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Figure 1: A comparative overview of 132 detected subspace clusters generated by the CLIQUE [2] algorithm:
The two inter-linked MDS projections in the SubEval analysis framework show simultaneously the cluster
member- (1) and dimension similarity (2) of subspace clusters. While the cluster member similarity view
focuses on the object-wise similarity of clusters, the dimension similarity view highlights similarity aspects
w.r.t. their common dimensions. The coloring encodes the similarity of clusters in the opposite projection.
Both views together allow to derive insights about the redundancy of subspace clusters and the relationships
between subspaces and cluster members. The DimensionDNA view (3) shows the member distribution of a
selected subspace cluster in comparison to the data distribution of the whole dataset.

ABSTRACT
The quality assessment of results of clustering algorithms is
challenging as different cluster methodologies lead to different
cluster characteristics and topologies. A further complication
is that in high-dimensional data, subspace clustering adds
to the complexity by detecting clusters in multiple different
lower-dimensional projections. The quality assessment for
(subspace) clustering is especially difficult if no benchmark
data is available to compare the clustering results.

In this research paper, we present SubEval, a novel sub-
space evaluation framework, which provides visual support
for comparing quality criteria of subspace clusterings. We
identify important aspects for evaluation of subspace cluster-
ing results and show how our system helps to derive quality
assessments. SubEval allows assessing subspace cluster
quality at three different granularity levels: (1) A global
overview of similarity of clusters and estimated redundancy
in cluster members and subspace dimensions. (2) A view of
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a selection of multiple clusters supports in-depth analysis of
object distributions and potential cluster overlap. (3) The
detail analysis of characteristics of individual clusters helps
to understand the (non-)validity of a cluster. We demon-
strate the usefulness of SubEval in two case studies focusing
on the targeted algorithm- and domain scientists and show
how the generated insights lead to a justified selection of
an appropriate clustering algorithm and an improved pa-
rameter setting. Likewise, SubEval can be used for the
understanding and improvement of newly developed subspace
clustering algorithms. SubEval is part of SubVA, a novel
open-source web-based framework for the visual analysis of
different subspace analysis techniques.

CCS Concepts
•Human-centered computing→Visualization design
and evaluation methods;

Keywords
Subspace Clustering; Evaluation; Comparative Analysis; Vi-
sualization; Information Visualization; Visual Analysis
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Figure 2: Subspace clustering in high-dimensional
data: the same objects are grouped differently in
different combinations of dimensions (=subspaces).

1. INTRODUCTION
In data analysis the selection and parametrization of clus-

tering algorithms is usually a trial-and-error task requiring
appropriate methods and analyst experience to assess the
quality of the results. Furthermore, the selection of an appro-
priate algorithm design has a direct impact on the expected
results. For example, k-Means-type clustering will likely
favor voronoi-shape spaced partitions, while a density-based
clustering (e.g., DBSCAN [12]) usually results in arbitrarily
shaped clusters. The parameter setting, the underlying data
topology and -distribution usually influence the clustering
results, too. For varying applications, different cluster char-
acteristics can be of interest for a user. Therefore, there is a
need for efficient and effective evaluation methods to reliably
assess the usefulness of a clustering result.

In high-dimensional data, clustering computation is in-
fluenced by the so-called curse of dimensionality. Noise,
correlated, irrelevant, and conflicting dimension may detri-
ment meaningful similarity computation for the input data
[7]. Experiments show that the application of full-space clus-
tering, i.e., a clustering that considers all dimensions, is often
not effective in datasets with a large number of dimensions
(≥ 10 − 15 dimensions) [20]. To overcome these problems,
the notion of subspaces must be taken into consideration.
Subspace clustering [21] aims to detect clusters in different,
lower-dimensional projections of the original data space, as
illustrated in Figure 2. The challenge is to simultaneously se-
lect meaningful subsets of objects and subsets of dimensions
(=subspaces). In existing subspace cluster algorithms, the
number of reported clusters is typically large and may contain
substantial redundancy w.r.t. clusters and/or subspaces.

Quality assessment of subspace clustering shows to be
particularly challenging as, besides the more complex result
interpretation, evaluation methods for full-space clustering
are not directly applicable. Generally, (subspace) clustering
strives to group a given set of objects into clusters, such
that objects within clusters are similar (cluster compactness),
while objects of different clusters are dissimilar (cluster sep-
arability). This abstract goal leads to various different, yet
valid and useful, cluster definitions [17]. Due to these di-
verging definitions it is challenging, if not impossible, to
design or commonly agree on a single evaluation measure for
(subspace) clustering results.

It is therefore desirable to have a unified approach for an
objective quality assessment of (subspace) clustering based on
different clustering methodologies, the data distribution and
-topology and variety of application- and domain-dependent
quality criteria. We tackle this multi-faceted analysis prob-
lem with a visual analysis process by which the computer’s
processing power and the human’s skills in interpretation
and association can be effectively combined. Numeric per-
formance measures alone are not effective enough to give
an all-embracing picture, as they are typically abstract and

heuristic in nature, and defined in an application-independent
way. Several application fields can benefit from such a user-
supported evaluation approach: (1) selection of an appro-
priate clustering algorithm, (2) selection of appropriate pa-
rameter settings and (3) the design of new data mining
algorithms, where algorithm scientists continuously evaluate
the algorithm’s results against original assumptions.

