Wτ = Wivτ for
some vτ ∈ Rdi .

Technical implementation of the randomization.
To ensure the randomization can be carried out efficiently

throughout the process, note that the matrix Wi for the i ∈
Iτ for a new projection tile τ can be updated by computing
an orthonormal basis for (Wi W). Such a basis can be
found efficiently as the columns of Wi in addition to the
columns of an orthonormal basis of W −WT

i WiW (the
components of W orthogonal to Wi), the latter of which
can be computed using the QR-decomposition.

Additionally, note that the tiles define an equivalence re-
lation over the row indices, in which i and j are equivalent if
they were included in the same set of projection tiles so far.
Within each equivalence class, the matrix Wi will be con-
stant, such that it suffices to compute it only once, keeping
track of which points belong to which equivalence class.

2.3 Visualization: Finding the most interest-
ing two-dimensional projection

Given the data set X and the randomized data set X∗, it
is now possible to quantify the extent to which the empirical
distribution of a projection Xw and X∗w onto a weight vec-
tor w differ. There are various ways in which this difference
can be quantified. We investigated a number of possibilities
and found that the L1-distance between the cumulative dis-
tribution functions works well in practice. Thus, with Fx

the empirical cumulative distribution function for the set of
values in x, the optimal projection is found by solving:

max
w
‖FXw − FX∗w‖1 .

The second dimension of the scatter plot can be sought by
optimizing the same objective while requiring it to be or-
thogonal to the first dimension.

We are unaware of any special structure of this optimiza-
tion problem that makes solving it particularly efficient. Yet,
using the standard quasi-Newton solver in R [18] with ran-
dom initialization and default settings (the general-purpose
optim function with method=”BFGS”) already yields satis-
factory results, as shown in the experiments below.

2.4 Interface
The full interface of SIDE is shown in Figure 3. SIDE was

designed according to three principles for visually control-
lable data mining [17], which essentially says that both the
model and the interactions should be transparent to users,
and that the analysis method should be fast enough such
that the user does not lose its trail of thought.

The main component is the interactive scatter plot (3a).
The scatter plot visualizes the projected data (solid dots)
and the randomized data (open gray circles) in the current
2D projection. By drawing circles (3b), the user can high-
light data points to define a projection tile pattern. Once a
set of points is marked, the user can press either of the two
feedback buttons (3c), to indicate these points form a clus-
ter. If the user thinks the points are clustered only in the
shown projection, they click ‘2D Constraint’, while ‘Cluster
Constraint’ indicates they expect that these points will be
clustered in other dimensions as well.

To identify the defined clusters, data points associated
with the same feedback (i.e., user’s belief) are filled by the
same color (3d), and their statistics are shown in a table.
The user can define multiple clusters in a single projection,
and they can also undo (3e) the feedback. Once a user fin-
ishes exploring the current projection, they can press ‘Up-
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Figure 3: Layout of our web app SIDE, which contains the data visualization and interaction area (a–f), projection meta
information (g), and timeline (h).

date Background Model’ (3f). Then, the background model
is updated with the provided feedback and a new scatter
plot is computed and presented to the user, etc.

A few extra features are provided to assist the data explo-
ration process: to gain an understanding of a projection, the
weight vectors associated with the projection axes are plot-
ted as bar charts (3g). At the bottom of 3g, a table lists the
mean vectors of each colored point set (i.e., cluster). The
exploration history is maintained by taking snapshots of the
background model when updated, together with the associ-
ated data projection (scatter plot) and bar charts (weight
vectors). This history in reverse chronological order is illus-
trated in Figure 3h.

The tool also allows a user to click and revert back to a
certain snapshot (3i), to restart from that time point. This
allows the user to discover different aspects of a dataset more
consistently. Finally, custom datasets can be selected for
analysis from the drop-down menu (3j). Currently our tool
only works with CSV files and it automatically sub-samples
the custom data set so that the interactive experience is not
compromised. By default, two datasets are preloaded so
that users can get familiar with the tool.

