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ABSTRACT

Cluster analysis is widely used for explorative data analysis, how-
ever, it is not trivial to select the right method and optimal param-
eters. Moreover, not all clustering methods can work with raw or
dirty data. In this paper, we introduce an interactive data explo-
ration tool, VINeM, which combines interactive mining with un-
supervised tools by exploiting an intuitive neighborhood-based vi-
sualization technique. Local neighborhood based visualization is
useful not only for analyzing multiple (dis-)similarity measures but
also for effectively discarding noise. VINeM works well with high
dimensional data and can be used to find subspace clusters.
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1. INTRODUCTION

Explorative data analysis is an important tool that is used in both
academic and industrial research areas. In recent years computa-
tional discoveries have become more affordable than the actual ex-
periments, thanks to Moore’s law. Therefore, researchers try to
infer as much as they can from a limited set of data and refer to
experiments only for conclusive results [14].

In most data exploration scenarios, little is known about the data,
which means that the data is not annotated, and hence, not a good
fit for supervised learning tasks, e.g. classification. Unsupervised
methods are more suitable for data exploration tasks since they can
work with limited initial knowledge about the data.

Unsupervised methods have their own challenges, foremost of
which is the selection of the method that best fits the data at hand.
This is not easy considering the thousands of available clustering
methods in the literature [17]. Moreover, the selection of the algo-
rithm is the first step of the process. Finding its optimal parameters
is the next challenge which requires an understanding of the data.

To get a grasp of the data, one can rely on the most general and
the least complicated techniques, such as descriptive statistics or
visualizations. Descriptive statistics depend heavily on assump-
tions about the data. Not only determining them is not easy, but
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also, statistics can be misleading if those assumptions do not hold.
Data visualization techniques, however, are easy to use by non-
expert users and provide significant information. Therefore, data
visualisation has always been an attractive research area [19]. Fur-
thermore, using suitable visualizations, the user can be involved
in the critical steps to improve the discovery process [11, 7]. On
the other hand, existing tools either (1) are not capable of visualiz-
ing different views on the data [26], (2) do not integrate interactive
and unsupervised mining methods [13, 23, 8], (3) are not aware of
clusters that exist in subsets of the dimensions [27], (4) or are not
designed to find the clusters [29].

Data from observations are rarely usable as they are. Before
starting the actual analysis, analysts should deal with additional
data cleaning steps, such as removing noise and dealing with miss-
ing values. Methods that are robust enough to cope with dirty or
unstructured data can significantly shorten this tedious process.

In this paper, we introduce an interactive high-dimensional data
analysis tool that can visualise different views on the data in a uni-
fying framework while seamlessly integrates unsupervised and in-
teractive mining tasks. In summary, the contributions of this paper
are as follows:

e Neighborhood-based unifying data visualization,
e Micro cluster-based relevant dimension detection,

e GUI application that combines interactive data exploration
with automated tools,

e Use case scenarios for various data exploration tasks.

In Section 2, we discuss the properties of high-dimensional data
space in terms of clustering. Then, we introduce a neighborhood-
based data representation that can cope with high-dimensional and
noisy data while being easily visualizable (Section 3). In Section 4,
we present our software tool that exploits this representation to
make the data more available to the user, both for understanding
and for wrangling. We explore two use-case scenarios in Section 5
and conclude in Section 6.

2. CLUSTERING HIGH DIMENSIONAL DATA

As a result of the advances in the data gathering and data storing
technologies, we can associate many attributes with a single data
object. Although more data may provide us with new insights, it
may also hinder the discovery process by cluttering the interesting
relations with redundant information. Furthermore, since the data
objects become more and more alike with an increasing number
of dimensions [6], the traditional definition of similarity becomes
meaningless in high-dimensional data, and hence, clustering meth-
ods that depend on the similarity between objects fail to cope with
high-dimensional data.



