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ABSTRACT 

Techniques for analyzing and visualizing process or workflow data 

have been developed and applied in a wide range of domains. 

Visual analysis of large process logs and integration of statistical 

analysis, however, have been limited. We introduce the Visual 

Interactive Tool for Process Log Analysis (VIT-PLA) that provides 

a simplified process log visualization and performs statistical 

correlation analysis on process attributes. We demonstrate its use 

by applying it to an artificial dataset and running a preliminary 

analysis of trauma team task data collected from a medical 

emergency department. 
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1. INTRODUCTION 

1.1 Motivation 
Many contemporary information systems record activity logs, 

including personal calendars and electronic health records (EHR). 

Process mining techniques attempt to extract non-trivial knowledge 

and insights from these activity logs and use them for further 

analyses [1]. Most research in process mining has focused on 

workflow discovery and process execution visualization [1][2]. 

Whe visualized, real-world workflow often produces “spaghetti-

like” graphics that are difficult to analyze and do not provide useful 

observations or insights. In addition to graphical visualization, 

other efforts have also been made to produce different 

visualizations for process executions or workflow data 

[3][4][5][6][7][8][9]. Although these systems have been shown to 

work well with focused processes and relatively small event logs, 

little work has been done with large process logs with many 

execution traces (typically hundreds or thousands of different 

process cases). Simply displaying all traces at once does not make 

a useful visualization. We observed that only several dozen traces 

can fit intelligibly on one screen at a time. Even if the symbols were 

distinguishable, the amount of displayed data make it inconvenient 

for human interpretation. When working with large workflow 

datasets, it is often useful to obtain a concise visualization that 

summarizes the data into an easily interpretable format. We present 

an approach for visualizing a summary of large process logs by 

aggregating the data with a trace clustering method. Process traces 

are clustered based on the similarity or proximity between their 

elements (i.e. process tasks). Each cluster is represented using a 

“representative” or “average” trace extracted from the 

corresponding cluster. Using this approach, we are able to usefully 

visualize large process logs. To help users better understand the 

clusters, we also included tools for running statistical tests on the 

clusters and their associated process attributes. These statistical test 

results can reveal  significant and interesting correlations between 

process executions and process attributes. We implemented these 

approaches in a Java-based application, named VIT-PLA. 

1.2 Related Work 
Recent advances have been made in the development of workflow 

data visualization techniques. EventFlow [3] visualizes temporal 

events on a timeline and can simplify workflow executions into an 

aggregated display. Outflow [5] aggregates events into a graph with 

integrated statistics. Frequence [6] and Care Pathway Explorer [7] 
are user interfaces for information exploration that integrate 

interactive visualizations with data mining to find frequent event 

sequence patterns. Dotted Chart [8] uses colored dots to visualize 

process traces in a fast and simple implementation. The trace 

alignment plugin for the ProM framework [9] is designed to align 

process traces so as to optimize interpretability and facilitate 

exploration. Despite extensive work on interactive visualization, 

little has been done to directly integrate statistical analysis into 

these applications. Some data visualization applications can show 

general statistics [5][8], but few can provide more sophisticated 

ones [4]. CoCo [4] can be used to find similarities and differences 

between two groups (“cohorts”) of process traces and to highlight 

their significant distinguishing features (e.g. activity order, 

frequency, and duration). 

From the perspective of workflow visualization, Eventflow [3] and 

ProM’s Trace Alignment [9] plugin are closest related to our work. 

Neither are suitable for visualizing large process logs with many 

traces, because both visualize all activities in the log at once. 

Without data aggregation and summarization strategies, the size of 

the dataset that can be handled is always limited. From our previous 

experience with Eventflow and ProM, visualizations using a 

standard sized computer monitor (24") generally become 

uninterpretable when the number of unique process traces exceeds 

100. EventFlow can be used to visualize logs with >100 process 

traces, but only if there are many repeated traces [21]. Eventflow 

visualizes the activities on a timeline without advanced processing 

of the data. ProM visualizes the alignment and also clusters the 
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process traces, but does not provide any statistical analyses that can 

help the user better understand their data. When visualizing clusters 

of process traces, ProM shows all traces in each cluster without any 

data aggregation or simplification. In contrast, our approach 

displays each cluster’s cluster “prototype” [8], i.e., an execution 

trace that is representative of the other traces in the cluster (the 

representative trace is not necessarily one of the original process 

traces in the input log). This strategy enables visualization of large 

process logs. This visualization also helps to identify key 

characteristics of each cluster and key differences between clusters. 