In this paper, we tackle the problem of visually evaluating
the quality of one subspace clustering result. We present a
novel open-source evaluation framework, called SubEval. It
enhances standard evaluation approaches with effective visu-
alizations to support the assessment of (subspace) clustering
algorithms. Our contributions are as follows: (1) We present
a summary of subspace cluster evaluation approaches, point
to their specific foci and contrast their benefits and disadvan-
tages. (2) We systematically structure the major evaluation
criteria for subspace clustering results. (3) We discuss design-
and user interaction requirements for visualizations to pro-
vide deep insights into the different quality criteria and (4)
make the open-source tool SubEval available.

Compared to existing subspace visualization techniques like
CoDa [15] or ClustNails [29], focusing on the knowledge
extraction of subspace clusters, SubEval targets primarily
the quality aspect of a clustering result. Our novel framework
uses two interlinked MDS plots to simultaneously represent
cluster member and subspace similarity and provides different
tools for in-depth analysis of different quality criteria.

2. BACKGROUND
This section introduces definitions, terminology, concepts

and related work that we rely upon to describe our approach.

2.1 Definitions and Terminology
Data record/object are used synonymously for a data

instance of the dataset, i.e., ri ∈ R. A subspace sl is defined
as a subset of dimensions of the dataset: sl = {di, ..., dj} ∈ D.

A cluster cj ⊆ R contains a set of objects which are
similar to each other based on a similarity function. A
clustering result C = {c1, ..., cn} comprises the set of all
clusters detected by an algorithm.

Crucial for the understanding of this paper is to differen-
tiate between full-space and subspace clustering. Full-
space clustering considers all dimensions (D) for the similarity
computation of its cluster members (e.g., k-Means).

A subspace cluster sci = (si, ci) considers only the
subspace si for the similarity computation of the cluster
members of ci. As shown in Figure 2, a subspace clustering
SC = {sc1, ..., scn} consists of multiple clusters which are
defined in specific subspaces. Based on the algorithm, cluster
members and/or dimensions of any two clusters sci and scj
may overlap, i.e., |ci ∩ cj | ≥ 0 and |si ∩ sj | ≥ 0. The number
of detected subspace clusters is typically large. For a dataset
with d dimensions, there are 2d − 1 possible subspaces of
which many may contain useful, but highly similar/redundant
clusters. Same as for full-space clustering, there is a variety of
different methodologies to compute useful subspace clusters
[21]. However, there is no formal definition of a valid and
useful (subspace) clustering result which has been accepted
thoroughly by the community.

2.2 Visualization of (Subspace) Clusterings
Several techniques exist to visualize (subspace) clusters

and allow users to extract semantics of the cluster structures.
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The visual analysis and comparison of full-space clustering
is a problem in high-dimensional data. Standard techniques
like Parallel Coordinates, Dimension Stacking or Projection
Techniques are applicable as a baseline [32]. Multidimen-
sional glyphs can help to represent clusters in a 2D layout
to support cluster comparison [31]. In [10], a Treemap-based
glyph was designed to represent clusters and associated qual-
ity measures for visual exploration. In previous work, we
considered a comparisons of hierarchical clusterings in a
Dendrogram representation [9], and a comparison of Self-
Organizing Map clusterings using a color-coding [8].

Visual comparison of subspace clusters is an even more
difficult problem. In addition to full-space cluster visualiza-
tion, also set-oriented information pertaining to subspace
dimensions and possibly, multi-set membership of elements
in clusters needs to be reflected. The first approaches in
subspace cluster comparison is VISA [3] which visualizes
subspace clusters in a MDS projection based on their cluster
member similarity. Further approaches to visually extract
knowledge of detected subspace clusters are ClustNails
[29], SubVis [20], and an approach by Tatu et al. [28].

Visual redundancy analysis of subspace clusters is pre-
sented for example by CoDa [15] and MCExplorer [16].
Both, however, comprise only a single aspect, either dimen-
sion or cluster member redundancy. As discussed by Tatu et
al. [28] clusters are only true redundant if the cluster member
and the subspace topology are similar.

While the existing visualizations focus mainly on the ex-
traction of knowledge for domain experts, SubEval changes
the point of view and targets the depiction of quality criteria
of subspace clusterings, such as non-redundancy, compact-
ness, and the dimensionality of clusters.

2.3 Evaluation of Full-Space Clustering
In the following we summarize classical approaches for the

evaluation of full-space clustering. We carefully investigate
the advantages and drawbacks of the presented methods and
highlight why visual interactive approaches are beneficial in
many scenarios. As subspace clustering is a special instance
of full-space clustering, the same challenges apply.

Evaluation Based on Internal Criteria.
Internal quality measures evaluate clusters or clustering

results purely by their characteristics, e.g., cluster density.
The literature provides a large variety of commonly used
measures [22], each treating the cluster characteristics differ-
ently but usually focusing on compactness and separability.
Internal measures, designed for evaluating full-space cluster-
ing, assume a single instance-to-cluster assignment and have
not yet been adapted for (partially) overlapping clusters,
as in subspace clustering. The criticism of this evaluation
method, which does not qualify it for general performance
quantification, is its subjectivity. Each measure usually fa-
vors a more particular cluster notion (e.g., RMSSTD [22]
favors voronoi-shaped clusters). For each quality measure
one could design an algorithm to optimize the clustering
w.r.t. this particular quality measure, making comparisons
to other approaches inappropriate.