On the other hand, similarities of the objects according to a sub-
set of attributes can still be meaningful. For example, if a group
of people have similar values for a specific bio-marker and they
show a tendency for drug abuse, then other attributes such as the
eye color, weight or sex are probably irrelevant. Therefore, mean-
ingful knowledge in high-dimensional data is often extracted as a
tuple of similar objects and the attributes in which they are similar.
Such information is called a subspace cluster.

Formally, a data object o is defined as a vector over a set of at-
tributes 7. A dataset 2.4 is a collection of data objects. A cluster
is a set of objects C C Z%. A subspace cluster is defined as a tuple
of an object set and an attribute set, SC = (C,A) where A C 7.

High dimensionality poses a problem during the visualization as
well. Feature selection techniques, such as PCA [24] and MDS [10],
are used in the literature to represent data in a lower dimensional
space. However, feature selection is done on the whole dataset
and can therefore easily miss the subspace clusters [23]. Reduc-
ing the dimensions while keeping the cluster structures is also pro-
posed [25, 30, 21], but requires a computationally expensive pre-
processing which also depends on the assumptions on the data.
Therefore, they are not suitable for interactive data exploration set-
tings.

Scatter plot matrices show a 2D matrix of scatter plots for each
pair of dimensions. Although they are useful to get a grasp of the
relatively lower dimensional data, it gets harder to interpret them
for the high-dimensional data because the number of charts is a
combinatorial function of the number of dimensions. Parallel coor-
dinates represents the relations of objects in different projections.
They provide an interactive exploration environment but they can-
not be used for non-univariate projections, i.e., they can represent
only 1D projections [16].

3. NEIGHBORHOOD DATABASE
3.1 Object Neighborhoods

“Tell me who your friends are, and I will tell you who you are.”
The core concept of this famous phrase is successfully applied to
many cases of data analysis. Neighborhoods, i.e. friends, of data
objects provide robust assessment of the similarity. They can even
be more accurate than the actual features in some cases [18]. Neigh-
borhoods are a good estimator for determining class labels [12], or
whether an object is an outlier [9]. As they are good at preserving
the local relations, they are used to overcome the problems of high
dimensionality [3].

DEFINITION 1  (NEIGHBORHOOD). Neighborhood of an ob-
ject o, denoted by N(0), is a set of objects that are similar to o.

DEFINITION 2 (6-NEIGHBORHOOD). The radius-based neigh-
borhood, €-Neighborhood, of an object o is defined as the set of all
objects that are more similar to o than a certain scalar value. For-
mally, let & : 99> — R, be a dissimilarity measure, € € Ry and
o,pE€ DA,

e-N(o) = {p|8(0,p) < €}

DEFINITION 3 (k-NEAREST NEIGHBORHOOD). Let NNy (o)
represent the k'™ closest object to o, the k-nearest neighborhood of
0 is:

k-NN(0) = {p|5(0,p) < (0,NN(0))}

Since the k-nearest neighborhood uses a relative similarity thresh-
old, it is more robust for assessing the similarities in heterogeneous
data than e-neighborhood. Note that we use the concept of generic
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Figure 1: Case of separable clusters

Figure 2: Case of non-separable clusters

neighborhood (Definition 1) if the type of the neighborhood is ir-
relevant.

DEFINITION 4 (NEIGHBORHOOD DATABASE). The Neighbor-
hood Database (N D) is the collection of neighborhoods of all ob-
Jjects. Figure 3b shows the neighborhood database of the dataset in
Figure 3a.

Since a cluster is defined as a group of similar data objects, there
is a clear connection between the cluster structures in the data and
the neighborhoods. Figure 1 shows two clusters that are clearly
separated, i.e., each object in a cluster is more similar to objects
in the same cluster than to objects in the other clusters. For each
object o € C;, its k-nearest neighborhood with k equal to the size
of its cluster, |C;|-NN(0), is equal to the cluster itself. Formally, if
cluster C; is clearly separated, then |C;|-NN(o) = C;,Vo € C;. If the
clusters are not separated, e.g., as shown in Figure 2, the most of
the objects in C; still include the whole cluster, provided that the
neighborhoods are large enough.

