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Why should we (DM/DB folks) care?!

2!

Structured Data!

Unstructured Data!
!

images,  videos,  text!
Automated processing: not yet solved!

!
Incorporate  xyzabc !

Reason 1: Most data is unstructured!
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Reason 2: S/ware companies use crowds at scale!

Often 10s+ of Millions of $ / yr. / company !
(on crowds + supervisors)!

Plenty of startups too!!

We undertook a survey of industry crowdsourcing users!

! !! ! !! ! !! ! !! ! !use crowds!!

Why should we (DM/DB folks) care?!



!
!

Crowdsourcing Marketplaces!

20+ marketplaces!
!

Big companies 
have internal ones!

Reason 3: Marketplaces are growing rapidly!

Size of these marketplaces have doubled in 2011 – 2013!

Why should we (DM/DB folks) care?!
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Reason 1: Most data is unstructured!

Reason 2: Software companies use crowds at scale!

Reason 3: Marketplaces are growing rapidly!

Why should we (DM/DB folks) care?!



What is Human-Powered Data Management?!

6!

Data Processing!
Algorithms!

Learning 
accuracies!

Data Processing 
Systems!

Machine Learning!

Interfaces!
Patterns! HCI!

Incentives! Economics!

where humans act as “data processors”!
e.g., compare, label, extract !



Efficient Data Processing Algorithms & Systems!
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Data Processing!
Algorithms!

Auxiliary Plugins: 
Quality, Pricing!

Data Processing 
Systems!

Filter [SIGMOD12, VLDB14] !Max [SIGMOD12] !
Clean [KDD12, TKDD13] !Categorize [VLDB11]!
Search [ICDE14] ! !Debugging [NIPS12]!

Deco [CIKM12,  VLDB12,  TR12,  SIGMOD Record 12]!
DataSift [HCOMP13, SIGMOD14]  HQuery [CIDR11]  !

Confidence [KDD13, TR14] !Eviction [TR12] !
Pricing [VLDB15] ! !Quality [HCOMP14]!

i.stanford.edu/~adityagp/scoop.html!



type of cable that connects to!

buildings in the vicinity of    xxx!
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Data Proc. Sys.: Crowd-Powered Search!
Can your search engine handle this?!

apartments in a good school district near 
Urbana, with a bus stop near by!



DataSift: Crowd-Powered Search!

!
•  Non-textual content:!
! !“cables that plug into <img>”!
! !“funny pictures of cats with hats with captions”!

!
•  Time-consuming: 

     “find noise canceling headphones where the battery lasts 13 hrs”!
! !“apartments in a nice area around urbana”!

!

!
!

!
!

9!
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Building DataSift: Challenges!

!

!
!

!
!
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Gather!

Filter!

Ask for text reformulations for query!

Check if item satisfies query!

Gather! Retrieve! Filter!

Gather! Retrieve! Filter! Retrieve! Filter!

!
!

•  How many reformulations should we gather? !
•  How many items should we retrieve at each step?!
•  How do we filter items? How many people do we ask? !
•  How do we optimize the workflow?!
•  How do we guarantee correctness?!

!

!



Fundamental Tradeoffs!

Latency!

Cost!

Quality!

How much am I willing to spend?!

How long can I wait?!

What is my desired quality?!

12!



DataSift Summary!

13!

Sample applications:!
education, social media, commerce, journalism, …!

Latency  !

Cost!

Quality!

Gather! Retrieve! Filter!

[SIGMOD14] DataSift: A Crowd-Powered Search Toolkit (demo)!
[HCOMP13] An expressive and accurate crowd powered search!



Filtering: The Simplest Version!

14!

Dataset of Items!
Boolean!
Predicate! Filtered Dataset!

Y! Y! N!

Does X satisfy predicate?!

For now, all humans have same error rates!

Latency!

Cost!

Quality!

Is this image a cat?!



5!4!3!2!1!