From the perspective of statistical analysis, CoCo is closest related 

to our work. Both CoCo and VIT-PLA seek to correlate trace 

structural features (e.g., sequential order of activities, their 

frequencies and durations) with process attributes (e.g., patient 

gender, age, etc.). The two approaches to statistical analysis are 

different (Figure 1). CoCo first splits the data into strictly two 

cohorts based on a background attribute (in this case gender). It 

then finds significant associations between the cohorts’ trace 

structures and attributes. It may identify a structural pattern (e.g., 

“Washing Face  Makeup”) as significantly belonging to one 

cohort (female), as opposed to the opposite (male). In contrast, our 

implementation first separates the data into clusters based on trace 

structure, and then associates cluster membership with background 

attributes. For example, the sequence “Washing Face  Makeup” 

is executed mostly by females over age 16. 

Unlike CoCo that can only make these associations based on cohort 

pairs, our system uses multinomial or binomial logistic regression 

to make associations based on multiple clusters. VIT-PLA allows 

for more comprehensive attribute-structure correlation, bringing 

the previously unusable age attribute into the analysis (see example 

above [Figure 1]). In this way, VIT-PLA’s approach reveals 

potential relationships missed by CoCo’s binary analysis. 

Our statistical analysis is important because it facilitates the 

discovery of significant correlations between clusters and 

background attributes. Given the trace attributes, we may determine 

what workflow practices (represented by the cluster prototype) are 

more likely to be observed, which is useful information for 

analyzing the workflow data and extracting insights. 

1.3 Contribution 
Our main contribution is a novel approach to producing 

summarized visualizations of large process logs and directly 

integrating statistical analyses into the visualization. These features 

help users discover attributes associated with specific sequence 

progressions and deviations within the dataset. 

The paper is organized as follows. Section 2 introduces our 

approach to process trace visualization and attribute analysis. 

Section 3 discusses our implementation and user interface design. 

Section 4 shows preliminary results from using VIT-PLA on an 

artificial dataset and a trauma resuscitation process log. Section 5 

summarizes the paper and discusses the limitations of our current 

work. 

2. METHODOLOGY 
The core methods implemented in VIT-PLA can be summarized as 

follows (Figure 2): (1) clustering of process traces (workflow data) 

based on proximity of data objects, (2) aggregation of process 

traces and selection of cluster prototype, (3) regression analysis to 

explore underlying knowledge, (4) interactive visualization of 

process traces and statistical analysis results. This section will 

describe (1), (2), and (3); (4) will be discussed in Section 3. 

2.1 Data Preprocessing: Sequencing of Traces 

Process sequencing is necessary before more advanced processing. 

Activities coded in a process log usually have start and end 

timestamps (some logs may not include end time) for each activity. 

Idle time may exist between activities, and some activities may be 

executed concurrently (Figure 3(a)). In process mining, process 

traces are usually sequenced by ascending order of the start time of 

activities (Figure 3(b)). 

2.2 Summary Visualization of Process Logs 

2.2.1 Process Trace Clustering 
Our approach uses clustering techniques to simplify the process 

trace visualizations. Clustering provides an abstraction from the 

original data objects to generalized data representatives, i.e. cluster 

prototypes. In most data mining problems, data clusters are 

calculated based on the data objects’ feature set. However, to 

aggregate process traces that follow an underlying workflow 

model, we cluster the traces based on the similarity of their 

   

Figure 2. Flowchart outlining the core methods implemented 

in VIT-PLA and their corresponding inputs and outputs. 

Process 

Attributes

Process 

Traces

Trace 

Clustering

Data 

Aggregation

Visualization
Regression 

Analysis

Statistics

Clusters

Cluster

Membership
Cluster 

Prototypes

(1)
(2)

(3)
(4)

 

Figure 3. Two steps of sequencing the traces with concurrent 

activities (such as d in T1 and c in T2) and idle times (white 

spaces between activities). (a) Example process traces before 

sequencing. (b) The same process traces after sequencing. 
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Figure 1. A simple example showing the differences between 

the statistical analysis in CoCo and VIT-PLA. This example 

describes a morning skincare ritual. The workflow includes 

three different activities (washing face, makeup, and shaving) 

and two different attributes (gender and age). 
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constituent tasks in terms of task type and sequential order of 

execution [10]. That is to say, our sole feature used for clustering is 

the structure of each trace’s task sequence, not the process 

attributes. 