Neighborhoods of the objects that are in the same cluster are ei-
ther the same or share a large set of objects. Therefore, we can find
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02 5 6 3-NN(0) | {02,03,05}
3-NN(03) | {02,03,05}
o3 | 7 6 3-NN(04) | {01,04,06}
o4 | 3000 | 4000 )94,
e [3N(s) [ {o.05.05)
06 | 5000 | 4200 3-NN(0s) | {01,04,06}
(b) Neighborhood database
(a) Data

Figure 3: An example dataset and its neighborhood database
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Figure 4: Neighborhood matrices of the example dataset

the cluster structures by finding the repetitive patterns in the neigh-
borhoods [2, 3]. Although the repetitive patterns can be detected
by unsupervised tools, selecting the correct parameters may not be
trivial. On the other hand, through proper representation, a hu-
man can spot repetitive patterns even in noisy settings and provide
the intuition that would substantially improve the accuracy and the
speed.

3.2 Representation

DEFINITION 5 (NEIGHBORHOOD MATRIX). A neighborhood
matrix is a binary adjacency matrix where columns and rows re-
spectively represent objects and their neighborhoods. If the object
in column j is in the neighborhood of object i, then the correspond-
ing cell at i row and j™ column is 1, and 0 otherwise.

Figure 3a shows a small data set of 6 data objects with 2 at-
tributes. We can identify two cluster structures: {07,04,0¢} and
{07,03,05}. Figure 4a shows the neighborhood matrix for the 3
nearest neighborhoods of the dataset. While the repetitive neigh-
borhoods are present, it is hard to see and mine. On the other hand,
by using the order in the data, we can create a better representa-
tion that is easier to interpret and compute. For example, Figure 4c
shows the same neighborhoods, where objects and neighborhoods
are ordered according to Aj.

The neighborhood representation is compatible with the pixel-
based visualization [19]. A neighborhood matrix can be repre-
sented graphically as an n X n square, where a pixel is white if the
value of the corresponding cell is 1 and black otherwise. Figures 4b
and 4d are the pixel-based representation of the neighborhood ma-
trices in figures 4a and 4c, respectively. Cluster structures in the
data are stunningly visible in Figure 4d.

Advantages of this representation include: (1) The representa-
tion is intuitive. (2) Individual objects are visible, i.e., they can be
differentiated from their surroundings, regardless of the local den-
sity. (3) Since the repetitive structures stand out, cluster structures
are visible. (4) It allows interactive mining since the individual
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objects are visible. (5) The relations in the representation are ex-
plainable because the original attributes are not distorted, e.g., the
matrix is not translated as in PCA. (6) Creating the representation
is not computationally expensive compared to dimensionality re-
duction techniques [21]. (7) Compared to graph representation, it
provides a scalable and extendible solution, e.g., pixel sizes can be
determined by the screen and the data size.

3.3 Mining the Neighborhoods

The evaluation of clusters is an important aspect when finding
meaningful clusters. As we discussed in Section 3, objects in the
same cluster repetitively co-occur in the neighborhoods of other ob-
jects. In this regard, we use the support of a cluster as a measure of
repetitiveness of an object set in the neighborhood database. There-
fore, clusters can be detected by finding the object sets that have a
high support.

DEFINITION 6  (SUPPORT(0)). The support of an object set,
i.e. cluster, is the number of neighborhoods in which the objects
occur together. Formally,

o(C) =[{o[C S N(0),N(0) € N T}|

Support is a useful measure also for interactive mining. As shown
in Section 4, supports of an object set in different neighborhood
databases give an overview of the cluster formations. Moreover,
this relation between the clusters and the support in the neighbor-
hoods, can directly be mapped to frequent itemset mining [1], so
that the whole literature of frequent itemset mining methods be-
comes available for cluster analysis [3].