5!
4!
3!
2!
1!

Yes!

No!

Our Visualization of Strategies!

15!

decide PASS!
continue!

decide FAIL!

Markov 
Decision!
Process!
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5!
4!
3!
2!
1!

Yes!

No!

Strategy Examples!

16!

5!4!3!2!1!

5!
4!
3!
2!
1!

Yes!

No!
decide PASS!
continue!

decide FAIL!



Simplest Version!!

Given: !
— Human error probability (FP/FN)!

—  Pr [Yes | 0]; Pr [No | 1] !

— A-priori probability!

—  Pr [0]; Pr[1]!

!
Find strategy with minimum expected cost (# of questions)!

—  Expected error < t (say, 5%)!

— Cost per item < m (say, 20 questions)! 17!

Via sampling,!
prior history, or !
gold standard!

m!

m!

x+y=m!



5!4!3!2!1!

5!
4!
3!
2!
1!

Yes!

No!

Evaluating Strategies!

18!

decide PASS!
continue!

decide FAIL!

Pr. [reach (4, 2)] = !
Pr. [reach (4, 1) & get a No]+ 
Pr. [reach (3, 2) & get a Yes]!

Cost =    (x+y) Pr [reach(x,y)] 
Error =    Pr [reach    �1] +             

!    Pr [reach    �0] 

∑    !
∑    !
∑    !

y!

x!



Naïve Approach!
!
!
For all strategies:!
• Evaluate cost & error!
Return the best!

O(3g), g = O(m2)!
If m= 5, g = 21!
! 19!

5!4!3!2!1!

5!
4!
3!
2!
1!

Yes!

No!For each grid point!
Assign   ,   or!



Comparison!

20!

Computing 
Strategy!

Naïve!
deterministic ! Not feasible!

Our best 
deterministic  !

Exponential; 
feasible!

Money  !

$$!!

$$$!



Probabilistic Strategy Example!

21!

5!4!3!2!1!

5!
4!
3!
2!
1!

Yes!

No!
6!

(0.2, 0.8, 0)!

decide PASS!
continue!

decide FAIL!



Comparison!

22!

Computing 
Strategy!

Naïve!
deterministic !

Our best 
deterministic  !

Exponential; 
feasible!

The best 
probabilistic !

Polynomial(m)!

THE BEST!

Money  !

$$!!

$$$!

$!

Exponential;!
not feasible!



Finding the Optimal Strategy!

Simple: Use Linear Programming"
!
• variables: “probabilistic decision per grid point”!
!
• constraints:!

• probability conservation!
• boundary conditions!
!

23![SIGMOD12] Crowdscreen: Algorithms for filtering data with humans!



Generalizations!
• Multiple answers (ratings, categories)!
• Multiple independent filters!
• Difficulty!
• Different penalty functions!
• Latency!
• Different worker abilities!
• Different worker probes!
• A-priori scores!
! 24!

 Doable!

 Hard!!



Generalization: Worker Abilities!

25!

(W1Yes,  W1 No, …,  Wn Yes,  Wn No)!

O(m2n) points!
n � 1000!

Explosion of state!!

Item 1! Item 2! Item 3!
Actual ! 0! 1! 0!
W1! 0! 1! 0!
W2! 1! 1! 1!
W3! 1! 0! 1!



A Different Representation!

26!

3!2!1!

1!
0.8!
0.6!
0.4!
0.2!

Cost!

Pr [1|Ans]!

3!2!1!

3!
2!
1!

Yes!

No!



Worker Abilities: Sufficiency!

27!

( W1Yes,  W1 No, !
  W2 Yes,  W2 No, !

…,!
  Wn Yes,  Wn No)!

5!4!3!2!1!

1!
0.8!
0.6!
0.4!
0.2!

Cost!

Pr [1|Ans]!

Recording Pr[1|Ans] is sufficient: !
Strategy ! Optimal!



MOOCs: Application of Filtering!