External Evaluation Based on Ground Truth.
External quality measures compare the topology of a clus-

tering result with a given ground truth clustering. Although
benchmark evaluation is well accepted in the community

and allows an easy comparison of different algorithms and
parameter settings, the criticism to this evaluation method
is manifold: The main problem of external quality measures
lies in the use of a ground truth clustering itself. In most
(real-world) applications and datasets with unknown data a
ground truth is not available. Even if a ground truth labeling
exists, it is either synthetically generated with specific clus-
tering characteristics (c.f. criticism in Section 2.3), or it is
providing a classification labeling instead of a clustering label
[13]. Consequently, an algorithm, which does not correctly
retrieve an already known categorization, cannot generally be
regarded as bad result, as the fundamental task of clustering
is to find previously unknown patterns.

Evaluation by Domain Experts.
The actual usefulness of a clustering for a certain appli-

cation domain can only be assessed with a careful analysis
by a domain expert. However, in many (higher-dimensional)
real-world applications, the cluster result complexity is over-
whelming even for domain experts. Accordingly, domain
expert-based evaluation is not suited for a comparison of dif-
ferent clusterings, since (1) a domain expert cannot evaluate
a large number of algorithms and/or parameter setting com-
binations, and (2) the evaluation depends on the expert and
the application and does therefore not result in quantitative
performance scores.

2.4 Evaluation of Subspace Clustering
In the following, we discuss current approaches for the

evaluation of subspace clusterings and highlight why novel
human-supported evaluation methods, such as provided by
SubEval, are required for a valid quality analysis.

External Evaluation Measures.
The most commonly used method to assess the quality of a

subspace clustering algorithm are external quality measures.
As discussed above, the synthetically created ground-truth
clusters are typically generated with particular clustering
characteristics, and, for subspace clustering also with sub-
space characteristics. For real-world data the ground truth
is not very expressive [13] and potentially varies depending
on the used measure or data set [14, 24].

Internal Evaluation Measures.
The internal measures used for traditional (full-space) clus-

tering are not applicable to subspace clustering results as
(1) the existing methods do not allow for overlapping cluster
members, (2) clusters need to be evaluated in their respective
subspace only, i.e., it is not valid to assess the separability
of two clusters which exist in different subspaces.

Domain Experts.
Often authors justify a new subspace clustering approach

by exemplarily discussing the semantic interpretation of se-
lected clusters, i.e., evaluation by domain scientists, which
seems to be the only choice for some real-world data, e.g.,
[20]. Quite a few visualization techniques exist to support
domain experts in the knowledge extraction of subspace
clusters (c.f. Section 2.2). However, in subspace clustering
we have to tackle three major challenges: (1) the subspace
concept is complex for most domain experts, especially for
non-computer-scientists, (2) the large result space and the
redundancy makes it often practically unfeasible to investi-

55



gate all detected clusters and retrieve the most relevant ones,
and (3) it is almost impossible to manually decide whether
all relevant clusters have been detected or not.

Summarizing, existing quality measures for subspace clus-
tering comprise the evaluation by external measures and/or
a careful investigation by domain experts. Although both
approaches have their advantages and disadvantages, they
are valid and accepted in the community. Besides these
techniques, we need novel methods which do not rely on
ground-truth data and/or domain experts, but rather com-
plement existing evaluation approaches. Therefore, our aim
is to visualize the quality of a clustering for different cluster-
ing definitions. Furthermore, our approach supports the user
in interpreting given subspace clustering result in terms of
object groups and dimension sets, hence supports interactive
algorithm parameter setting.

3. VISUAL QUALITY ASSESSMENT
In the following we summarize the most important quality

criteria indicating a useful and appropriate subspace cluster-
ing result. Our quality criteria (C1-C3 ) are compiled from a
literature review on objective functions for subspace cluster-
ing algorithms. Our coverage is not exhaustive, but targeted
towards the major quality “understandings” in this field. For
many applications, not all aspects need to be full-filled.

3.1 Quality Criteria for Subspace Clusterings

Non-Redundancy Criteria (C1).
One –if not the major– challenge in subspace clustering, is

redundancy. It negatively influences a knowledge extraction
due to highly similar, but not identical cluster results.

C1.1 Dimension Non-Redundancy. A useful sub-
space clustering algorithm emphasizes distincitive dimen-
sion/membership characteristics and avoids subspace clusters
with highly similar subsets of dimensions.

C1.2 Cluster Member Non-Redundancy. A useful
subspace clustering result focuses on important global group-
ings, avoiding clusters with many similar cluster members.

As elaborated in [28], subspace clusters are only true re-
dundant, if they share most of their dimensions and most
of their cluster members. Therefore, dimension- and cluster
member redundancy have to be analyzed in conjunction.

C1.3 No Cluster-Splitup in Subspaces. Similar clus-
ters occurring in different, non-redundant subspaces should
be avoided. Generally, cluster-splitups cannot be considered
redundant, as each cluster may contain new information. Yet,
it provides reasons to suspect that the cluster members form
a common cluster in a single, higher-dimensional subspace.

Object and Dimension Coverage Criteria (C2).
We define object coverage as the proportion of objects

and dimension coverage as the proportion of dimensions of
the datasets which are part of at least one subspace cluster.
A high coverage of both objects and dimensions helps to
understand the global patterns in the data.

C2.1 Object Coverage. To reason about all data ob-
jects, a useful subspace clustering algorithm extracts –not
mandatorily a full– but obligatory high object coverage.

C2.2 Dimension Coverage. To reason about all dimen-
sion characteristics, a useful subspace clustering algorithm
covers each dimensions in at least one subspace cluster.