One clear advantage of using neighborhood databases is their
unifying representation. All of the .4 Zs, regardless of the un-
derlying (dis-)similarity measure, share the same properties, which
means less context switches and more clarity for the user. For ex-
ample, consider these measures: Euclidian distances on subsets of
attributes, cosine similarity on all numeric attributes, a measure for
the boolean attributes, two different measures for the same categor-
ical attribute. .4 Ps for each of them can be mined with the same



set of tools because we are looking for the same kind of informa-
tion: the objects that frequently co-occur in the neighborhoods.

As we discuss in Section 2, for high-dimensional data, local sim-
ilarities are more meaningful than similarities in the whole data
space. Therefore, bottom-up search is a widely used strategy to
find subspace clusterings [22, 20]. In this regard, we propose to
start the interactive analysis with the neighborhoods in 1 dimen-
sional projections and find the object sets that repetitively co-occur
in the neighborhoods in different projections.

Our tool, cf. Section 4, includes two methods for unsupervised
mining of neighborhood databases, both of which satisfy the time
constraints of an interactive setting. Sampling Miner mines the
dataset for a subset of all the frequently co-occurring object sets.
It is based on a Monte Carlo process, and as such, it mines a pre-
determined number of maximally large object sets that has more
support than a certain threshold. These object sets are counterparts
of maximal frequent itemsets [5]. Although it is not guaranteed to
be complete, it produces satisfactory results [3]. Fast Miner ex-
ploits the orders in an attribute to find the complete cluster struc-
ture [2]. It starts by mining the individual .4#"Zs for a complete
set of 1 dimensional clusters. Then, each cluster is refined fur-
ther by checking whether any of its subsets are clusters in other
dimensions. Fast Miner can only be used to mine neighborhoods
of univariate measures.

Typically, subspace clusters overlap with each other both object-
wise and attribute-wise. For example, a set of objects can form
a cluster in dimensions 1 and 2 while another, but not necessar-
ily disjoint, set of objects can form a cluster in dimensions 2 and
3. Therefore, the relation between the attributes should be inves-
tigated by assessing localities instead of the whole domain. We
propose to use micro clusters to find the similarities between at-
tributes. These kind of micro clusters are used to detect cluster
structures [4, 15]. We mine a sample of micro clusters of size 5 in
each attribute. The number of micro clusters shared by a pair of
attributes becomes their similarity score. If a set of attributes are
similar to each other, it can be worthwhile to investigate the neigh-
borhoods of the combination of these dimensions. Even though
the complete cluster structures are not visible in projections, micro
clusters can effectively catch and aggregate local similarities, as we
will show in Section 5.2.

Although sorted and non-sorted neighborhoods essentially con-
tain the same information; in a visual setting, it is often easier to
work with sorted neighborhoods. Unfortunately, sorted neighbor-
hoods are possible only for univariate (1 dimensional) projections.
For the interactive setting in VINeM, we approach the problem by
partially sorting the .42 by focusing on a subset of the objects.
The partial sorting is done by selecting an object as a reference and
sorting the remaining objects and neighborhoods according to their
similarities to the reference object. As we show in Section 5.2,
partial sorting provides enough visual information for the identifi-
cation of cluster structures.

Even if there are no cluster structures in the data, there is a mini-
mum amount of repetition in the neighborhoods. In the case of uni-
formly distributed data, each individual object appears in exactly k
neighborhoods, while the consecutive object sets of size 5 appear

in exactly % neighborhoods. Neighborhoods for a uniform dataset
are shown in Figure 5. This observation is used as a key indicator
to discard the projections that do not have cluster structures.

Outliers and noise objects exist in relatively sparse areas and do
not occur frequently in neighborhoods of objects [28]. Therefore,
noise can be easily identified in the neighborhood database as the
objects with low support.
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Figure 5: Neighborhoods of uniform data

If a set of objects form cluster structures in multiple attributes,
then their values are similar to each other in these attributes. There-
fore, we can use the dispersion of an object set in an attribute as an
heuristic for cluster formation. Standard deviation and median ab-
solute deviation (MAD) are widely used measures for dispersion.
According to our observation, MAD gives more accurate results
than the standard deviation.