In VIT-PLA, the clustering algorithm we use is agglomerative 

hierarchical clustering [15] with Ward’s method [22] as clustering 

criterion. We calculate the similarity of process traces based on Edit 

Distance [8] (a.k.a. Levenshtein Distance [11]). If activity duration 

information is also available, the similarity can be calculated with 

“Duration-Aware Edit Distance” [16], a metric derived from Edit 

Distance that penalizes dissimilarity between durations of the same 

activity type. 

2.2.2 Cluster Prototype and Trace Alignment 
After clustering, each cluster can be characterized by a cluster 

prototype (Figure 4). Because it is not practical to visualize all the 

data objects on a single computer screen, a substantial reduction in 

the data size is needed. The deployment of cluster prototypes helps 

compress the dataset. 

Several candidates can be considered as cluster prototype, such as 

the widely-used cluster centroid [14], the center of a cluster. There 

is, however, a great chance that there may not be an actual data 

point at the cluster’s center. In this case, the centroid location is 

calculated from the data in the cluster with the aim of minimizing 

the sum-squared distance to other points. 

Note that for categorical data and event-based data, the notion of a 

center (centroid) does not apply [14]. For example, the centroid of 

categorical data (e.g. {orange, apple, banana}) cannot be 

determined. In this case, we may use the cluster medoid, the most 

representative data object in the cluster, i.e. a data point with 

minimal average dissimilarity to all other objects in the cluster. The 

medoid, however, may not be adequate if the cluster does not 

contain an “appropriate” representative. 

To ensure that the chosen sequence is representative of the cluster, 

we used the consensus sequence as the cluster prototype even 

though it may not be an observed trace from the data. The 

consensus sequence, a concept derived from aligning biological 

sequences (e.g. DNA) in bioinformatics, is a sequence of the most 

frequent residues found in the alignment matrix’s columns. In 

process mining, consensus sequences may be considered the 

“average” or “common” sequence of tasks [9] (Figure 5). To find 

the consensus sequence for each cluster, trace alignment [9][16] 

needs to be performed using traces from each cluster respectively. 

Trace alignment reformats the original data by placing the same or 

similar activities of all traces to the same column of the alignment 

matrix. If a matching activity cannot be found, a gap symbol “-” is 

inserted. Bose and Van der Aalst [9] have shown how to use trace 

alignment techniques to visualize and analyze process traces 

(Figure 5(a)). In our previous work, we extended their work by 

introducing a duration-aware trace alignment algorithm [16] that 

also takes activity duration into consideration. In our 

implementation, the alignment algorithm can work for data either 

with or without activity durations (Figure 5). 

2.3 Association between Trace Clusters and 

Trace Attributes  
In addition to visualization, VIT-PLA also provides statistical 

analysis functions. The goal of our statistical analyses is to help the 

user discover the underlying associations between data cluster 

membership and trace attributes. This goal is accomplished using 

either multinomial or binary logistic regression. The user chooses 

between these two statistical methods depending on the domain 

question being asked. Multinomial logistic regression works for 

binary comparison between two clusters (one-vs.-one cluster 

comparison), while binomial logistic regression works for binary 

comparison between one cluster and the rest of the clusters (one-

vs.-rest). Using both logistic regression models can help discover 

attributes associated with particular clusters. 

2.3.1 Multinomial logistic regression  
In multinomial logistic regression [12], let K denote the number of 

independent variables, and let J denote the number of discrete 

categories of the dependent variable, where J ≥ 2. In our case, the 

independent variables correspond to the trace attributes and the 

dependent variables correspond to the trace cluster membership. 

The number of trace attributes is K and the number of clusters is J. 