Clustering Characteristics Criteria (C3).
Cluster characteristics are related to internal cluster eval-

uation measures. Although the following aspects are not
summarized into a common measure for subspace clustering,
most algorithms try to optimize the following properties:

C3.1 Cluster Compactness. Objects belonging to a
cluster need to be similar in all dimensions of their respec-
tive subspace. Non-compact clusters represent dependencies
between the cluster members which are not very strong.

C3.2 Cluster Separability. A useful algorithm assigns
similar objects to the same cluster. Objects belonging to
different clusters in the same subspace need to be dissimi-
lar. A separability definition of clusters existing in different
subspaces does not exist yet.

C3.3 High/Low Dimensionality. A high and a low
dimensionality of a cluster can both be considered useful
in different applications. While a high dimensionality is
often interpreted as more descriptiveness, we argue that a
low dimensional cluster can also be of interest, especially
if a higher dimensional subspace contains the same cluster
structures. That means, fewer dimensions correspond to
lower cluster complexity. However, clusters with a very low
dimensionality (∼ 1-3 dimensions) are typically of no interest
since no deeper knowledge can be extracted.

C3.4 High/Low Cluster Size. While most subspace
clustering algorithms favor clusters with many members, we
believe that in some applications clusters with a small cluster
size are important, esp. when combined with C3.1 and C3.2.
Possible use case: a dataset contains many obvious structures,
while smaller clusters may contain unexpected patterns.

3.2 Visual Design- and Interaction Require-
ments for Subspace Cluster Evaluation

In the following we summarize design requirements to as-
sess the quality criteria as categorized above. In Section 4
we showcase one possible instantiation of the design require-
ments in our SubEval framework.

Cluster vs. Clustering. Crucial for the design of an
evaluation system is to distinguish between the evaluation of
a single cluster and the evaluation of a clustering result. For
a single cluster, the different cluster characteristics (C3 ) are
of interest, independent of a potential redundancy (C1 ) or
coverage (C2 ) aspect. Likewise, for a clustering result the
overall quality information, such as redundancy (C1 ) and
coverage (C2 ) is important, i.e., a high-quality result can
still contain a few clusters with e.g., low compactness (C3.1 ).

Reasoning for a Good/Bad Quality. Another im-
portant aspect is to distinguish between a cluster/clustering
quality and explanations/reasons for a good/bad quality. The
first aspect primarily states whether a clustering is useful or
not, while the second one requires a more fine-grained level
for an in-depth understanding.

Interactive Visualizations. For many of the presented
quality criteria it is not mandatory to develop complex vi-
sualizations. Simple visual encodings and well-established
visualizations, such as bar- or line charts, allow to extract
quickly useful meta-information (e.g., the redundancy of di-
mensions in subspaces or the number of not clustered data
records). We show examples in Figures 5 and 6. Even simple
visualizations become powerful analysis tools if interactivity
and faceted-browsing is applied, i.e., an analyst interactively
selects all subspace clusters containing a frequently occur-
ring dimension and gets details on-demand, such as data
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Figure 3: Schema for the two interlinked MDS projections: An MDS projection is computed for both, the
subspace- and object similarity of the subspace clusters using an appropriate distance function. Afterwards,
the projection is mapped on top of a perceptual linear 2D colormap where similar color correspond to a
nearby location in MDS projection (similar objects). Finally, the colors of the subspace clusters of the
object similarity projection are assigned to the clusters in the subspace similarity projection and vice versa.
Interpretation: Nearby subspace clusters in a MDS projection with the same color are similar in both, the
object and subspace space; nearby clusters with different colors in the object similarity projection are only
in their cluster members, but not in the subspace.

distribution and commonalities of the selected clusters. This
technique is known as linking-and-brushing [5].

Multi-Granularity Analysis. To get detailed informa-
tion of the quality of subspace clustering result at different
granularity levels, a multi-level analysis from overview to
detail is required (see also the visual information seeking
mantra by Shneiderman [26]: Overview first, zoom and
filter, then details-on-demand). In the following, we describe
a potential workflow with three granularity levels (L1-L3):

L1 Overview. The user needs to quickly develop an
overview of the redundancy aspect (C1 ) for all detected
clusters to decide whether a result is generally useful or
not. Quality must be assessed separately, but also related
in two spaces: cluster member- and dimension space. Re-
dundancy is highly correlated with similarity as many highly
similar cluster imply a notion of redundancy. Therefore, an
appropriate visualization must be able to depict (relative)
similarity between data objects, as well as between dimension
combinations. One possible visualization technique to fulfill
these visual properties is Multi-dimensional Scaling (MDS)
[11], as depicted in Figure 1. MDS approximates the high-
dimensional distances in a low (2D) dimensional space, thus
making it suitable for depicting redundancy aspects (C1 ).
Set-oriented distance functions such as the Jaccard Index
or the Overlap Coefficient are a possible mean to intuitively
compute the similarity between two clusters or subspaces:

Jaccard Similarity(ci, cj) = 1− |ci ∩ cj |
|ci ∪ cj |

A similarity value of 0 refers to two completely identical
clusters. Likewise, the similarity can be computed between
two subspaces. Based on the similarity notion of a specific
application, a different distance function can be applied.
Other subspace cluster properties, such as the cluster size or
compactness, can be encoded with additional visual variables
(e.g., color or size) into the points of the projection or by bar
charts as presented, e.g., in Figures 5 and 6.