4. VISUALIZATION

In this section we introduce VINeM, a data exploration tool that
exploits the neighborhood database representation. An important
design goal of VINeM is to provide a user-friendly interface that
allows a user to easily blend unsupervised tools with instant deci-
sions. Therefore, all of the features are designed for human inter-
action while they can be manipulated by the unsupervised tools.

VINeM is implemented in Java using Swing as GUI toolkit. It is
accessible along with a detailed user manual on the supplementary
website !

4.1 Neighborhood

The main interaction area of VINeM is the neighborhood panel
where the neighborhood matrix is shown, cf. Figure 6. As dis-
cussed in Section 3.2, columns represent the objects and rows rep-
resent the neighborhoods.

Currently, two kinds of neighborhoods are supported: €-neigh-
borhood and k-nearest neighborhood. The KNN representation is
the default because of its robustness. VINeM starts by showing the
kNN neighborhood databases for each of the individual attributes.
Initially, the matrix and the objects are sorted according to the
shown attribute. The order of the objects can be observed in the
selection list where the ids, or the names, of the objects are shown,

cf. o in Figure 7.
The matrix representation can be manipulated using the follow-

ing means:

Dissimilarity measures for the projections. In the initial setting,
there is one neighborhood matrix per attribute, each of which rep-
resents the neighborhoods according to Euclidian distances per di-
mension. Which .42 to show can be selected by using dropdown,

cf. @ in Figure 7.

Object and neighborhood order. The order of the objects is not
necessarily dependent on the dissimilarity measure. For example,
it is possible to sort the neighborhoods in attribute 1 according to
attribute 2. On the other hand, the order and the measure are syn-
chronized by default for convenience. The dimension that is used

"http://adrem.uantwerpen.be/vinem
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Figure 6: Neighborhood matrix

to order the objects can be selected using a slider, cf. in Fig-
ure 7. If the synchronization is enabled, this will also change the
dissimilarity measure.

The type of the neighborhood assessment, € vs. kNN. The param-
eter for neighborhood size (k) can be set for kNN, while the parame-
ter for neighborhood radius (€) is required for the £-Neighborhood.
For convenience, possible radius sizes are pre-computed per simi-
larity measure and user selects among them. The type of the neigh-
borhood and its parameters can be selected on the control panel, cf.

e in Figure 7.

4.2 Interactivity

Interactivity of VINeM starts with parameter selection. The in-
terface and the representation are updated instantly after each pa-
rameter change, allowing the user to experiment with parameters
on a responsive interface.

The selection of objects is the first step of the interactive analysis.
There are two intuitive ways to select objects: (1) Dragging the left
mouse button on the neighborhood matrix highlights the columns

in green and selects the corresponding objects, cf. e in Figure 6.
(2) Selecting objects from the selection list combo box by using
standard list selection techniques, cf. in Figure 7. The main
selection method is dragging on the matrix, the list selection is for
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fine tuning. There are three modes for the selection on matrix, cf.

e in Figure 7. In “Select” mode, only the objects under the mouse
are selected. The “And” mode selects the objects if they are already
selected while the “Or” mode adds the new selection to the already
selected objects.

A separate frame, cf. Figure 8, shows the information about the
selected objects, such as the size of the selection, their support and
dispersion in other .4 s. This information is used to determine
the next .47 to investigate. Selection of the objects is an essential
part of the data analysis in VINeM. During the analysis, the selec-
tion is iteratively refined by removing the objects that do not belong
to the cluster in the additional attributes, which results in a selec-
tion of similar objects according to some attributes, i.e., a subspace
cluster.