28!

Peer Evaluation!
Required !

�Crowdsourcing!�!

Generalization of boolean 
filtering to scoring [1-5]!

A+!

A!

B+!

B-!



Experiments on MOOCs!

Stanford HCI Course!

1000       x 5         x 5 Parts = 25000 Parts!

Graded by random peers with known error rates!

To study: how much we can reduce error for fixed cost!

!
29!



Figure �: (a) Basic Comparison (b) Basic Comparison: Varying Factor (c) Varying Class Size

Factor�� (i.e., Variance with k = ��) has a cost of around ���, and
Single has a cost of around ���.

As can be also seen in the�gure, small changes in k aremore likely
to impact the cost-error curve when k is small, rather than when k
is already large: for instance, the impact of changing k from � to ��
is as pronounced as the impact of changing k from ��� to ����.

�us, if the computing the strategy is feasible for large k, this �g-
ure shows that it is preferable to do so in order to take advantage of
the additional cost savings to be had on increasing k. We consider
the computational cost on varying k later on.
Experiment �: How �nely should we discretize probabilities?

On keeping k �xed at ��, increasing the discretization factor
has a signi�cant impact on performance: that is, it has the e�ect
of reducing error for �xed cost, or vice versa. �us, increasing
the discretization factor yields signi�cant savings in monetary
cost even though it leads to higher computational cost while
computing the strategy.

For this experiment, we �x k = ��, and let δ be �, �, ��, or ��.
(�ese values of δ were chosen because each of these values are di-
visors of the number ���.) We then plot the cost-error curves for
Variance for these values of δ in Figure �(a), and for Bias for these
values of δ in Figure �(b). As can be seen in the �gure, the cost-error
curves for δ = � or � are not as smooth as the ones for δ = �� or
��: this is because when the probability discretization is so coarse-
grained, then there is a lot more noise, and the trade-o� between
cost and error is less predictable.

Further, as we can see here, as we increase δ, there are signi�cant
gains in both cost and error. For instance, in Figure �(a), for error
being equal to �.�� the cost for δ = �� is ���, while the cost for
δ = �� is ���, an almost ��� increase. �e cost-error curves for �
or � never manage to achieve error �.��.

�us, these set of results dictate that we should use as high a δ
as possible, to pro�t from the gains in both monetary cost and er-
ror. However, increasing δ leads to much higher computational and
storage cost. In fact, in our experiments, we were not able to com-
pute the strategy for δ = ��: this is because even storing the strategy
(in amemoized form) would require an array of ��×���×��×� ≈ ��
Billion entries, which is more than we couldmanage on our Ubuntu
server. We will study this aspect in more detail later.
Experiment �: How should we partition graders?

Partitioning graders on bias or variance gives similar results.

In Figure �(c), we study the di�erence between using Bias or Vari-
ance to partition graders. We let k = ��, and plot the cost-error
curves for both Bias and Variance for δ = �� and ��. As can be
seen in the �gure, Bias and Variance perform similarly: while it
seems like Variance is better for higher δ and Bias is better for lower

δ, these changes may be attributed to experimental noise, rather
than to some systematic variation. Overall, using Bias to partition
graders is just as good as using Variance.
Experiment �: How does the computational cost of computing a
strategy vary with k or δ?

�e cost of computing a strategy grows linearly with k and
polynomially with δ.