3. EXPERIMENTS
We present two case studies to illustrate the framework

and its utility. The case studies are completed with the
a JavaScript version of our tool, which is available freely
online, along with the used data for reproducibility.1

3.1 Synthetic data case study
This section gives an extended discussion of the illustra-

tive example from the introduction, namely the synthetic
data case study. The data is described in Section 1. The first
projection shows that the projected data (solid blue dots in
Figure 2a) differs strongly from the randomized data (open
gray circles). The weight vectors defining the projection,
shown in the 1st row of Table 1, contain large weights in
dimensions 1–4. Therefore, the cluster structure seen here
mainly corresponds to dimensions 1–4 of the data.

A user can indicate this insight by means of a cluster-
ing tile for each of the clustered sets of data points (2b,
right). Encoding this into the background model, results
in a randomization, where the randomized points perfectly

1http://www.interesting-patterns.net/forsied/
a-tool-for-subjective-and-interactive-visual-data-exploration/)
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Table 1: Projection weight vectors for the synthetic data (Sections 1 and 3.1).

Figure axis 1 2 3 4 5 6 7 8 9 10

2a
X 0.194 0.545 -0.630 0.499 -0.119 -0.041 0.057 0.001 -0.029 0.003
Y -0.269 -0.754 -0.481 0.340 0.091 -0.004 0.016 -0.057 0.003 0.005

2d X 0.143 -0.118 0.005 0.981 0.001 -0.013 -0.031 -0.022 0.044 -0.031
(left) Y -0.245 0.448 0.854 0.088 0.004 -0.001 0.005 0.008 -0.043 0.023

2d X 0.121 0.019 -0.232 0.017 -0.963 -0.008 0.022 0.023 0.037 0.004
(right) Y -0.139 -0.067 -0.369 -0.082 0.111 -0.898 -0.083 0.086 0.005 -0.017

Table 2: Projection weight vectors for the UCI Adult data (Section 3.2).

Figure axis Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

4a
X -0.039 -0.001 0.001 0.312 -0.530 -0.193 0.763 0.017 0.008
Y 0.004 -0.004 -0.002 0.816 -0.141 0.465 -0.313 -0.011 0.002

4c
X 0.081 -0.028 -0.022 -0.259 -0.233 -0.104 -0.380 -0.846 -0.001
Y -0.590 0.541 0.143 -0.233 -0.380 -0.026 -0.293 0.232 0.000

4d
X 0.119 -0.149 0.047 0.102 0.191 0.104 -0.556 0.0581 -0.769
Y -0.382 -0.626 -0.406 0.346 0.317 -0.0287 0.111 -0.248 0.059

Table 3: Mean vectors of user marked clusters for the UCI Adult data (Section 3.2).

Figure Cluster Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

4b

top left 35.0 8.67 34.7 0.00 0.00 1.00 0.00 0.667 0.333
bott. left 37.2 9.43 40.3 0.00 1.00 0.00 0.00 0.286 0.071
top right 35.6 1.3 51.1 1.00 0.00 0.00 0.00 0.750 0.250

bott. right 38.4 10.2 41.6 0.00 0.00 0.00 1.00 0.762 0.275

4c
left 39.0 10.2 43.3 0.0377 0.0252 0.0126 0.925 1.00 0.321

right 36.0 9.95 37.9 0.0339 0.169 0.0169 0.780 0.00 0.102
4d left 42.5 11.6 46.3 0.00 0.00 0.00 1.00 1.00 1.00

align with data points (2c, right). The new projection that
differs most from this updated background model reveals the
four clusters in dimensions 5–6 that the user was not aware
of before (2d, right).

If the user does not want to draw conclusions about the
points being clustered in dimensions other than those shown,
she can use 2D tiles instead of clustering tiles (Figure 2b,
left). The updated background model then results in a ran-
domization that is indistinguishable in the given projection
from the one with a clustering tile (2c, left), but it results
in a different subsequent projection (2d, left). Indeed, this
leads to just another view of the five clusters in dimensions
1–4, as confirmed by the large weights for dimensions 1–4
(2nd row of Table 1). Thus, by these simple interactions
the user can choose whether she will allow additional explo-
ration of the cluster structure in dimensions 1–4 or if she is
now already aware of the cluster structure, in which case the
system directs her to the structure occurring in dimensions
5–6. This behavior aligns perfectly with our expectations.