By default, we define the last category (the Jth cluster) to be the 

reference category, against which logits of the first J−1 categories 

are compared. Let C denote cluster membership. Represented 

formally: 

ln (
𝑃(𝐶=𝑖)

𝑃(𝐶=𝐽)
) = ln (

𝑃(𝐶=𝑖)

1− ∑ 𝑃(𝐶=𝑗)𝐽−1
𝑗=1

)  =  𝛽𝑖0 +  𝛽𝑖1𝑥𝑖1 + 𝛽𝑖2𝑥𝑖2 + ⋯ +

 𝛽𝑖𝐾𝑥𝑖𝐾 ,         𝑖 = 1, … , 𝐾 − 1    (1) 

where 𝑥𝑖 are trace attributes, and 𝛽𝑖 are regression coefficients for 

each of the trace attributes. In VIT-PLA, users can also choose 

which cluster to use as the reference category. 

2.3.2 Binomial logistic regression 
Binary logistic regression [12] is a special case of multinomial 

logistic regression, in which there are only two categories (J = 2). 

In our problem, one category is the target cluster of interest and the 

other category is all other clusters. Let K denote the total number 

of independent variables and C denote cluster membership. 

Represented formally: 

 
Figure 4. An example showing data clustering and aggregation. 

The cluster prototype used here is cluster medoid. 
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Figure 5. An example of two types of trace alignment: 

(a) Context-Aware and (b) Duration-Aware. The sequences at 

the bottom of (a) and (b) are consensus sequences derived from 

the data. A gap symbol “-” or white space is inserted if a match 

cannot be found. The five process traces shown here are from 

Cluster 1 in Figure 4. 
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ln (
𝑃(𝐶=𝑖)

𝑃(𝐶≠𝑖)
) = ln (

𝑃(𝐶=𝑖)

1− 𝑃(𝐶=𝑖)
) =  𝛽𝑖0 +  𝛽𝑖1𝑥𝑖1 + 𝛽𝑖2𝑥𝑖2 + ⋯ +

 𝛽𝑖𝐾𝑥𝑖𝐾 ,         𝑖 = 1, … , 𝐾    (2) 

where the parameters have the same meaning as in Eq.1. 

2.3.3 Hypothesis Test 
To identify which trace attributes are significantly associated with 

cluster membership, we use the Wald test [13] for logistic 

regression, which is defined as: 

𝑊 =  
(𝛽̂𝑖 − 𝛽𝑖)

𝑠𝑒̂(𝛽̂𝑖)
 

where 𝛽̂𝑖 is the regression coefficient for trace attributes 𝑥𝑖; 𝛽𝑖 = 0 

is the null hypothesis, i.e. the trace attribute 𝑥𝑖 has a corresponding 

coefficient of zero; 𝑠𝑒 is standard error. In our implementation, we 

use a normal distribution and 𝓏-values for calculating p-values. The 

null hypothesis can be rejected when p-value is less than or equal 

to alpha, the significance level which is most often set at 0.05. 

3. VISUAL INTERFACE DESIGN 
During software development, we received feedback from domain 

experts and continuously improved our design. In this section, we 

describe the first prototype of VIT-PLA. The visual interface 

design (Figure 6) was developed with three main goals: 

G1. Interactive visualization of raw process traces, the basic 

visualization functionality. 

G2. Simplified visualization of process traces (for large data 

applications).  

G3. Visualization of trace cluster vs. trace attribute association 

statistics.  

Although VIT-PLA has many other functions, the rest of this paper 

focuses on how its design achieves these three goals. 

3.1 G1: Three Common Ways to Visualize 

Raw Process Traces 
VIT-PLA provides three common ways of visualizing raw process 

traces. We refer to the data as “raw process traces” to distinguish 

goal G1 from G2, where the data is visualized in an aggregated 

format. The three visualization methods are: 

1) Simple stack of activities in the process traces (Figure 7(a) 

without activity duration, and Figure 7(b) with activity 

duration). This approach is one of the simplest ways to 

visualize process traces. Activities are stacked based on their 

occurrence time. Activity information can be accessed with a 

mouse click on the corresponding symbol. This visualization 

is easily interpretable and computationally efficient, but it 

cannot provide deep insights into the data.  

2) Overlay of the process execution on the timeline (Figure 8). 

Activities are scaled based on duration and aligned to the 

timeline according to their start and end times. The advantage 

of this visualization approach is that it clearly shows the 

concurrent activities in each process. 