We focus on the Variance worker partition scheme, and plot the
cost of computing the strategy in minutes versus δ for di�erent val-
ues of k: � (same as Single), ��, and ���, shown inFigure �(a) and �(b)
(Figure �(b) is the same as Figure �(a), but with the y-axis in log
scale). As you can see in Figure �(a), the time to compute the strat-
egy increases very rapidly with δ: for instance, for k = ���, the time
varies from less than ��minutes for δ = �, to three hours for δ = ��,
to half a day for δ = ��. �e growth curve is convex (i.e., the rate of
change increases as we increase δ) for each of the three plots cor-
responding to di�erent k. In our analysis of the posterior-based
representation for the multiple scores case (Section �.�), we men-
tioned that the complexity of representing the strategy itself (and
computing it) is proportional to a large polynomial of δ, thus the
experimental results con�rm the theoretical analysis.
In Figure �(b), the trend on increasing k is clear: for each value

of δ, the di�erence between the log of the computation time for k =
��� and �� is the same as the di�erence between that for k = ��
and � (for all δ). �us, (a) the ratio between the time to compute
strategies is proportional to the ratio of k values (b) this ratio is the
same independent of δ. �us, as predicted by theoretical analysis,
the time to compute the strategy is linearly proportional to k.
�us, the cost of computing strategies increases polynomiallywith

δ and linearly with k. On the other hand, the cost of storing strate-
gies increases polynomially with δ, but is not dependent on k.
Experiment �: Should we increase k or δ?

Both k and δ a�ect cost and error signi�cantly; however, it may
be preferable to increase k �rst, since it increases the complexity
linearly rather than polynomially (as in the case of δ).

We focus on the Variance worker partition scheme, and consider
two values each of k and δ: k = ��, ���, and δ = ��, ��: we plot
the cost-error curves for these four algorithms in Figure �(c). We
�nd that the two curves for δ = ��, and the two curves for δ = ��
perform similarly, with the curve for k = ��� performing better than
the curve for k = �� in both cases. However, the curves for δ = ��
perform worse than δ = ��. �us, δ has a larger impact on cost
and error than k. �is impact comes at a price: the computational
complexity is proportional to a large polynomial of δ, while being
linearly proportional to k. And since the number of k values is not
likely to be very large (in the hundreds or thousands, rather than the
millions), it may be preferable to increase k �rst before δ.

30!

Summary : !
For same cost, reduction in error !
(distance from correct grade) of:!
•  50% over median!
•  30% over MLE!
•  10-20% over same accuracy !

[VLDB14] Optimal Crowd-Powered Rating and Filtering Algorithms!



  Efficient Data Processing Algorithms & Systems!
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Data Processing!
Algorithms!

Auxiliary Plugins: 
Quality, Pricing!

Data Processing 
Systems!

Filter [SIGMOD12, VLDB14] !Max [SIGMOD12] !
Clean [KDD12, TKDD13] !Categorize [VLDB11]!
Search [ICDE14] ! !Debugging [NIPS12]!

Deco [CIKM12,  VLDB12,  TR12,  SIGMOD Record 12]!
DataSift [HCOMP13, SIGMOD14]  HQuery [CIDR11]  !

Confidence [KDD13, TR14] !Eviction [TR12] !
Pricing [VLDB15] ! !Quality [HCOMP14]!

i.stanford.edu/~adityagp/scoop.html!

Latency  !

Cost!

Quality!
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VISUAL DATA 
MANAGEMENT with SeeDB!

Aditya Parameswaran!
!

with:!
Hector Garcia Molina, Sam Madden, !

Alkis Polyzotis, Manasi Vartak!
!

33!



34!

Simplifying Data Analytics!
!

Up to a million additional analysts will be needed to 
address data analytics needs in 2018 in the US alone.!
! ! ! !--- McKinsey Big Data Report, 2013!

How do we make it easier for novice 
data analysts to get insights from data?!
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Data Analytics Workflow!

1.5!

2!

2.5!

3!

3.5!

4!

4.5!

50!

10! 10!

30!

MA! CA! IL! NY!

“Staplers”!
All Products!

“Production by State”!

“Sales by Year”!

25!
15!

40!
20!

Query! Views!

“Production by Year”!

1.5!

2!

2.5!

3!

3.5!

4!

4.5!

Laborious and Tiresome!!
Can we automate this?!

!

Similar issues with !
Tableau, ShowMe, Profiler, Spotfire!
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Potentially Interesting Views(Visualizations)!