L2 Cluster Comparison. At the cluster comparison
level, the user needs to validate a potential object- and/or di-
mension redundancy identified in (L1 ). The analyst will also
have to examine the coverage of the cluster members and di-

mensions, and particularly compare the coverage of multiple
clusters. As one potential solution we propose one MDS pro-
jection per subspace cluster, illustrating the object similarity
by location in the MDS projection and highlight the cluster
members accordingly as further described in Section 4.2. An-
other approach to analyze common members/dimensions in
different clusters are Parallel Set visualization [6].

L3 Data Instance. At the last analysis level, the user
needs to investigate the properties of a single selected cluster.
Only at this fine-grained detail level the analyst will under-
stand why specific objects are clustered within a subspace,
and, more importantly, to find potential reasons why a clus-
tering fails to identify a valid object to cluster relationship.
One possible approach to analyze the data distribution of
high-dimensional data are Parallel Coordinates [18], which
show the distribution of multiple data objects among a large
set of dimensions. It might be useful to combine the Parallel
Coordinates with a box plot or another density measure in
order to compare the data objects with the underlying data
distribution of the dataset. An example for such an enhanced
parallel coordinates plot can be found in Figure 1.

4. SUBEVAL: INTERACTIVE EVALUATION
OF SUBSPACE CLUSTERINGS

In the following section, we introduce SubEval which is
one instantiation of the previously described multi-granularity
analysis. The overview level (L1 ) uses two inter-linked MDS
projections to simultaneously analyze cluster member- and
dimension redundancy (Section 4.1). Section 4.2 (L2 ) in-
troduces ClustDNA for detailed redundancy analysis and
Section 4.3 (L3 ) describes DimensionDNA to explore the
distribution on a data instance level of one selected cluster.

4.1 Interlinked MDS for Cluster Member and
Dimension Space Exploration

At the overview level, redundancy aspects (C1) are focused
by visualizing the relative pair-wise similarity relationships
of all clusters with the help of a MDS projection. In SubE-
val simultaneously two interlinked MDS projections are
used: the left MDS plot illustrates the similarity of sub-
space clusters w.r.t. the cluster members, and the right MDS
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Figure 4: ClustDNA to compare the topology of 4 selected subspace clusters: each combined scatter plot
represents an MDS projection of all data objects of the dataset in the subspace projection (right) and the
SuperSpace (left; union of dimensions of all selected clusters). Cluster members are marked in color. The
dimensions of the subspace are indicated by the top glyph (red = subspace -, grey = SuperSpace dimension).

plot depicts the similarity w.r.t. the dimension similarity.
The user can change the similarity definitions in order to
account for the different understanding of redundancy in the
subspace analysis process. SubEval supports multiple set-
oriented similarity measures (e.g., Jaccard Index). Advanced
measures as proposed in [28], are planned for future work.

Visual Mapping for Redundancy Analysis.
In the MDS projection, each subspace cluster is repre-

sented by a single point/glyph. In order to compare the
clusters with in the corresponding counter-MDS plot we use
a 2-dimensional color schema [8, 27] that links position with
color (similar position = similar color; see Figure 1 (1) and
(2)). The basic intuition is that in the left MDS projection
(object similarity) the cluster member similarity is encoded
by the 2D coordinates (position), while the dimension sim-
ilarity is encoded in color in the same projection. In other
words, proximity corresponds to similar/redundant clusters
w.r.t. objects and a similar color indicates similar/redundant
clusters in dimension similarity. The same is true for the sub-
space similarity in the right projection: similarity is encoded
by the position, while color is used to encode the similarity in
cluster member aspect. The interpretation of our interlinked
MDS representation is as follows: clusters being close to each
other and share a similar color in one MDS projection are
similar, hence redundant in both, the cluster member and
subspace aspect (C1.1)+(C1.2). Subspace clusters, which are
close in the cluster member projection, but different in their
coloring are similar in their cluster members, but different
in their subspace topology (C1.3 ).

Computation of Coloring in MDS Projections.
The computation of our linked MDS projections is illus-

trated in Figure 3. First, the two MDS projections for the
cluster member and subspace similarity are computed inde-
pendently using a user-defined distance function. Afterwards,
both projections are mapped independently on top of a per-
ceptual linear 2D colormap [23]. A nearby location in the
MDS projection (high similarity) is mapped to a similar color.
Up to this point, the visual variables position and color are
calculated independently and are not comparable between
the two MDS plots. We can now apply the color information
of the clusters in one MDS projection on top of the clusters
in the opposite projection. By exchanging the semantic color
mapping schemes between the two plots, the cluster mem-
ber MDS can still indicate a (dis-)similarity in their cluster
members (visually encoded by the point’s location), but the
coloring reflects the subspace similarity. Alike, the subspace
similarity view reflects the dimension similarity by means
of the points’ locations, but allows perceiving the cluster
membership similarities via the color encoding.

Interpretation of MDS Structures.
In the following, we give guidelines on how to interpret the

visual appearance of the different MDS plots with respect to
the presented quality criteria in Section 3.1.

High- and Low Redundancy (C1).
Similar objects have been clustered in
similar subspaces: we can see groups
of clusters in which colors are similar
(top). Opposed to low redundancy
(bottom), we can see groups of clusters,
too, but either in different subspaces
or with different objects. Thus, close
clusters have dissimilar colors.

Big (Non-compact) Clusters (C3.1 + C3.4).
Clusters with many members or di-
mensions are illustrated by large glyphs
in the MDS plots. Compactness can
be additionally visualized by a more
detailed glyph representation.