Selected objects can be identified as a cluster by clicking the

button “Cluster Selected”, cf. e in Figure 7. The clusters that are
identified either by the user or by an unsupervised tool are shown
in the cluster list window, cf. Figure 9. Any of the identified clus-
ters can be visualised on the neighborhood matrix along with the
selected objects, so that the selection can be compared with the
known clusters. Clusters are highlighted in red on the neighbor-

hood matrix, cf. a and e in Figure 6. Clusters can be manipu-
lated by adding or removing objects. If a substantial refinement is
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required, they can always be converted into selections. Any subset
of clusters can be saved to a file for further study.
A set of objects can be filtered out, i.e. removed, from the view to

focus on the objects under consideration, cf. in Figure 7. Note
that filtering removes the objects and their neighborhoods just from
the view, i.e., the neighborhoods are not re-computed. Therefore, it
is fast and it does not change the data on the fly. Filtering comes in
handy while performing a cross measure analysis since it hides the
noise caused by the projection.

Neighborhood databases for new measures can be added by just
a few mouse clicks using the GUI. To add an .4 %, a similarity
measure is selected along with the dimensions on which it will be

Selecteds stats

Size: 124
Dimension | Support | Standard Deviation | Med. Abs. Dev. s
3 132 5,327 31
4 0 49,07 35
5 0 47,358 37
1 0 59,439 70
Q 0 60,551 77
2 0 53.684 a7
a 0 109,661 176
5] 0 109.449 181
7 0 118.901 218

1, 668, 657, 747, 738, 740, 508, 509, 510, 511, 504, 505, 506, 507, 718, 5 =
00, 704, 501, 502, 503, 727] -

Figure 8: Basic information about the selection

15

Clusters info

Wisible | Cluster id | Size | #Dims | Dims | Objects
@ g 99 2 [400, 475, 482, 492, 484, 455, 4
Lj 9 106 2 [400, 475, 482, 492, 484, 455, 4
[] 11 102 2 [70,170, 168, 139, 156, 144, 18
2 97 3 39, 144, 183 189, 1
LJ 18 101 2 [170, 168, 139, 144, 63, 183, 3,
< J 3

| Add selecteds to cluster(s) | | Delete cluster(s) | | Select cluster(s) |

L Remove selecteds from cluster(s) J l Remove filtereds from cluster(s) J

|_J save size(s)[_] Save dimension{s)| Save cluster(s) to file

Figure 9: List of detected clusters

Related dims

| (0) Di... | (1) iv.. | (2) Diee. | (3) Dive. | (41 i, | (5) Div. | (6) i, | (7) D
176 196 199 25 a

| (8) D...

(0) Dim 0
(1) Dim 1
(2) Dim 2
(3) Dim 3
(4) Dim 4
(5) Dim 5
(8) Dim &
(7) Dim 7
(8) Dim &

3
a
a
1
2

Figure 10: Relevancy score of dimensions

applied, cf. e in Figure 7. After adding the new .42, it can be

viewed by selecting from the drop-down menu, cf. @ in Figure 7.

A Ps of non-univariate similarity measures can be partially sort-
ed. Right clicking on a column selects the corresponding object as
the reference and sorts the other objects according to their similar-
ities to this object, cf. Section 3.3.

4.3 Unsupervised Tools
VINeM is bundled with unsupervised tools to support the user

during the data analysis, cf. in Figure 7. They are seamlessly
integrated with the interactive tools where applicable.

Related dimension finder mines the .49 of each individual at-
tribute for micro clusters as explained in Section 3.3. Parameters
are updated with suggested values when the .42 is modified, cf.
Figure 11a. Relevancy scores between pairs of attributes, i.e. the
number of shared micro clusters, are shown as a table. A threshold-
ing slider is provided for visual assistance on detecting the highly
related dimensions, cf. Figure 10.

The two miners that are introduced in the Section 3.3, namely
Fast Miner and Sampling Miner, can be used for unsupervised min-
ing. While Fast Miner requires only one parameter which is the
minimum length of a cluster, cf. Figure 11b; Sampling Miner re-
quires two parameters: required minimum support of an object set
to be identified as a cluster and number of samples, cf. Figure 11c.
Both of the miners can be run either on the whole dataset or only on
the selected objects, so that the objects that are not under consider-
ation can be left out. The suggested values for the parameters are
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provided for a quick start. After the run, all of the found clusters
are added to the cluster list for further investigation.