3.2 UCI Adult dataset case study
In this case study, we demonstrate the utility of our method

by exploring a real world dataset. The data is compiled
from UCI Adult dataset2. To ensure the real time inter-
activity, we sub-sampled 218 data points and selected six
features: “Age” (17− 90), “Education” (1− 16), “HoursPer-
Week” (1 − 99), “Ethnic Group” (White, AsianPacIslander,
Black, Other), “Gender” (Female, Male), “Income” (≥ 50k).
Among the selected features, “Ethnic Group” is a categorical
feature with five categories, “Gender” and “Income” are bi-

2https://archive.ics.uci.edu/ml/datasets/Adult

nary features, the rest are all numeric. To make our method
applicable to this dataset, we further binarized the “Ethnic
Group” feature (yielding four binary features), and the final
dataset consists of 218 points and 9 features.

We assume the user uses clustering tiles throughout the
exploration. Each of the patterns discovered during the ex-
ploration process thus corresponds to a certain demographic
clustering pattern. To illustrate how our tool helps the user
rapidly gain an understanding of the data, we discuss the
first three iterations of the exploration process. The first
projection (Figure 4a) visually consists of four clusters. The
user notes that the weight vectors corresponding to the axes
of the plot assign large weights to the “Ethnic Group” at-
tributes (Table 2, 1st row). As mentioned, we assume the
user marks these points as part of the same clustering tile.
When marking the clusters (Figure 4b), the tool informs the
user of the mean vectors of the points within each clustering
tile. The 1st row of Table 3 shows that each cluster com-
pletely represents one out of four ethnic groups, which may
corroborate with the user’s understanding.

Taking the user’s feedback into consideration, a new pro-
jection is generated by the tool. The new scatter plot (Fig-
ure 4c) shows two large clusters, each consisting of some
points from the previous four-cluster structure (points from
these four clusters are colored differently). Thus, the new
scatter plot elucidates structure not shown in the previous
one. Indeed, the weight vectors (2nd row of Table 2) show
that the clusters are separated mainly according to the“Gen-
der” attribute. After marking the two clusters separately,
the mean vector of each cluster (2nd row of Table 3) again
confirms this: the cluster on the left represents male group,
and the female group is on the right.
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Figure 4: Projections of UCI Adult dataset: (a) projection in the 1st iteration, (b) clusters marked by user in the 1st iteration,
(c) projection in the 2nd iteration, and (d) projection in the 3rd iteration

The projection in the third iteration (Figure 4d) consists
of three clusters, separated only along the x-axis. Interest-
ingly, the corresponding weight vector (3rd row of Table 2)
has strongly negative weights for the attributes “Income”
and “Ethnic Group - White”. This indicates the left cluster
mainly represents the people with high income and whose
ethnic group is also “White”. This cluster has relatively low
y-value; according to the weight vector, they are also gen-
erally older and more highly educated. These observations
are corroborated by the cluster mean (Table 3, 3rd row).

This case study illustrates how the proposed tool facili-
tates human data exploration by iteratively presenting an
informative projection, considering what the user has al-
ready learned about the data.

3.3 Performance on synthetic data
Ideally interactive data exploration tools should work in

close to real time. This section contains an empirical anal-
ysis of an (unoptimized) R implementation of our tool, as a
function of the size, dimensionality, and complexity of the
data. Note that limits on screen resolution as well as on hu-
man visual perception render it useless to display more than
of the order of a few hundred data vectors, such that larger
data sets can be down-sampled without noticeably affecting
the content of the visualizations.

We evaluated the scalability on synthetic data with d ∈
{16, 32, 64, 128} dimensions and n ∈ {64, 128, 256, 512} data
points scattered around k ∈ {2, 4, 8, 16} randomly drawn
cluster centroids (Table 4). The randomization is done here

with the initial background model. The most costly part
in randomization is usually the multiplication of orthogo-
nal matrices, indeed, the running time of the randomization
scales roughly as nd2−3. The results suggests that the run-
ning time of the optimization is roughly proportional to the
size of the data matrix nd and that the complexity of data
k has here only a minimal effect in the running time of the
optimization.