Too low-dimensional clusters (C3.3)
If the relevant subspace is too low di-
mensional the inferable insights are
too trivial and no deeper conclusion
about dependencies between the di-
mensions are possible. Too low- di-

mensional clusters can be seen by rather small glyphs in the
subspace MDS projection. The is especially true for clusters
with many cluster members (C3.4).

Small Splinter Clusters (C1.3 + C3.2)
The result contains many small clus-
ters indicated by small glyphs. These
clusters do not provide a good gener-
alizations of the data; general conclu-
sions cannot be extracted.

Cluster Splitup in Subspaces (C1.3)
Split of clusters in subspaces: nearly
identical object sets are clustered in
different subspaces, indicated by largely
overlapping cluster circles. Although
this does not imply redundancy (col-

ors are different, thus each cluster contains new information),
it provides reason to suspect that these objects actually form
a cluster in a single high-dimensional subspace.

Cluster Splitup in Objects (C3.2)
Split of clusters w.r.t. objects: a clus-
ter might be divided into multiple clus-
ters. We can discriminate between two
cases: (1) a single cluster is partitioned
in a single subspace (rare case) (c.f.,

blue circles), or (2) a cluster is partitioned and lives in differ-
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ent subspaces, which is a typical case for projected clustering
algorithms like Proclus [1].

Visual Enhancement and User Interaction.
Further visual encodings can be mapped on top of the

enhanced MDS representation to iteratively add more details
to the clusters. The additional information adds another
level of complexity to the visualization. Therefore, the user
can optionally add them, if needed for an analysis purpose.

Glyph Representation: The size of the points in the
MDS projection can be mapped to e.g., the cluster- or sub-
space size. This representation allows assessing the charac-
teristics C3.3 and C3.4 of all clusters.

Furthermore, additional cluster characteris-
tics can be added to the glyph representation.
For example, the compactness can be illustrated
by the size of an inner circle in the glyph. A
combination of multiple criteria in a pie-chart
like fashion is also imaginable. A mouse over provides addi-
tional information for a cluster (e.g., size or members).

Linking and Brushing. We implemented a linking and
brushing functionality between the two MDS projections.
Moving the mouse over one cluster in the left projection
highlights the same cluster in the right projection and vice
versa. The user is able to apply a lasso selection and highlight
all selected clusters in the opposite plot (c.f. Figure 1).

Selection and Filtering. Selected subspace clusters
can be further analyzed by (L2 ) ClustDNA (Section 4.2
and (L3 ) DimensionDNA (Section 4.3). Additionally, the
selected clusters can be reprojected into the MDS space to
remove outlier-clusters which may distort the projection.

Ground Truth Comparison. Finally, SubEval allows
to add potential ground-truth clusters to the projections.
Using this feature, external evaluation methods can be en-
hanced by (1) comparing the similarity of all detected clusters
with the ground truth and see for example, that multiple
clusters are similar to the benchmark, and (2) the multi-level
analysis of SubEval enables the user to visually analyze the
structure of a ground truth cluster (c.f. DimensionDNA) to
decide whether a ground truth cluster is actually appropriate.

4.2 ClustDNA: Comparison of Cluster
Topologies in Subspace Projections

At the second analysis level of SubEval, a user is able to
analyze and/or justify the redundancy of a small selection
of subspace clusters (e.g., the four selected blue clusters in
Figure 1 (1)). Our idea is to show for every selected cluster,
both, all data objects and the cluster topology with a visu-
alization, called ClustDNA. To understand the similarity
between the different objects and the accordingly generated
clustering structures, we rely again on a MDS projection.
For every cluster we compute a projection in the respective
subspace and assume that redundant subspace clusters result
in similar MDS projections. Furthermore, we compare each
subspace projection with a MDS projection containing the
union of dimensions of all selected subspace clusters. We call
the unified combination of dimensions SuperSpace. A com-
parison with these SuperSpace helps to decide whether a
subspace of all dimensions results in a more profound cluster.

An example of ClustDNA can be found in Figure 4. Each
selected subspace cluster is represented by a combination of
two MDS projections: SuperSpace (left) and subspace of
cluster (right). The cluster members are colored whereas

Figure 5: Distribution of the #of cluster members
(left) and the #subspaces (right).

Figure 6: Bar charts to analyze the object coverage:
a few objects are not clustered (blue), about 60 ob-
jects are a member in 1 − 10% of the clusters and
more than 70 objects are a member in more than
40% the clusters.

non-cluster members are represented in grey. The small
glyph at the top indicates the dimensions of each subspace
(red = subspace -, grey = SuperSpace dimensions).

4.3 DimensionDNA: In-Depth Analysis
At the third analysis level, a user needs to be able to

analyze one particular selected cluster to identify good/bad
clustering decisions of an algorithm. SubEval implements an
enhanced Parallel Coordinates (PC) [18] visualization called
DimensionDNA. Classical PC are combined with a heat-
map to illustrate the data density of the entire dataset in each
dimension (Figure 1 (right)). Each vertical bar represents
one dimension. The minimum value of the dimension is
mapped to the bottom of the bar, linearly scaled to the top
(maximum value). The white-to-black colormap encodes the
number of objects falling into a specific range (dark = many
objects; bright = few objects). Records of a selected cluster
are visualized as a connected line (red) among all dimensions
of the dataset. The subspace dimensions are highlighted.