3) Process trace alignment (Figure 9(a) context-aware alignment 

and Figure 9(b) duration-aware alignment). The context-

aware trace alignment algorithm is based on Bose and Van der 

Aalst’s work [9] and the duration-aware trace alignment 

algorithm proposed in our previous research [16]. The 

duration of each activity in the consensus sequence (bottom 

 

Figure 6. VIT-PLA Graphical User Interface showing aggregated data, hierarchical clustering results, and statistics from the 

multinomial logistic regression analysis. The data shown here is the same as the data in our 2nd case study. Please note that there are 

other functions of VIT-PLA that are not displayed in this figure. 
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line of Figure 9(b)) of duration-aware trace alignment is the  

mean activity duration of the corresponding column. 

Compared with the previous two visualizations, the alignment 

view makes it easier to interpret process traces and extract 

insights. When considering algorithm execution time, our 

previous research found that for a moderately-sized dataset 

(e.g. 50,000 activities, ~1,000 traces and ~50 activity for each 

trace), the alignment can be effectively calculated in 25.5±1.5 

seconds [16]. This time is not instantaneous (which would be 

ideal), but is still reasonable.  

3.2 G2: Simplified Visualization of Process 

Traces 
The first interactive visualization feature in G2 is the selection of 

cluster number (clicking button   in Figure 6 and inputting cluster 

number k in the pop-up dialogue). A hierarchical tree structure with 

k clusters will be shown at the bottom panel (Figure 6 and Figure 

10) where the non-leaf (a.k.a. internal) nodes show the current 

height (a.k.a. depth) and process traces included under this node. k 

leaf nodes correspond to the k clusters and display all the process 

IDs in the cluster. 

After clustering, each cluster is represented with its own cluster 

prototype. By default, the cluster prototypes are visualized as 

activity stacks (Figure 11). The prototypes can also be visualized in 

alignment view (Figure 6 and Figure 12) by clicking on the button 

“Align Cluster Prototype” ( in Figure 6). Another interactive 

function allows the user to check the pre-aggregated traces under a 

certain cluster. This feature may be accessed by clicking on the 

buttons showing the cluster information ( in Figure 6). 

3.3 G3: Visualization of Statistics of Trace 

Clusters vs. Trace Attributes. 
Users can access statistics of trace clusters and trace attributes by 

clicking on the button “Multi-Logistic Regression” ( in Figure 6) 

 
Figure 15. Simplified visualization of raw process traces. Each 

row is a cluster’s prototype. The information in the white block 

before the prototypes shows the cluster ID that each prototype 

represents and the number of process traces in that cluster. (a) 

Cluster prototypes are consensus sequences calculated from 

context-aware alignment (Figure 9(a)); (b) Cluster prototypes 

are consensus sequences calculated from duration-aware 

alignment (Figure 9(b)). The data comes from Figure 4. 

 

 
Figure 16. Alignment view of the cluster prototypes in Figure 

15(a). The data comes from Figure 4.  

 

 
Figure 17. Statistics for regression coefficients 

 

 

 

 

 
Figure 11. Simple stack (a) Process executions are stacked (b) 

Process executions are stacked and symbol blocks are scaled 

based on activity duration. Each row represents a single trace 

and each block represents a single activity. The data comes 

from Cluster 1 in Figure 4. 
 

 
Figure 12. Visualize process traces on a timeline. The top scale 

is the timeline with second as the unit. Each row, separated by 

a bold line, represents a single process. Each block represents 

a single activity. Symbol blocks that are vertically stacked in 

one process are activities occurring simultaneously. The data 

comes from the input log in Figure 4. 

 

 
Figure 13. Alignment (a) Process trace alignment (b) Duration-

aware trace alignment. Each row represents a single process 

and each block represents an activity. The bottom line of each 

figure is the consensus sequence. Dashes or spaces are 

introduced to achieve alignment of the activities. The data 
comes from Cluster 1 in Figure 4. 

 

 
Figure 14. Hierarchical Tree Structure (we cited the same 

source code from ProM [9] here and made modifications 

showing only the number of clusters specified by the user). The 
result is based on the data in Figure 4.  

