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ABSTRACT
We present Creedo—a conceptual framework along with an
accompanying software implementation for empirically eval-
uating knowledge discovery systems. Creedo provides a lan-
guage for the creation of study designs that test how well
different test systems support real users to perform certain
data analysis tasks. These designs are scalable and repeat-
able, i.e., after their creation, a study can be carried out
any number of times and with an arbitrary high number of
participants without consuming valuable resources such as
the time of supervision personnel. Building on the concep-
tual framework, the accompanying web application, which
is freely available at Bitbucket, supports data mining re-
searchers in all central tasks for conducting a user study:
in embedding their ideas into an operational data analysis
environment, in assigning and monitoring tasks for study
participants, and in evaluating the results. The implemen-
tation as web application enables large scale and geograph-
ically distributed studies, in which, nevertheless, all study
participants essentially have an identical user-experience.

1. INTRODUCTION
In this paper we present Creedo—a software-supported

framework for conducting empirical user studies with the
purpose of evaluating scientific contributions in pattern dis-
covery [Hand, 2002] and related areas of knowledge discovery
from data. Although the user plays a central role already in
the earliest scientific definitions of the knowledge discovery
process [Fayyad et al., 1996], contributions to the field are
traditionally supported by formal or empirical evaluations
that replace the user by a set of abstract assumptions about
her—most often by the single simple assumption that users
like to see analysis results as fast as possible. Hence, the vast
majority of research articles focus on computation speed as
evaluation metric while the usefulness of the computation
output is a mere postulate.

There is, however, an increasing trend to investigate claims
that directly contain the data mining user as a prime sub-
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Figure 1: Reasons reported by ECMLPKDD au-
thors to not conduct a user study in cases where
such a study could have been beneficial (in percent
of respondents).

ject. Examples include the work of De Bie and Spyropoulou
[2013] which, beyond just asking “how one can formalize a
nugget of information”, also deals with the question of “how
one can formalize how interesting such a nugget of informa-
tion is to a particular user”, the work of Dzyuba et al. [2014]
that aims at enabling the use of pattern discovery algorithms
to non-expert users, as well as other, including our own, work
on the same subject [Xin et al., 2006, Boley et al., 2013]. It
is often hard to support direct claims about user satisfaction
solely based on a certain set of axioms about the user: there
might be no widely accepted set of such axioms relevant to
the specific claim, and, moreover, usually the very same as-
sumptions used to evaluate a contribution were also used to
develop it in the first place. Where such intrinsic evaluations
reach their limits, empirical studies that involve real users
could be a powerful alternative, because they constitute an
evaluation extrinsic from the simplifying development as-
sumptions. Nevertheless such studies are conducted only
rarely (see Ke et al. [2009], Shahaf and Guestrin [2010], Li
et al. [2012] for some notable exceptions).

One might argue that this reluctance to engage in user
studies is due to the fact that the vast majority of data
mining authors does not share the feeling that such studies
could be beneficial to support the value of their contribu-
tions. However, in a recently conducted online poll among
ECMLPKDD authors [Boley et al., 2015], 50% of 135 re-
spondents reported that they decided not to conduct a user
study within the last two years although their work could
have benefited from it1. Moreover, those respondents al-

1This result held almost uniformly across different sub-
fields: Machine Learning authors had only little less “yes”-
answers (49%) than the (non-disjoint) group of authors who
work in pattern mining and visual analytics (56%).
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most unanimously pointed to the high costs involved as at
least one of the reasons for their decision (see Fig. 1). In-
deed, even after the already challenging task of gathering a
group of relevant study participants, there are several high-
cost issues that remain to be addressed: The work has to
be embedded into an operational data analysis environment
that a) has a user interface that the participants can oper-
ate and that b) allows to perform all measurements neces-
sary for performance assessment. Then, the trials that form
the basis for performance measurements have to be carried
out, which includes splitting participants into several groups,
e.g., corresponding to test and control, assigning the right
participants to operate the right data analysis environment
under the right instructions, and, most importantly, record-
ing all variables relevant to the hypothesis that abound from
these trials. Finally, study hypotheses can refer to humans
not only in an acting capacity, i.e., as subject operating a
data analysis tool, but also in an evaluating capacity, i.e., as
providing certain quality assessments, e.g., whether patterns
are interestingness or useful within the context of a specific
task. Also these evaluations have to be carried out.