Furthermore, in 90% of the tests, the L1 loss on the first
axis is within 1% of the best L1 norm out of ten restarts.
The optimization algorithm is therefore quite stable, and in
practical applications it may well be be sufficient to run the
optimization algorithm only once. These results have been
obtained with unoptimized and single-threaded R implemen-
tation on a laptop having 1.7 GHz Intel Core i7 processor.3

The performance could probably be significantly boosted by,
e.g., carefully optimizing the code and the implementation.
Yet, even with this unoptimized code, response times are
already of the order of 1 second to 1 minute.

4. RELATED WORK

Dimensionality reduction.
Dimensionality reduction for exploratory data analysis has

been studied for decades. Early research into visual explo-
ration of data led to approaches such as multidimensional

3The R implementation used to produce Table 4 is available
also via the demo page (footnote 1).
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Table 4: Median wall clock running times, for random-
ization and optimization over ten iterations of finding 2D-
projections using L1 loss. Also shown is the number of itera-
tions in which the L1 norm first component ended up within
1% of the result with the largest L1 norm (out of 10 tries).
A high number indicates the solution quality is stable, even
though the actual projections may vary.

rand. k ∈ {2, 4, 8, 16}
n d (s) optim. (s) #tries ∆ < 1%
64 16 0.1 {1.0, 1.2, 0.9, 1.2} {10, 10, 9, 8}
64 32 0.5 {1.8, 2.1, 2.4, 2.5} {10, 8, 10, 10}
64 64 2.5 {5.6, 3.5, 4.6, 4.5} {10, 9, 10, 8}
64 128 11.5 {8.9, 10.1, 11.4, 10.2} {10, 10, 8, 9}
128 16 0.2 {2.0, 1.7, 2.4, 2.0} {10, 1, 6, 8}
128 32 0.8 {2.6, 3.5, 4.0, 4.8} {9, 10, 10, 10}
128 64 5.1 {6.7, 5.3, 8.3, 9.6} {8, 10, 10, 9}
128 128 24.5 {13.8, 17.4, 15.2, 20.4} {10, 9, 10, 7}
256 16 0.4 {4.3, 2.6, 3.3, 4.7} {10, 8, 10, 9}
256 32 1.8 {6.3, 8.2, 7.9, 8.8} {8, 9, 10, 10}
256 64 9.2 {12.4, 10.1, 19.2, 16.3} {10, 10, 10, 9}
256 128 39.9 {33.5, 36.3, 30.6, 35.6} {10, 9, 8, 9}
512 16 0.5 {6.7, 6.3, 6.1, 7.5} {10, 9, 10, 10}
512 32 2.4 {16.6, 19.6, 20.2, 17.5} {9, 9, 10, 10}
512 64 13.6 {34.9, 23.5, 22.3, 41.0} {10, 10, 8, 7}
512 128 68.0 {74.5, 68.1, 72.3, 62.8} {10, 1, 9, 9}

scaling [12, 21] and projection pursuit [6, 9]. Most recent
research on this topic (also referred to as manifold learning)
is still inspired by the aim of multi-dimensional scaling; find
a low-dimensional embedding of points such that their dis-
tances in the high-dimensional space are well represented.
In contrast to Principal Component Analysis [15], one usu-
ally does not treat all distances equal. Rather, the idea is
to preserve small distances well, while large distances are
irrelevant, as long as they remain large; examples are Local
Linear and (t-)Stochastic Neighbor Embedding [8, 19, 22].
Even that is typically not possible to achieve perfectly, and
a trade-off between precision and recall arises [24]. Recent
works are mostly spectral methods along this line.