Automated noise/outlier detection is also provided as a miner.
The objects that have a support less than the threshold are identified
as noise. The support of objects can be evaluated (1) in the selected
measure, (2) in each measure, or (3) in all measures, cf. Figure 11d.
Noise objects are added as a cluster. It is up to the user to filter them
out of the view.

S. APPLICATION

5.1 Finding clusters in subspaces

Figure 12 shows the steps of an interactive mining process. We
start by finding a neighborhood size that makes the clusters visible
in one of the .4 Zs. In this example, we can see the cluster struc-
tures in Dim(ension) 1 for a certain k value (Step 1). We identify a
one dimensional cluster by selecting its objects (Step 2). The next
step is to check other dimensions to find out whether any subsets
forms a cluster there. When we switch to the .42 of the Dim 2,
objects in the cluster are still marked with red (Step 3).

Since we are looking for subsets of our cluster, we remove the
remaining objects by filtering them out (Step 4). We decide that the
objects do not form cluster structures in Dims 2 and 3 because their
filtered .4 Is look like the 4% of a uniform distribution, which
is shown in Figure 5 (Steps 4 and 5). Note that, although there are
some repetitive neighborhoods in the filtered .42 of Dim 2, they
are too small to be identified as clusters. Filtered .4#"2 of Dim 4
looks interesting (Step 6), there is a large set of objects that co-
occur in neighborhoods. We select these objects and identify them
as a cluster in Dimensions 1 and 4.

5.2 Finding relevant dimensions
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Figure 13 shows the steps for an exploratory analysis on a 10 di-
mensional dataset. In this dataset, the clusters are not immediately
visible in individual dimension projections. Step 1 of the figure
shows 4 of the .4/ Zs. There are signs of structures in Dims 0
and 2, which can probably be enhanced by modifying the neigh-
borhoods size, while Dims 4 and 6 look like they lack any kind
of structure. It is possible that the whole cluster structures are not
visible in one dimensional projections. Running the related dimen-
sion finder gives us the scores for each pair of dimensions. Then,
we can interactively decide which of the dimensions are related to
each other by examining the high scores (Step 2). It looks like the
two sets of dimensions {0, 1, 2, 3} and {4, 5, 6, 7} share common
structures.

With a few clicks, we add a new dissimilarity measure that as-
sess the neighborhoods in the combination of dimensions 4, 5, 6,
and 7 (Step 3). Although it is almost impossible to spot the struc-
tures in the .4” 2 of the combined dimensions (Step 4), sorting the
neighborhoods according to a reference object, i.e. partial sorting
in Sec. 3.3, helps us to see the structure in the data (Step 5). The
blob on the top left of the sorted ./” 2 represents a large set of ob-
jects that co-occur in the neighborhoods. We select these objects
for further analysis (Step 6). Note that, since this sorting is accord-
ing to only one object, some objects that are not inside the cluster
can be in the blob by mistake, and they can be removed by using the
partial orderings of the objects in the blob. We investigate further
by sorting the ./ according to an object that is not in the cluster
candidate (Step 7), and now we can see some other structures in the
N 9. We identify the selection as a cluster (Step 8), and then we
continue our analysis with selecting a new cluster candidate. We
can still modify the neighborhood parameters to improve the view.
For example, cluster structures are more visible in Step 8 compared
to Step 7, because of using €-neighborhoods instead of kNN.



6.

CONCLUSION

While visualisation and interactiveness are very important for
exploratory data analysis, available tools fall short to satisfy all
of its challenges. In this paper we show that local neighborhoods
provide the means for both intuitive visualization and interactive
mining of subspace clusters. We introduce VINeM, a platform-
independent, visual and interactive data analysis tool that exploits
the intuitive neighborhood-based representation to seamlessly com-

bine a user friendly interactive interface with the unsupervised tools.

We introduce a micro cluster based tool to find relevant dimensions
and we provide example scenarios of exploratory data analysis to
show the usefulness of our application.
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Figure 12: Subspace cluster detection
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Figure 13: Finding relevant dimensions for cluster detection
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