Presently, if a researcher wants to tackle all of these steps,
she finds herself only insufficiently supported by current soft-
ware tools. The accessibility aspect of embedding could be
reached by creating a plug-in for a general purpose data min-
ing suite like Rapid Miner [Mierswa, 2009] or WEKA [Hall
et al., 2009]. However, the resulting software system would
not be connected to a study infrastructure that can auto-
matically extract relevant measurements. Some aspects of
testing could be addressed by using a general purpose online
survey framework like Survey Monkey [sur] or KwikSurveys
[kwi]. However, these frameworks are oblivious to the se-
mantics of data analysis and would only allow performance
measurements based on indirect questionnaires rather than
directly tracking user actions. Ultimately, all current solu-
tions lack a conceptual framework for defining user studies
that tie together data analysis systems, analysis tasks, and
performance measurements.

To the best of our knowledge, such a framework is given for
the first time by Creedo. Creedo provides a language for the
specification of study designs that test how well certain data
analysis systems support real users to perform certain data
analysis tasks based on certain evaluation criteria. Studies
based on these designs can be repeated any number of times
as long as a suitable pool of study participants is available.
Corresponding to the goal of extrinsic evaluations, Creedo
studies can not only involve human test participants, but
also the evaluation critera can involve human evaluators. In
order to enable scalable studies, Creedo allows users to act in
the double role of participant and evaluator while providing
assignment schemes that allow to control potential biases
that could otherwise arise from such double roles. Building
on this conceptual framework, the Creedo web application
supports data mining researchers in performing embedding,
testing, and evaluation as defined above in a convenient and
integrated way. It provides simple reusable UI elements that
can easily be extended and can be combined to form inter-
active data analytics dashboards. Moreover, it allows to
rapidly design, deploy, and conduct Creedo studies involv-
ing those dashboards as test systems. The application auto-
matically performs all task assignments to participants and
evaluators, who can then carry out their tasks using any
standard web browser.

2. FRAMEWORK OUTLINE
Creedo allows to specify an interaction process during

which a group of users jointly provides evidence in favor
or against a test hypothesis. Particularly, the specific kind
of hypothesis we are interested in can be paraphrased as
follows:

“Users can solve a certain class of analysis tasks bet-
ter with a specific target system than with other con-
trol systems.”

(1)

In order to break down the rather complex interaction
process evolving around testing such a hypothesis, let us be-
gin by distinguishing between different roles in which users
are acting within this process and different time periods in
which certain actions are performed. Chronologically, the
hypothesis validation starts with the study design time
where the study designer translates the test hypothesis
into an executable study design. This is followed by the
study execution time where all the actual measurement
data is accumulated. This happens for once through study
participants who engage in trial sessions with data anal-
ysis systems, in which they produce some tangible output
that we refer to as session results. And this also happens
through evaluators who review those results and produce
evaluations of them. Finally, there is the study conclu-
sion time where the data is processed in order to provide
evidence in favor of or against the hypothesis to the study
designer. Note that it is a central feature of Creedo stud-
ies that users can act in more than one role within a given
study. In fact it can be very crucial for a study to be scalable
that all the participants also act as evaluators.

As we can see, the central element of a Creedo study is the
study design, which corresponds to a specific test hypothe-
sis. More specifically, it can be considered as an operational-
ization of the natural language version of the hypothesis.
That is, a study design gives a measurement procedure that
can be practically carried out in order to assess all quanti-
ties necessary to evaluate the hypothesis. Once created, a
study design can be used for an arbitrary number of actual
studies, each of which corresponds to a measurement accord-
ing to the design or, from an alternative point of view, to
the realization of a random variable defined by the design
(where the randomness would typically involve the selection
of users). Thus, by “repeating a study” we actually refer to
the process of running a new study with an identical study
design as used by a previous study but with a new set of
users. A typical motivation for this would be to increase the
level of confidence in a result.

A Creedo study design translates an hypothesis following
the blueprint given in (1) by specifying the following set of
components (see also Fig. 2):

1. a set of system specifications, corresponding to the
“target system” and the “control systems” referred to
in the hypothesis,

2. a set of task specifications that represent the “certain
class of analysis tasks”, what it means to “solve” them
as well as what are the basic qualities of task results,

3. an assignment logic that specifies how assignments are
issued in a study to its users in order to generate all
required measurements, and finally
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Figure 2: Outline of elements and process of a Creedo study.

4. system performance metrics that formally define the
meaning of “better” in terms of the basic result quali-
ties given by the task specifications.