“Potentially interesting”: trend in subset 
that is not in overall data!

!
Can we automatically highlight !
potentially interesting views?!

!
Saving: stepping through all views!

 now only potentially interesting ones!!
!

1.5!

2!

2.5!

3!

3.5!

4!

4.5!

“Sales by Year”!



D!

Q!

D!

1.5!

2!

2.5!

3!

3.5!

4!

4.5!

0!

1!

2!

3!

4!

5!

6!

Q! DBMS!

SeeDB!

Our Proposed System: SeeDB!

many rows!
many columns!

k potentially 
interesting !

visualizations!

[VLDB14] SeeDB: Visualizing Database Queries Efficiently (Vision)!
[VLDB14] Automatically Generating Query Visualizations (Demo)!



Q

D!

V1!
V2!
…!
Vn!

Score! Visual 
Engine!

1.5!

2!

2.5!

3!

3.5!

4!

4.5!

0!

1!

2!

3!

4!

5!

6!

SeeDB: Conceptual Workflow!

Objective : find k-best scoring views (or visualizations) !

V!

Really Expensive!!
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How do we score views?!

We are pursuing ways to learn this 
scoring function using crowds.!

!
For now, a proxy that is “good-enough”!

differences in “distribution”!
e.g., EMD, euclidean, KL-divergence!

!

1.5!

2!

2.5!

3!

3.5!

4!

4.5!

“Sales by Year”!

Difference(Distribution of Sales by year overall,                       
!! ! !!           Distribution of Sales by year for Staplers)!

our techniques work with any scoring metric !
!

This is a hard, domain-specific question!!
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How many views to consider?!
Star Schema; Histogram Visualizations!

!
M measure attributes!
A dimension attributes!
F aggregation measures!

!
One-dimensional visualizations:!

M x A x F!
If we consider binning:!

M x A x F x B!
!

1.5!

2!

2.5!

3!

3.5!

4!

4.5!

“Sales by Year”!
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Building SeeDB: Concrete Directions!

•  Sharing computation!
•  Approximate visualizations!
•  Approximate scoring!
•  Visualization pruning!

!
!

How do we minimize computation?!
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Technique 1: Sharing Computation!

!
! “Sales by Year”! “Production by Year”!

“Sales and Production by Year”!
!

SELECT AGG(M1), AGG(M2), D,!
FROM R!
WHERE Prod = “Staplers”!
GROUP BY D!

!

Linear !
Speedup!!
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Technique 1: Sharing Computation!

!
! “Sales by Year”! “Sales by Region”!

“Sales by Year, Region”!

!
SELECT AGG(M), D1, D2!
FROM R!
WHERE Prod = “Staplers”!
GROUP BY D1, D2!

!

Problematic: # of 
aggregates grow rapidly!

!
Intractable!!
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Technique 2: Approximate Visualizations!

!
!

“Production by Year”!

Can we provide visualizations that are guaranteed to look 
similar (e.g., similar order, similar differences) to actual ones, 

but at much lower cost? !

Analysts are only interested in trends, not absolutes!
Limited also by resolution!
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Technique 2: Approximate Visualizations!

The answer is yes!!
!
At a high-level, algorithm samples “more” from contentious areas!
!
•  Order of magnitudes saving compared to baselines!
•  Optimality guarantees!
•  Also of independent interest!
!
!

“Production by Year”!

[TR14] Generating Rapid Visualizations with Guarantees!
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Building SeeDB: Concrete Directions!

•  Sharing computation!
•  Approximate visualizations!
•  Approximate utility computation!
•  Visualization pruning!

!
!

How do we minimize computation?!

Overall, a rich space of questions 
generalizable beyond SeeDB!!