Iterative data mining and machine learning.
There are two general frameworks for iterative data min-

ing: FORSIED [3, 4] is based on modeling the belief state
of the user as an evolving probability distribution in order
to formalize subjective interestingness of patterns. This dis-
tribution is chosen as the Maximum Entropy distribution
subject to the user beliefs as constraints, at that moment
in time. Given a pattern syntax, one then aims to find the
pattern that provides the most information, quantified as
the ‘subjective information content’ of the pattern.

The other framework, which we here named CORAND [7,
13], is similar, but the evolving distribution does not neces-
sarily have an explicit form. Instead, it relies on sampling, or
put differently, on randomization of the data, given the user
beliefs as constraints. Both these frameworks are general in
the sense that it has been shown they can be applied in var-
ious data mining settings; local pattern mining, clustering,
dimensionality reduction, etc.

The main difference is that in FORSIED, the background
model is expressed analytically, while in CORAND it is de-
fined implicitly. This leads to differences in how they are
deployed and when they are effective. From a research and

development perspective, randomization schemes are easier
to propose, or at least they require little mathematical skills.
Explicit models have the advantage that they often enable
faster search of the best pattern, and the models may be
more transparent. Also, randomization schemes are com-
putationally demanding when many randomizations are re-
quired. Yet, in cases like the current paper, a single ran-
domization suffices, and the approach scales very well. For
both frameworks, it is ultimately the pattern syntax that
determines their relative tractability.

Besides FORSIED and CORAND, many special-purpose
methods have been developed for active learning, a form of
iterative mining or learning, in diverse settings: classifica-
tion, ranking, and more, as well as explicit models for user
preferences. However, since these approaches are not tar-
geted at data exploration, we do not review them here. Fi-
nally, several special-purpose methods have been developed
for visual iterative data exploration in specific contexts, for
example for itemset mining and subgroup discovery [1, 5,
23, 14], information retrieval [20], and network analysis [2].

Visually controllable data mining.
This work was motivated by and can be considered an

instance of visually controllable data mining [17], where the
objective is to implement advanced data analysis method so
that they are understandable and efficiently controllable by
the user. Our proposed method satisfies the properties of a
visually controllable data mining method (see [17], Section II
B): (VC1) the data and model space are presented visually,
(VC2) there are intuitive visual interactions that allow the
user to modify the model space, and (VC3) the method is
fast enough to allow for visual interaction.

Information visualization and visual analytics.
Many new interactive visualization methods are presented

yearly at the IEEE Conference on Visual Analytics Science
and Technology (VAST). The focus in these communities is
not on the use or development of advanced data mining or
machine learning techniques, and more on human cognition
and efficient use of displays, as well as efficient exploration
via selection of data objects and features. Yet, the need
to interact with the data mining community was already
recognized long ago [11].

5. CONCLUSIONS
In order to improve the efficiency and efficacy of data ex-

ploration, there is a growing need for generic tools that in-
tegrate advanced visualization with data mining techniques
to facilitate effective visual data analysis by human users.
Our aim with this paper was to present a proof of concept
for how this need can be addressed: a tool that initially
presents the user with an ‘interesting’ projection of the data
and then employs data randomization with constraints to al-
low users to flexibly express their interests or beliefs. These
constraints expressed by the user are then taken into ac-
count by a projection-finding algorithm to compute a new
‘interesting’ projection, a process that can be iterated until
the user runs out of time or finds that constraints explain
everything the user needs to know about the data.

In our example, the user can associate two types of con-
straints on a chosen subset of data points: the appearance
of the points in the particular projection or the fact that
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the points can be nearby also in other projections. We also
tested the tool on two data sets, one controlled experiment
on synthetic data and another on real census data. We found
that the tool performs according to our expectations; it man-
ages to find interesting projections. Yet, interestingness can
be case specific and relies on the definition of an appropri-
ate interestingness measure, here the L1 norm was employed.
More research into this choice is warranted. Nonetheless, we
think this approach is useful in constructing new tools and
methods for interactive visually controllable data mining in
variety of settings.

In further work we intend to investigate the use of the
FORSIED framework to also formalize an analytical back-
ground model [3, 4], as well as its use for computing the most
informative data projections. Additionally, alternative pat-
tern syntaxes (constraints) will be investigated.
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