While the conceptual framework of Creedo is more ab-
stract than its implementation in the Creedo web applica-
tion, some of the concrete options that are available for the
design components above are determined by the implemen-
tation. Hence, before we investigate the detailed composi-
tion of study designs (Sec. 4), we will first review the Creedo
web application (Sec. 3). After that, in order to illustrate
all previously introduced concepts, we will present a study
design that was developed to evaluate the FORSIED frame-
work (Sec. 5).

3. CREEDO WEB APPLICATION
The Creedo web application [cre] is a Java server appli-

cation that allows to define and execute study designs. It
can be installed to run on a central web server, from which
study participants and evaluators can receive their assign-
ments in the form of interactive web pages. These pages are
very light-weight. All actual computation is carried out on
the server and all content-relevant state like the input data
is also kept there. The motivation for this architecture is
two-fold: Firstly, it enables large scale and geographically
distributed studies, in which, nevertheless, all study partic-
ipants essentially have an identical user-experience: Every
computer with access to the server can potentially be used
as an input terminal, as long as all used computers have the
same input/output devices and their hardware is otherwise
sufficient to fluently display the pages in one of the stan-
dard web browsers. Secondly, all study-related definitions
and statistics are persistent in one centralized location from
which study execution can be controlled consistently.

The data analysis systems that are examined in a study

executed by the web application correspond to Creedo an-
alytics dashboards. These are a visual user front-end of an
interactive and iterative knowledge discovery process that
builds on our open-source Java library realKD [rea]. This
library is designed to allow easy and straightforward imple-
mentations of pattern discovery algorithms by providing a
wide range of pattern discovery primitives and an expressive
data model. Thus, extending realKD provides a convenient
way to embed a novel algorithmic idea into Creedo analytics
dashboards. The server side state of the dashboard is given
by a realKD data workspace, which contains all the data
artifacts available for analysis, and by the state of optional
UI components that can be added to a dashboard. These
components allow to perform certain data analysis activi-
ties like data inspection, data mining, and post-processing.
The state of all components can be accessed to define con-
crete study concepts (e.g., result definitions, performance
metrics).

The components that are implemented at the time of writ-
ing this paper support an interactive pattern discovery pro-
cess, in which the user can run mining algorithms, inspect
their results in the context of the given input data, poten-
tially choose some of the produced patterns in a result col-
lection, and then re-iterate. In the following we introduce
some of these components together with the part of their
state that is relevant to study definitions (see Fig. 3 for a
screenshot of an analytics dashboard containing all compo-
nents presented here).

For the inspection of data artifacts, the data view con-
tainer can aggregate a number of data view sub-components,
each of which is able to represent a different kind of data or
to provide an alternative view on the same data. These sub-
components currently include: A data table view for render-
ing tabular data composed of numeric, ordinal, and categor-
ical attributes, a point-cloud, which renders a 2-dimensional
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Figure 3: Creedo analytics dashboard with data view container (a), pattern mining launcher (b), and KD
result container (c).

embedding of the data, and a propositional logic view, which
renders a collection of propositional statements defined on
rows of a data table (as required by pattern discovery algo-
rithms that work on binary data).

The component that allows to perform the actual data
mining is referred to as the pattern mining launcher.
It enables the user to run pattern discovery algorithms on
all data-artifacts present in the system and to display their
results. The set of available algorithms can be chosen by
the system designer from all realKD mining algorithms. In
order to launch one of the algorithms, the user first has to
click on a mine button, then choose the specific algorithm
she wants to use, and finally select valid settings for all the
parameters of that algorithm (the last two steps are only
required when more then one algorithm is available and the
selected algorithm exposes user parameters, both of which
can be avoided by the system designer in order to provide
a non-expert user-experience). After the termination of the
algorithm, the component displays all patterns found in a
scrollable list below the mine button. This list is referred
to as the candidate area because patterns can be taken
over from here into the user’s result set should she consider
them suitable. For the purpose of defining study designs,
the accessible state of the pattern mining launcher includes,
in addition to the content of the candidate area, also the
algorithmic settings that have been used by the user to find
the patterns in it.

Finally, the knowledge discovery result container al-
lows users to incrementally assemble result sets for their data
analysis task. Results are received by means of drag-and-
drop from the candidate area of the pattern mining launcher.
They also can be deleted, re-arranged dynamically, e.g., in
order to express a (linear) result prioritization, and anno-
tated in order to express a result interpretation. The ac-

cessible state of this component is the ordered set of results
along with all annotations as well as the time and number
of mining rounds that have passed until each pattern was
found.

In summary, the components of analytics dashboards are
all designed towards simplicity and a strictly defined user-
purpose. This serves two goals: the resulting data analysis
systems are relatively accessible also to inexperienced users
and the components allow for an unambiguous interpreta-
tion of user interaction—both of which are useful properties
for test systems in user studies.