SeeDB: Query Visualization Engine 
Anqi Zhang, Sashko Stubailo, Manasi Vartak, Aditya Parameswaran, Sam Madden 

 

I. INTRODUCTION 
 

Data scientists rely on visualizations to interpret the data returned by 

queries, but finding the right visualization remains a manual task that is often 

laborious. We propose SeeDB, a database visualization engine that partially 

automates the task of finding the right visualizations for a query. Given an input 

query Q, SeeDB will efficiently explore not only the space of physical plans for Q, 

btu also the space of possible visualizations for the results of Q. The output with 

comprise of a recommendation of potentially “insightful” or “interesting” 

visualizations, where each visualization is coupled with a suitable query execution 

plan. 

  

II. ARCHITECTURE 
 

SeeDB is implemented as a wrapper around the PostgresSQL database. The 

architecture of our system is shown in Figure 1 below.  

 
Figure 1. SeeDB Architecture. 

The SeeDB Frontend consists of the Query Builder and the Visualization 

Engine. It is built on popular JavaScript framework NodeJS (to ensure a responsive 

user interface and modular code structure), utilizing libraries such as AngularJS (to 

connect the data model and view), GoogleCharts (to create static graphs), D3 (to 

create interactive graphs), CrossFilter (to allow to subset selection on graphs), and 

NodeJava (to communicate with the SeeDB Java Backend Engine).  

The SeeDB Backend Engine is a highly optimized system that efficiently 

computes distributions over all combinations of dimension attributes in the queried 

subset and the entire dataset, as well as their utility scores. The Java powered 

backend communicates with the frontend by serializing Java objects to JSON 

47!

Our Current Design!



objects using Jackson, and communicates with the Postgres DBMS system using the 

Postgres JDBC Driver).  

The SeeDB System is built to satisfy rigorous engineering standards, in order 

to allow for modularity, extensibility, and easy maintainability. 

 
III. SeeDB FRONTEND 
 

III.1. Query Builder 
The SeeDB frontend is designed to allow users with little knowledge of SQL 

syntax to post queries, retrieve insightful visualizations, and interact with the 

frontend to drill down on subsets of the result. The Query Builder (Figure 2) 

supports two methods of posting queries to the system.  

 

 
Figure 2. SeeDB Frontend Query Builder. 

1. Text-based query builder: For more experience SQL users and users who 

already know which subset of data is of interest, the frontend provides an 

interface for entering raw predicates with auto-populated fields to minimize 

user error (Figure 2, left). It breaks down each predicate into three parts: 

column name (cand_nm, contbr_st, …) , operator (=, >, <, in, …), value 

(‘CA’, ‘Obama, Barack’, …). The column name dropdown options are 

automatically populated with the columns designated “dimension” and 

“measure” when the user selects the table of interest.  

 

48!

Interactive Query Builder!



2. Graph-based query builder: For less experience SQL users and for users who 

are interested in exploring the entire dataset, the frontend pre-computes a 

distribution graph for the entire dataset over all the columns designated 

“dimension” (Figure 2, right). The user can simply click-and-drag to select 

subsets of the graphs. Once a subset is selected, a potential query predicate 

is generated and displayed below the graphs, the user can then choose to 

add the predicate to the Query Builder. 

 

The user can also select from a range of distance functions from a dropdown 

menu. The choice of distance functions is used to compute the utility of each view 

queries and rank the produced graphs. 

 

III.2. Visualization 
 

 
Figure 3. SeeDB Frontend Visualization. 

The visualizations produced are shown to the user in order ranked by utility 

scores (Figure 3). Each visualization displays the distribution in the query subset 

(blue) and the distribution in the entire dataset (red). The chart type for each 

visualization is determined by the dimension attribute. Categorical dimension 

49!

Top-k Visualizations!
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To summarize…!

SeeDB has some ambitious goals…!
!
!

“show me all that’s interesting about the query result”!
i.e., the holy grail of exploratory visual data analysis!

!
!

We’ve barely scratched the surface, yet!!
… doesn’t mean we can’t build a useful tool!