 

 

(a) (b)
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or on “Binomial Logistic Regression” (  in Figure 6). The number 

of clusters is decided by the user. The significance tests for trace 

attributes on trace clusters (p-value statistics) are shown in a chart 

(  in Figure 6, JFreeChart library [18] is used). The horizontal 

axis represents the p-value, while the vertical axis represents the 

trace attributes. The p-value of different clusters is denoted with 

different shapes and colors. Because alpha = 0.05 is widely used as 

the significance level, we placed a highlighted line at this level. 

When performing multinomial logistic regression, the reference 

category is set to the last-numbered category by default. Users, 

however, may change the reference category manually ( in Figure 

6). In addition to p-values for each trace attribute, the regression 

coefficients of the logistic regression model are also listed in a table 

( in Figure 6 and Figure 13).  

3.4 Additional supportive functions 
In addition to the three main goals, VIT-PLA also includes several 

useful supportive functions. The Activity Filter ( in Figure 6) 

allows the user to include and exclude activities in the visualization 

and analysis. The Color Map ( in Figure 6) allows the user to 

recolor the activity symbols. The Zoom Slider ( in Figure 6) 

enables the user to resize the activity symbols in the visualization 

panel (the sliders in the top-right corner control the size of the 

activity symbols). 

4. PRELIMINARY CASE STUDY 

4.1 Case Study I: Artificial Data 

4.1.1 Data Description 
This dataset was artificially generated using the Process Log 

Generator (PLG) [17]. It includes 500 process traces consisting of 

10 different activity types. The drawback of this artificial data is 

that it does not have background attributes associated with each 

process trace. For this reason, we only focus on the simplification 

of trace visualization when using this dataset. 

4.1.2 Results and Discussion 
The visualization of 500 process traces without data aggregation 

strategies can lead to extremely large and complex visualization 

results (Figure 14(a)). When represented this way, the symbols are 

too small to identify, making it difficult to extract useful 

information. To improve visualization, we used clustering to 

aggregate the original dataset into a small number of representative 

process traces (Figure 14(b). In this example, we arbitrarily chose 

10 clusters, a manageable number of clusters to understand). The 

visualization becomes clearer when put into the alignment view 

(Figure 14(c)). From these two simplified visualizations (Figure 

14(b) and Figure 14(c)), it is easy to extract some interesting 

insights: (1) the sequential order of consensus tasks (tasks that 

occur more than or equal to 50% in the column) is “ACEGFDHIB”; 

(2) the pattern “HIJ” is repeated in two of the ten clusters (cluster 1 

and cluster 2); (3) activity C is performed late in one cluster (cluster 

5); and (4) activity D is performed late in one cluster (cluster 3) and 

omitted in another (cluster 7). 

 
Figure 18. Visualization of artificially generated dataset. (a) Alignment view of all 500 process traces; (b) Simplified visualization of 

500 process traces using 10 cluster prototypes; (c) Alignment view of 10 cluster prototypes.  

 

(a)

(b)

(c)
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4.2 Case Study II: Trauma Resuscitation 

Workflow Data 

4.2.1 Data Description 
We used a trace log obtained from video analysis of 171 child 

trauma resuscitations between May and August 2013 at Children’s 

National Medical Center in Washington, DC. An event log of five 

activities typically performed during the initial evaluation was 

created and used as the dataset for this case study. We obtained the 

workflow model for these activities from domain experts (Figure 

15(a)). Activities “Airway, Breath, Circulation” follow a sequential 

order. Activities “GCS” and “Pupil check” are parallel and should 

be performed after the previous three activities. We also obtained 

from the medical chart review several patient and resuscitation 

attributes (including pre-hospital triage level, the resuscitation’s 

time of day and day of week, Injury Severity Score [ISS], 

and patient admission status after the resuscitation) (Table 1). This 

dataset is not a “large process log,” but we chose it for our 

preliminary analysis to demonstrate how our approach can be 

integrated with medical domain knowledge. 

4.2.2 Results and Discussion 

4.2.2.1 Data Interpretation from Visual Analysis 
Four cluster prototypes were generated (Figure 15(b) and (c)). 

Prototypes of clusters 1 and 3 conform to our expert model, but 

clusters 2 and 4 do not. From the alignment view of prototypes, we 

can observe that the sequential order of activity GCS (G) and pupil 

assessment (P) is interchangeable, which conforms with the parallel 

structure in our expert model. Visualizations of pre-aggregated 

traces for each prototype are not displayed, but users can visualize 

the traces by clicking on the cluster button at the front of each row 

(Figure 15(b) and (c)). 