4. STUDY DESIGN COMPONENTS
After having an overview over the possible user-experiences

that can be provided by the Creedo web application, we are
now ready to turn to the more abstract aspects of study def-
initions. As discussed earlier, the central notion of Creedo’s
study domain language is the study design. In this section
we now present in more detail the individual components of
those designs: system and task specifications, performance
metrics, and assignment schemes.

4.1 System and Task Specifications
A system specification within a study design is a speci-

fication of how to construct an analysis system given certain
input parameters. When using the Creedo web application,
this means how to construct an analytics dashboard from
the components presented in Sec. 3. More generally, sys-
tem specifications have the role of determining all aspects of
the user-experience that are relevant to the study hypothe-
sis. Typically, this means that different specifications within
the same study design are identical except for a specific test
component, the effect of which is to be determined by an
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extrinsic evaluation. For example, the test system might
contain a specific data visualization (e.g., PCA-based point
cloud) whereas the control system does not, or the test sys-
tem replaces specific algorithm parameters (e.g., support/lift
in association mining) by an automatic choice whereas the
control system exposes those parameters to the user.

The input parameters of the system specifications are then
used during study execution to inject task specific content
provided by the task specifications into the analysis systems.
In the Creedo web application, the current default imple-
mentation of a system specification accepts a collection of
data loaders that determine the data artifacts available
in the dashboard and a collection of component builders
that shape its visual appearance.

While system specifications define tools, task specifica-
tions describe the purpose and evaluation context, in which
these tools are supposed to be used within a study. Looking
back to our hypothesis blueprint (1), we are interested in
assessing how well human users can solve specific tasks with
certain analysis systems. That is, we are interested in how
well humans can operate a software-tool with the purpose
of producing results (a solution) for some task.

Naturally, this purpose has to be communicated to the
user in a human-interpretable form. At the same time,
the data analysis system expects a machine-readable input.
Then, the evaluation of the hypothesis requires actual so-
lution entities, for which certain qualities can be assessed.
Hence, the state of the tool, in which the participant consid-
ers the task as solved, has to be interpreted as one or more
of these result entities. Finally, also the human evaluators, if
they are involved, need to have an understanding of the task
in order to carry out their evaluations. Thus, another set
of human-understandable instructions, yet from a different
perspective, is required in studies which involve evaluators.
In summary, task specifications in Creedo essentially have
to be able to translate an abstract concept of a task between
several ontological realms and between several perspectives.
For the Creedo web application they consist of

1. human-understandable instructions, i.e., a sequence
of HTML-documents that may refer to embedded me-
dia files,

2. input values of parameters accepted by all of the sys-
tem specifications in the study design (e.g., the input
data for which the task has to be carried out and other
auxiliary input that is task specific),

3. a result definition, i.e., a rule that describes how
to extract result entities from a state of the dash-
board, in which the participant has declared that she is
done working (this also includes determining whether a
given state of the dashboard can be declared as “done”
in the first place), and

4. a set of evaluation schemes that are used by human
evaluators to evaluate task results.

At the moment, all evaluation schemes in Creedo are rating
schemes that consist of a name, a set of natural language
evaluation instructions, and a finite set V ⊆ Z referred to
as the scale of the rating scheme. For a result r, a single
evaluation according to such a rating scheme is then simply
the value v ∈ V that is assigned to r by one evaluator.

4.2 System Performance Metrics
Creedo formalizes the concept of one analysis system be-

ing “better” than another by comparing them through a
system performance metric. These metrics are supposed to
capture intuitive concepts like the “average quality of results
produced (with a specific system)” or “average time needed
by participants to produce a good result”. The formal defi-
nition of such metrics for systems can involve other metrics
defined on the different types of artifacts that are produced
during study execution. That is, system metrics can rely on
session metrics, session metrics on results metrics, and re-
sult metrics on evaluation metrics. On each of these levels,
Creedo allows the definition of metrics according to certain
production rules, but also provides a set of useful predefined
metrics. Before we introduce the general language for metric
definitions, let us consider some of the predefined metrics in
order to get a sense for their general flavor.