Using DimensionDNA, a user can analyze the compact-
ness (C3.1) of the cluster members in the (subspace) di-
mensions in order to see whether a subspace cluster is valid.
When selecting multiple clusters, the user is able to analyze
the cluster’s redundancy (C1) and separability (C3.2). The
underlying distribution of every dimension helps the analyst
to inspect outliers or distortions that prevent an algorithm
to identify clusters in particular dimensions.

4.4 Cluster Meta-Data Analysis
To provide additional information of detected subspace

clusters (or a selection thereof), SubEval comprises several
visualizations to analyze the clusters’ meta-data:

Cluster- and Subspace Size Distributions: Figure 5
shows a line plot to assess the distributions of the cluster
size (left) (c.f., C3.3 ) and subspace size (right) (c.f., C3.4 ).
A user is able to see whether an algorithm produced rather
small, large, or different sized subspace clusters.
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Object Coverage Analysis: The bar-chart in Figure 6
is targeting C2.1 -Object Coverage, where we visualize the
relationship between the number of (non-)clustered data ob-
jects. The non-clustered objects can be further investigated
with the DimensionDNA plot, while the redundancy aspects
of the object-to-cluster assignment (C1 ) can be analyzed by
interactions on the bar chart. It shows the number of objects
(x-axis) which do not belong to any cluster (blue bar), and
the number of members being part in p%, of the clusters.
The more this bar-chart is shifted to the bottom, the more
often specific cluster members occur in multiple clusters.

Dimension Coverage Analysis C2.2 is targeted with
an interactive bar-chart showing how many subspaces a di-
mension is allocated. The user can subsequently investigate
dimensions, which occur frequently or never in any subspace,
with the DimensionDNA plot.

Dimension Co-occurrence: Besides the coverage as-
pect, the user is able to analyze, which dimensions co-occur
in the subspaces by choosing one or multiple dimensions.
The chart is updated by filtering for subspaces containing
the selected dimensions.

All charts can be interactively filtered. A selection of
one e.g., dimension in the coverage analysis, or clusters of a
specific size will update all other visualizations accordingly,
thus allowing an analyst to concentrate on clusters of interest.

5. EXPERIMENTS
We describe two use cases to show the usefulness of SubE-

val to visually evaluate the quality of subspace clusterings.
SubEval is implemented in Java/JavaScript in a server-client
fashion using d3.js1 for the visualizations. In the supplemen-
tary material2 we provide a video and give the user the
opportunity to explore the use cases with SubEval.

Use Case 1: Redundancy Analysis.
In the first use case, we want to show the usage of SubE-

val for the detection and analysis of redundancy. We apply
the well-known Clique [2] algorithm to the real-world Glass
dataset with 214 objects and 9 dimensions. Clique is a grid-
based algorithm which is known to detect many redundant
clusters. For the Glass dataset, 132 subspaces3 are detected.

In the first step, we analyze the cluster member coverage
of our result (Figure 6). Except for one outlier (blue bar) we
can quickly see that all data objects belong to at least one
cluster. However, more than 70 data objects (30% of the
dataset) are part of more than 40% of the clusters resulting
in a noticeable degree of member overlap in the clusters.

The results of the inter-linked MDS projection can be found
in Figure 1. We can see a large group of bigger clusters in the
top left corner of the cluster member similarity projection.
The clusters of the group share a common clustering topology,
but have a different color encoding. This corresponds to
similar clusters occurring in subspaces of different dimensions.
Besides the smaller splinter clusters that occur in different
(larger-dimensional) subspaces, the user is faced with four
larger clusters (blue shaded on the left side). These clusters
seem to have similar cluster members in similar subspaces
and thus can be suspected redundant. We analyze this
potential redundancy further with ClustDNA as shown

1https://d3js.org/
2http://www.subspace.dbvis.de/idea2016
3Parameter of Clique for use case 1: -XI 10 -TAU 0.2

in Figure 4. In the dimension glyph on the top, we can
see, that all four clusters share most of their dimensions.
Another interesting observation it that the first and second
clustering have an almost identical cluster topology which
is visible through a similar MDS projection. The cluster
on the right comprise only a single dimension in which all
cluster members are almost identical. A user can conclude
that the selected clusters are truly redundant. It would be
sufficient to only report the first cluster without loosing much
knowledge about the data.

Finally, we select one of the redundant clusters and inves-
tigate the dataset distribution with the DimensionDNA, as
shown in Figure 1 (3). We can see that the cluster members
are compact in the subspace dimensions dim1,4,5, but also
in non-subspace dimensions dim0,2,3,5, and dim7. Hence, an
analyst may question, why the aforementioned dimensions
are not part of a subspace. In summary, a user can quickly
see that the clustering result contains a few larger subspace
clusters, but also many smaller splinter clusters and a few re-
dundant clusters as described above. The shown results can
be attributed to the bottom-up strategy of Clique, which is
known to produce a large number of redundant clusters. An
analyst may either change the parameter settings or apply a
different subspace clustering algorithm.

Use Case 2: Splinter Cluster Analysis.
In the second use case, we analyze a good performing

subspace clustering algorithm (Inscy [4]) on the Vowel
dataset as experimentally identified in [24]. The dataset
contains 990 object, described by 10 dimensions4. Inscy is
an algorithm with a redundancy elimination strategy.