With the attribute data for these process traces, we can perform 

statistical analysis to explore the underlying correlation between 

the trace attributes and trace cluster membership. The following are 

examples of the statistical findings, followed by feedback from 

domain experts: 

Observation #1: Attribute “Daytime Event” is statistically 

significant (p-value = 0.021, red square point in row “Daytime 

event” in Figure 15) for cluster 1. The regression coefficient of 

Daytime Event is 1.108 (Figure 13). This attribute is statistically 

significant because the proportion of data objects that have this 

feature (daytime = 1) in this cluster is 12/31 (68%), while the 

proportion of data objects that have this feature (daytime = 1) in the 

reference category (all other cluster) is 71/140 (51%). 

Observation #2: Attribute “Daytime Event” is statistically 

significant (p-value = 0.017, blue circle point in row “Daytime 

event” in Figure 15) for cluster 2. The regression coefficient of 

Daytime Event is −1.375 (Figure 13). This attribute is significantly 

significant because the proportion of data objects that have this 

feature (daytime = 1) in this cluster is 6/19 (31%), while the 

proportion of data objects that have this feature (daytime = 1) in the 

reference category (all other cluster) is 86/152 (57%).  

Medical expert feedback: For the care of injured patients, 

improved outcomes are associated with compliance with the 

Advanced Trauma Life Support model [19], represented here as the 

expert model. We find that one cluster (cluster 1) whose cluster 

prototype follows the model occurs more often during the day and 

another cluster (cluster 2) whose cluster prototype deviates from 

the model occurs more often at night. This association finding 

supports previous work showing decreased compliance with 

trauma protocols at night [20]. 

4.2.2.2 Domain Expert Feedback on VIT-PLA 

Design: 
To evaluate the quality of our design, we had two medical domain 

experts evaluate a prototype of VIT-PLA. Both positive and 

negative feedback was received. 

Both domain experts liked the visualization’s flexibility and 

interactivity. They found that its data clustering, activity filtering, 

symbol resizing, and recoloring functions were very useful. They 

Table 1 Process trace attributes 

Attribute List  Values 

Weekend Event  1 0  

Daytime Event  1 0  

ISS Score  <15 ≥15  

Activation 

Levela 

 Attending 

Stat 
Stat Transfer 

EDDISPGroupb  Non-

critical 

Admission 

Critical 

Admission 
Discharged 

a. Activation level = pre-hospital triage level 
b. EDDISPGroup = admission status of patients after ED care 

 

  
Figure 19. (a) Workflow model (drawn based on BPMN) given by domain expert describing the initial evaluation of trauma, (b) 

Simplified visualization of 171 traces using four cluster prototypes, (c) Alignment view of four cluster prototypes (d) p-value for 

binomial logistic regression coefficients  

 

(a)

(b) (c) (d)
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were also found that with the knowledge uncovered by the 

program’s statistical analysis was useful. One domain expert found 

it useful to switch between the aggregated data and the original 

traces, and also commented on the helpfulness of the cluster’s 

“average sequence”. 

Most negative comments focused on our approach for statistical 

analysis. One domain expert felt that data-driven clustering 

approach lacked consistency because its result varied when 

different clustering algorithms or similarity metrics were used. 

Also, the domain expert found that some small clusters did not have 

sufficient data to support the statistical hypothesis test correlating 

trace clusters and trace attributes. 

5. SUMMARY AND FUTURE WORK 
As process mining finds increased usage in many domains, visual 

analytic tools for process sequences are in high demand. We 

introduced VIT-PLA, a visual and interactive workflow data 

analysis tool that is able to visualize large process logs. With these 

visualizations and integrated statistical testing, VIT-PLA is able to 

obtain results not revealed by simple observation. 

The limitation of our current work is that we only implemented the 

hierarchical clustering approach with two process trace proximity 

metrics. In our future work, we will evaluate other clustering 

algorithms (e.g. KNN, feature-based k-means, HMM-based 

clustering). Also, the determination of cluster number, a typically 

non-trivial task, is still manual. In the future, we plan on building a 

function that suggests cluster number based on some cluster metric. 
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