Let c be an evaluation scheme given in the task specifi-
cation of the study, and Ex denote the set of all c-ratings
that have been performed for a result x ∈ X. A basic re-
sult metric is then the average c-value defined by ĉ(x) =
avg{c(e) : e ∈ Ex}. A slightly more complex variant of this
metric abounds from applying a z-score transformation to
all rating values assigned to results by a specific evaluator.
This gives rise to the average evaluator-normalized c-
value defined by ĉ∗(x) = avge∈Ex

(c(e)−µu(e))/σu(e) where
u(e) denotes the evaluator that has provided evaluation e
and µu and σu denote the sample mean an standard devi-
ation of all c-ratings provided by a particular evaluator u.
This metric can be useful when the study designer suspects
that some evaluators might interpret the rating scale of c
differently than others. As an example for a full system per-
formance metric consider the average maximal f-value
that is defined for any result metric f : X → R by

a 7→ avg{max
x∈Xs

f(x) : s ∈ Sa, |Xs| > 0}

where Sa denotes the set of all sessions that have been per-
formed using system a, and Xs the set of all results that
have been produced in session s. Another example is the
median time until success that is again defined with re-
spect to some result metric f and a success threshold τ ∈ R
by

a 7→ med{min{t(x) : x ∈ Xs, ĉ(x) > τ} : s ∈ Sa, |Rs| > 0}
(2)

where t(x) denotes the total session time until the result x
was stored by the participant.

Creedo’s general language for metric definitions is
based on a set of elementary metrics (which can vary de-
pending on context and implementation) and a set of pro-
duction rules from which more advanced metrics can be de-
fined. Let us first review some elementary metrics, which
are defined in most contexts. For rating evaluations, elemen-
tary metrics contain:

• Value, i.e., the rating value chosen by the evaluator,

• EvaluationTime, i.e., the time taken by the evaluator
to choose value.

For results, some elementary metrics are:

• SessionTimeUntilStored, i.e., the total time since the
trial session started at the moment a result is added
to the result area.
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• RoundsUntilFound, i.e., how often the participant had
to start a mining algorithm until the result was shown
in the candidate area.

• TimeBetweenFoundAndStored, i.e., how long it took
the participant to find and store the result after it has
been produced by a mining algorithm.

The set of elementary session metrics includes:

• TotalSessionTime, i.e., the total time between the
moment the participant first sees the analysis system
until the system is closed,

• RoundsInSession, i.e., the total number of times the
participant has pressed the mine button within the
session,

• NumberOfResults, i.e., the number of results that have
been submitted by the participant at the end of the
session.

Now we can turn to the production rules for building
more complex X-metrics, where X can be one of the sets of
analysis systems, analysis sessions, results, or rating eval-
uations, i.e., X ∈ {A,S,R} ∪ {Ec : c ∈ C} (the rules
also involves X-constraints, which are boolean function
q : X → {true, false}):

• If f and g are X-metrics then x 7→ f(x) + g(x), x 7→
f(x) − g(x), x 7→ f(x)g(x), x 7→ f(x)/g(x), and x 7→
f(x)g(x) are also X-metrics.

• The trivial constraint x 7→ true is an X-constraint.

• If f is an X-metric then for all thresholds τ ∈ R the
functions x 7→ δ(f(x) > τ), x 7→ δ(f(x) = τ), and
x 7→ δ(f(x) < τ) are X-constraints where δ evaluates
to true if the condition given in brackets is true and
false otherwise.

• If q and r are X-constraints then x 7→ q(x)∧ r(x) and
x 7→ ¬q(x) are also X-constraints.

• If g is a Y -metric, q is a Y -constraint, and X ⊆ 2Y

then

x 7→ aggr{g(y) : y ∈ x, q(y)}

is an X-metric for all aggregation functions

aggr ∈ {max,min, avg,med,mode, count} .

Here, as a slight abuse of notation, we identify analysis sys-
tems with the set of analysis session that have been per-
formed with them, i.e., A ⊆ 2S , analysis sessions with the
set of their results, S ⊆ 2X , and result with the set of rating
evaluations that they have received X ⊆ 2E

c

for all rating
schemes c in the task specification.

4.3 Assignment Schemes
The system performance metrics of a study design define a

lot of measurements that can be taken based on the actions
of study users (participants and evaluators). What these
metrics do not determine is how an actual pool of study
users should be assigned to perform these actions. This is
the role of assignment schemes. In particular, they have
to solve the following problems:

• User workload has to be limited. Each user has a lim-
ited amount of time and attention. If the study is
demanding more of these resources than the user is
willing to provide, she will not respond, and the user
is essentially lost for the study.

• Biases have to be controlled. For instance, a partici-
pant working on the same task with two different sys-
tems, is likely to improve the second time indepen-
dently of the system due to an increased understanding
of the task itself. Another important source of biases
abounds if users act in the double role of participants
and evaluators: the study designer has to take into ac-
count how the knowledge that a participant gains when
working on a task will effect her judgment when she is
assigned to evaluate results of that task afterwards.