According to the experiments in [24], the algorithm per-
forms well on the dataset with good external performance
measures (compared to a ground truth). When analyzing
the clustering result with SubEval, we made the following
observations: The size of the subspaces is homogeneous with
a dimensionality between three and six dimensions. However,
the number of cluster members varies significantly. Many
clusters contain less than 30 members and only a few clusters
have more than 300 members as shown in Figure 5. When en-
coding this information into the inter-linked MDS projection
(c.f. Figure 7), we can see that the clustering contains a large
number of small splinter clusters with a variety of different
colors. This means that in a large number of subspaces, the
algorithm detected small, less expressive clusters. The group
of bigger clusters on the bottom left is apart from the splin-
ter clusters and contains significantly more cluster members,
hence a more general representation of the data. As visible
from the similar coloring, there are many redundant clusters,
which can be verified in the detail analysis. We select one of
the clusters, as shown in Figure 7 (1), and analyze the data
distribution with the DimensionDNA (shown in Figure 7
(3)). The subspace contains three dimensions. dim3, however,
does not seem to be compact and an analyst may question
why this dimension is part of the subspace. It is therefore
interesting that the algorithm performed well on the dataset
according to the experiments in [24]. Based on our findings,
an algorithm expert could improve the clustering results by
a careful adjustments of the parameters.

4Parameter of Inscy for use case 2: -gS 10 -mS 16 -de 10.0
-m 2.0 -e 8.0 -R 0.0 -K 1
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Figure 7: Use Case 2: (1) + (2) Group of large clusters with similar subspaces (blue group left) and many
small splinter clusters with different colors (=different subspaces) (left). One cluster is selected for detailed
analysis. (3) DimensionDNS: Visualizing the distribution of cluster members of the selected cluster. An
analyst may wonder why the outliers in dim3 and dim5 are part of the cluster.

6. DISCUSSION AND FUTURE WORK
While our technique has proven useful for an efficient and

effective visual comparison of subspace clusters regarding
certain quality aspects, we identify areas for further research.

Alternative Visual Design. The inter-linked MDS pro-
jection between the cluster member and dimension similarity
of subspace clusters may be difficult to read and requires
some training for unfamiliar users. The same is true for the
ClustDNA visualization. Furthermore, MDS projections
face generally the problem of overlapping points and might
not show the actual similarity between all combinations of
points as discussed below. Therefore, we are planning to
improve the MDS projection and also work on different vi-
sual representations for the overview of subspace clusterings.
Node-link diagrams as introduced in [30] may be an interest-
ing starting point to this end.

MDS projects data points into a 2D space by preserving
the pair-wise distances between all data points as well as
possible. Depending on the distance distributions, the 2D
projection may not reflect the actual relationships correctly.
Then, objects appearing close in the projection might be
dissimilar in their original space, and far apart objects may
be similar. Independent of the quality, a MDS projection
is typically interpreted by a user as it is, without consid-
ering a possible error which lead to wrong analysis results.
SubEval already provides methods for drill-down to justify
presumptions in a different view. Later, we also want to
address the quality of the MDS projection by visualizing the
difference between the similarity in the MDS projection and
the real data characteristics, or rely on further techniques
for visualization of projection quality [25].
SubEval is designed to analyze one subspace clustering

result at a time. A comparative evaluation of several cluster-
ing results would be beneficial to compare the influence of
minor changes in the parameter settings. We plan to extend
SubEval for a comparative analysis of multiple clusterings.

Application to Related Approaches. The analysis
goal of subspace clustering differs significantly from other
analysis techniques like subspace outlier detection (SOD) [33]
and subspace nearest neighbor search (SNNS) [19]. While
SOD tries to identify subspaces in which outliers exist, SNNS
identifies nearest neighbor sets to a given query in different
subspaces. Although the analysis goal differs, both techniques
share the same evaluation challenges like subspace clustering,
i.e., redundant subspaces and results (outliers or nearest

neighbors). In the future, we want to extend SubEval for
the quality assessment of SOD and SNNS. For the inter-linked
MDS projection we need to develop quality measures for the
redundancy definition. DimensionDNA can be applied to
both techniques. Also, we need to develop visualizations to
access the meta-data of the respective analysis.

SubEval is designed for the quality assessment of subspace
clusterings, however, it can also be used for the evaluation of
full-space clusterings, particularly with partially overlapping
clusters. For the MDS projection, an appropriate measure is
needed to compute the similarity between clusters. One op-
tion is to compute the distance between cluster centroids or
the pair-wise distances between all cluster members. Dimen-
sionDNA and ClustDNA can also be applied to investigate
cluster topologies and member distributions.

Open Source Framework. SubEval is part of SubVA
(Subspace Visual Analytics), a novel open-source framework
for visual analysis of different subspace analysis techniques.
Besides providing implementations of recently developed
visualizations, such as SubVis [20], SubVA integrates the
well-known OpenSubspace framework [24] as a module, al-
lowing analysts to apply the most commonly used subspace
clustering algorithm to a given dataset. We will distribute
the framework on our website5 and provide the source code
in the supplementary material.

7. CONCLUSION
This paper presented SubEval, a subspace evaluation

framework for the simultaneous assessment of several qual-
ity characteristics of one subspace clustering result. SubE-
val combines expressive visualizations with interactive anal-
ysis and domain knowledge, and complements, potentially
advancing standard evaluation procedures with a more com-
prehensive, multi-faceted approach. We summarized state-of-
the-art evaluation methods for subspace clustering algorithms
and showed that, besides classical measures, visualizations
can be an insightful approach to the evaluation and under-
standing of subspace clustering results. We also outlined
ideas for extensions of our approach.
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E. Müller, E. Schubert, T. Seidl, and A. Zimek. On
Using Class-Labels in Evaluation of Clusterings. In
Workshop at SIGKDD, 2010.
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