• Dependencies of assignments have be resolved. Triv-
ially, evaluation tasks can only be assigned when the
corresponding results have been produced in trials. On
top of that, if a uniform distribution of evaluations is
required for all results, then it makes sense to hold
back evaluation assignments even further until the to-
tal number of results is known.

In summary, assignment schemes shape the behavior of a
study at execution time by answering the following ques-
tions: Which participant is supposed to work with which
system on which task, which evaluator is supposed to evalu-
ate which result, and when, i.e., in what sequence, are these
actions to be performed?

Currently, two schemes are available: TwoPhaseAssign-

ment, which first issues all trial assignments to all partici-
pants and then, when those are all completed, issues all eval-
uation assignments, and CombinedAssignment, which gener-
ates a combined trial/evaluation assignment for users that
have both roles. Both schemes have the following parame-
ters in common:

• Number of trial assignments per participant.

• Constraints for valid trial assignments which can be a
subset from

– IdenticalSystems, i.e., all systems in all trial as-
signments for a given participant have to be iden-
tical,

– IdenticalTasks, i.e., all tasks in all trial assign-
ments for a given participant have to be identical,

– NoIdenticalTasks, i.e., in no two tasks assign-
ments of a given participant she is allowed to work
on the same task,

– NoIdenticalSystems, i.e., in no two tasks assign-
ments of a given participant she is allowed to work
with the same systems.

• Number of results per evaluator.

• Constraints for valid evaluation assignments which can
be a subset from

– NoEvaluationOfOwnResults, i.e., no result given
for evaluation has been produced by the evaluator
herself in one of her own trial assignments,

25



Figure 4: Association pattern stating that the joint
frequency of three attribute/value combinations is
“higher then expected”. Intuitively, this statement
is less interesting for someone who already knows
that “annual health spend” is correlated with “an-
nual income”. FORSIED aims to quantify this ef-
fect.

– NoEvaluationOfOwnTasks, i.e., no result given for
evaluation is of the same task as a task that the
evaluator worked on herself,

– ResultsStratifiedBySystems. i.e., the results
within an evaluation assignment have to come
from all different systems at approximately equal
amounts.

Both schemes assure that all system/task combinations will
receive an approximately equal number of sessions and all
results will receive an approximately equal number of eval-
uations.

5. USE CASE: EVALUATING FORSIED
In order to illustrate the various concepts of the Creedo

framework that were introduced in the previous sections, we
now turn to an exemplary case study. Namely, we present
the design of a study that we conducted to evaluate the
framework for“Formalizing Subjective Interestingness in Ex-
ploratory Data Mining” (FORSIED) [De Bie, 2013, De Bie
and Spyropoulou, 2013]—a recently proposed pattern min-
ing technique with a particularly user-centric approach. Note
that a detailed discussion of this study and its results is out
of scope of this paper, and will be published separately. Here
we focus on the mapping of a real study hypothesis with
theory-specific requirements to Creedo components.

5.1 Background and Hypothesis
FORSIED aims to quantify the interestingness of a pat-

tern for a particular user depending on the prior knowledge
that this user already has about the dataset, in which the
pattern was found. Prior knowledge can come, e.g., in the
form of certain summary statistics of the data, like row and
column averages, or by other patterns that have been previ-
ously discovered. Importantly, FORSIED is an attempt to
capture a universal notion of interestingness that in an ideal
implementation (where all prior knowledge of a user can
be assessed) coincides with the intuitive natural-language
notion of interestingness. In order to make this very gen-
eral concept more tangible, we focus here on an embod-
iment where we use a FORSIED-based pattern ranker as
post-processing step in a round-based discovery of associa-
tion patterns (see Webb [2010] and Fig. 4). This process
works as follows: every round starts with the production of
a random set of association patterns that, subsequently, is

ordered by a ranker, before it is presented to the user. Then
the user can pick from that ordered list patterns according
to her interest and start over into the next round until she
is done.

The FORSIED-based ranker, in particular, orders pat-
terns according to their subjective interestingness consid-
ering as prior knowledge all the patterns that have already
been discovered and stored by the user in previous rounds
as well as the univariate distributions of all data attributes.
Based on the design claim of FORSIED, in every round, the
FORSIED-based ranker should point the user directly to
those new patterns that are still interesting to her, and con-
sequently allow her to save time and attention while brows-
ing the result set compared to when a traditional static mea-
sure is used for ranking. The longer the discovery process
proceeds the more this advantage should be emphasized.
This gives rise to the following hypothesis:

“A FORSIED-based association discovery process al-
lows users to discover a set of interesting patterns
from a dataset faster than a conventional association
discovery process (based on a static interestingness
measure that is oblivious to prior and gained knowl-
edge).”

Translating this hypothesis into a useful operational study
design implies defining a sufficiently robust objective mea-
surement about subjective interestingness. In the next sec-
tion, we will see how this apparent conundrum can be at-
tacked by using Creedo components in order to control the
knowledge of participants and evaluators throughout study
execution.

5.2 Design Requirements
In addition to developing an executable study design that

captures as precisely as possible our hypothesis, we also aim
for a design that meets the following general requirements:

• It should evaluate the claim about “user interesting-
ness” extrinsically, i.e., this notion should not just be
captured by simplifying formal assumptions. In par-
ticular, this means that we want to employ human
evaluators for assessing whether a result is interesting
or not, instead of relying, e.g., on the intra-theoretic
assumption that FORSIED’s formalization of interest-
ingness does indeed correspond to the intuitive notion
thereof.

• Moreover, the design should be robust, i.e., the study
result should be affected as little as possible by the
potentially outlying behavior of individual participants
or evaluators. This means that we want to average over
different trials and result evaluations.

• Finally, we aim for a design that leads to scalable stud-
ies, i.e., the amount of time and attention required by
the study owner should not depend on the number of
participants. This means that we want to assign to
users the double role of trial participant and result
evaluator.

These three requirements have two practical implications
for our study design. First, since we want to be able to
meaningfully average over results, it must be possible for all
task results to evaluate them on an identical scale. That
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System τ = 1 τ = 2 τ = 3

atest 563.63 563.63 505.5
acontrol 694.25 803.96 inf

Table 1: Median time in seconds until success cor-
responding to the two systems and different success
thresholds.

is, interestingness of a result should mean the same for all
participants and evaluators. Thus, our task definitions (in
particular instructions and dataset) have to control the prior
knowledge among all users, because, as per our hypothesis,
prior knowledge is what determines interestingness. Since
we also want to put users into the double role of participants
and evaluators, this creates the further difficulty that when
a user is asked to evaluate a result, she must have the same
prior knowledge at that moment as the participant when
she created the result. Hence, we have to define two task
variants such that performing one task as a participant does
not change the prior knowledge for the other variant (and
hence still allows an unbiased evaluation of it).

5.3 Study Design
The system variants for the study design are already

more or less defined by the considerations in Section 5.1.
In particular we have atest corresponding to an analytics
dashboard equipped with the FORSIED-based ranker and
acontrol corresponding to one with a conventional ranker based
on the lift measure. As actual association discovery algo-
rithm we fix a controlled pattern sampling algorithm [Bo-
ley et al., 2012] where all parameters (such as number of
patterns per round, pattern pruning strategy) are fixed to
feasible values. This makes the study design accessible also
for participants that are not pattern discovery experts.

As stated above, we need two task variants in order to
meet our requirements. In order to control the prior knowl-
edge, the input datasets consist of randomly generated
population data of two fictitious lands called“Lakeland” and
“The Plain”. Each dataset contains 1000 rows, each of which
corresponding to a fictitious inhabitant that is sampled ac-
cording to a joint probability distribution of the following
variables:

• Race ∈ {Griffin, Diricawl, Werewolf},

• Region ∈ {east, west, north, east} (of residency),

• Income ∈ {0, 1, 2, . . . , 1000} (in gold coins),

• Health spending ∈ [0, 1] (as fraction of annual in-
come), and

• Happiness ∈ {happy, unhappy}.

The probability distributions for each of the two lands have
different multi-variate dependencies and model parameters
in order to “inject” certain patterns into the datasets such
as, e.g., P [Race = Diricawl,Region = north] being much
larger than the product P [Race = Diricawl]P [Region =
north]. In addition to the input dataset the input values
also contain the univariate statistics of all attributes for the
FORSIED-based ranker. Corresponding to the two input
data generators, the two variants of task instructions are:

“You see a sample of the population of (Lake-
land/The Plain). Get familiar with the sum-
mary statistics of each attribute by [...]. Then
click the mine button in order to find patterns
in the population. You can save patterns you
consider interesting by [...] and delete patterns
by [...]. Repeat these steps to refine your pattern
collection until you think you have discovered the
most interesting collection consisting of exactly 3
patterns.”

The result definition is then the collection of patterns
present at the result container of the analytics dashboard
considered as a single result set (and a result can only be
submitted if there are exactly three patterns in this area).
This corresponds to our hypothesis, in which we conjecture
that the FORSIED-based system should have an advantage
when considering the time it takes to construct a whole set of
result patterns. In contrast, since the FORSIED-based sys-
tem and the conventional system behave essentially identical
before the first pattern is stored, we would not expect to see
a substantial advantage on the single pattern level. Finally,
this also has to be reflected in the evaluation scheme used
for result evaluation. Here, we use a single elementary rating
metric called “joint interestingness” with the instructions:

“How interesting is this set of patterns as a whole
(taking into account the elementary statistics of
the data attributes)?”

and scale {0 (not), 1 (almost not), 2 (a little), 3 (somewhat),
4 (very)}.

Corresponding to our initial considerations, we choose
TwoPhaseAssignment as assignment scheme with the pa-
rameter values of 1 for the number of trial assignments per
participant, 3 for number of results per evaluator, and No-

EvaluationOfOwnTask as constraint for the evaluation as-
signments. Using the constraint assures that evaluators will
see results only from the task variant they did not work on
themselves. Thus, as required, they will have the same prior
knowledge when evaluating the task as the participant had
when producing it.

As system performance metrics we can then define the
median time until success (see Eq. (2)) for different thresh-
olds, e.g., τ ∈ {1, 2, 3} corresponding to different require-
ments to the average ranking of a result to be considered a
success. As a relatively strict criterion, we can then say that
our hypothesis is supported by a study, if for all τ ∈ {1, 2, 3},
we have fτ (atest) < fτ (acontrol) where fτ denotes the system
performance metric with respect to τ .

5.4 Results and Experiences
The authors conducted a study based on the above de-

sign with 16 participants/evaluators who followed an open
invitation among our department members and master stu-
dents. While this population was recruited from a friendly
environment, note that based on the study setup, there was
no reliable way for participants to tell with what system
variant they were working or what system was used to pro-
duce the result they were evaluating. Table 1 contains the
aggregated results of this study for the different strictness
levels of the system performance metric. As we can see, it
was indeed the case that for all three levels the median time
until success was smaller for the test system than for the
target system.
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Using the Creedo web application, the whole study pro-
cess could be administrated conveniently from one location,
while participants and evaluators where able to fulfill their
assignments from wherever they wanted within a previously
fixed six day period (the first half of which was reserved
for trial participation, the second half for result evaluation).
Moreover, the study design is readily available for re-use
with a different population of users—either unmodified in
order to increase the confidence in our initial result or in
a modified form in order to address specific doubts or to
investigate refined follow-up questions.

6. SUMMARY AND OUTLOOK
As we have seen, Creedo can support researchers in defin-

ing and conducting repeatable studies with real users in or-
der to extrinsically evaluate novel contributions in data min-
ing. The focus of this support is at the moment on the easy
definition of analysis systems, tasks, measurements, and as-
signment logic in order to control biases and to reduce the
cost of the actual study organization and performance mea-
surement. In particular, Creedo allows to employ partici-
pants also in the role of result evaluators in order to provide
scalable study designs.

The most important limitations of Creedo’s current state
are perhaps as follows. While a relatively rich set of per-
formance metrics can be expressed in the system, Creedo
currently does not provide any support for the statistical
interpretation of those metrics. That is, in case the study
authors do know that their participants are a representative
subset of a certain target demographic, there is no support
for testing whether metric measurements are significant for
that demographic. Moreover, reflecting current restrictions
of the realKD library, the data sources that can be injected
into analytics dashboards of the web application are limited
to rather small-scale tabular data. Finally, the available vi-
sual mining components are somewhat specific to pattern
discovery. However, as our survey among ECMLPKDD au-
thors revealed, there appears to be a high demand for user
studies also in other subfields of data mining, especially of
course in visual analytics. Hence, extending the components
available towards these areas is another major direction of
growth.

Among the many directions for potential improvement,
the authors believe that the extension of Creedo and its
implementation should be mainly driven by the require-
ments emerging from actual practical attempts of extrin-
sically evaluating novel data mining techniques. If there is
a developing culture in data mining research of performing
studies with real users, then the community as a whole will
understand better than today, what are central requirements
for supporting this task. The organization of the Creedo web
application as an open source project is a suitable basis for
an organic growth that follows such a development. The
authors are excited to engage in collaborations with other
data mining research groups to jointly gain more experience
in performing user studies and foster their growth.
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