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ABSTRACT
We present a general method for employing interactive embedding
techniques to enable an analyst to explore a larger collection of lo-
cal patterns. The common idea among pattern-mining methods is to
list descriptions of subsets of a dataset according to some interest-
ingness measure. Because the space of all patterns in a dataset is ex-
ponentially large in the number of attributes, most pattern-mining
algorithms reduce the output for the analyst to a small set of highly
interesting and diverse patterns. However, by discarding most of
the patterns, these methods have to make a trade-off between rul-
ing out potentially insightful patterns and possibly drowning the
analyst in results. We propose an alternative. To counteract infor-
mation overload, we mine a rather large set of patterns and study
this collection using an interactive embedding technique. Using
this interactive, visually driven exploration technique, the analyst
can develop an understanding of the patterns, their distribution, the
concepts underlying them, and how they interrelate.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data
mining; H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Interaction styles

General Terms
Rule and pattern mining, Exploratory analysis

1. INTRODUCTION
We propose an extension to the classical pattern-mining approach.
Our idea is to not focus on condensing the resulting output to a
small set of high-quality patterns, but rather to visually explore the
distribution of a larger collection of patterns as a whole. To do so,
we empower the analyst to actively steer the perspective of a two
dimensional projection of the mined patterns. Altering the perspec-
tive and seeing how related patterns move, zooming and filtering
the collection and inspecting structures of interest closer, lets the
analyst keep the overview even on larger pattern collections.

Classical pattern-mining algorithms, like closed frequent item set
mining, subgroup discovery, and exceptional model mining—to
name just a few—search for patterns of high interest to the analyst
in a dataset. The goal is to retrieve a small collection of easy-to-
understand patterns that expose main concepts occurring frequently
within the dataset. In Section 2 we briefly discuss several pattern-
mining algorithms and their main objectives. The formal definition
of a pattern, how its interestingness is measured, and how the final
result is compiled differs from method to method. In general, one
can say that a pattern is a description of a subset of the dataset

that should be easy to understand. A very commonly used pattern
format, which is also used throughout this paper, is the conjunction
of different attribute=value assignments. For instance, the pattern
“type=fish and color=blue” describes all blue fishes in a dataset at
hand. The result set that is finally delivered to the analyst is usually
determined by considering the support of the patterns, a quality
measure, and the redundancy among the patterns of the result set.
To keep the result set at a convenient size, classical pattern-mining
algorithms have to carefully consider whether the information in
each pattern bears insight or might contribute to overload.

We propose an interactive, visually driven extension to the classi-
cal pattern-mining procedure that does not discard any discovered
patterns before presenting the results to an analyst. The idea is not
to deliver a condensed result set, but rather to mine a larger collec-
tion of patterns first and then project them into a two-dimensional
space, with similar patterns being close to each other. This en-
ables further visual analysis. The insights gained from actively
exploring the pattern distribution help the analyst to understand
and interpret the results of the classical pattern-mining methods.
The exploration of the pattern distribution follows Shneiderman’s
information-seeking mantra “Overview first, zoom and filter, then
details-on-demand” [30]. Our proposed approach enables the an-
alyst to grasp the pattern collection as a whole and then to further
discover and dig deeper into regions of interest. In earlier pub-
lications, we investigated different algorithms that enable direct
interaction with an embedding to explore a dataset interactively.
The direct visual feedback of seeing how the distribution of all data
records changes upon interaction can help the analyst understand
the underlying structure of the data and formulate hypotheses. One
common way to provide the interface for the interaction is to let
the analyst select data points as control points and relocate them
in a “drag-and-drop” manner within the embedding. Altering the
positions of these control points triggers the embedding technique
to recalculate the whole projection, subject to the updated control-
point locations. The recalculation can usually be done efficiently,
such that the updates resulting from the interaction can be rendered
live. For an impression on the update-rate of the here used imple-
mentation please have a look at Appendix A.1. Note that there are
also other methods of interacting with an embedding, e.g., employ-
ing must-link / cannot-link constraints, filtering and inspecting the
sub-selection, or simply highlighting and brushing.

The remainder of the paper is organized as follows. In Section 2
we discuss related research and in Section 3 we introduce a general
framework for interactive pattern exploration. Section 4 demon-
strates our approach in several scenarios on a cocktail ingredient
dataset before we finally conclude in Section 5.
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2. RELATED WORK
Related to our work are basically two areas of research, pattern
mining and interactive embedding methods. For the pattern-mining
methods we have to distinguish whether a label is considered.
Probably the most-known pattern-discovery technique that does
not consider a label is frequent item set mining. Here all con-
junctions of attribute=value assignments are listed in decreasing
order of the number of data records that support the pattern [1, 15].
Because the set of all 1-frequent patterns of a dataset can be ex-
ponentially large in the number of attributes of the dataset, usually
only the top-k patterns with a thresholded minimum support are
considered. However, often the set of frequent patterns contains re-
dundant descriptions; i.e., the same set of data records is described
by different patterns. Closed frequent items-set mining methods
[4, 32] counteract this by only listing the closure of each of these
sets as a unique descriptor. Other ways to discover interesting pat-
terns in an unlabeled dataset are, e.g. to compile an output set of
small size that possesses a high entropy [25] or to find large tiles of
1-assignments in a binary dataset [12].

For labeled datasets, (closed frequent) subgroup-discovery al-
gorithms [18, 20, 33] find patterns with a significant difference
between the label distribution of the whole dataset and the one
exposed by the patterns. Exceptional model mining [21], a gener-
alization of subgroup discovery, allows for more-complicated tar-
get concepts, like multiple labels. Another generalization applies
the theory of relevance [11, 19] to the found subgroups. Relevant
subgroup discovery algorithms [11, 13, 24] deliver only patterns
that are not covered by any other pattern in the result set. The term
‘covering’ implies that there is no generalization of a subgroup that
extends the subgroup’s support set by strictly positively labeled
data records. ∆- and ε-relevant subgroup discovery methods [14,
23] loosen this tight formulation and allow the considered gener-
alizations of a subgroup to have a controlled amount of additional
negatively labeled data records in the support set.

A different approach to the discovery of interesting patterns is
to sample from the space of all patterns. Note that pattern sam-
pling does not aim at delivering a condensed result set, but instead
samples the patterns with a probability proportional to a given
interestingness measure. Possible measures are, e.g., sampling
proportional to a pattern’s frequency, its squared frequency, its lift,
or the area it tiles in the dataset [5]. In addition, pattern sampling
can also take labels into account, such that patterns with a high
positively and a low negatively labeled share in the support set are
more likely to be drawn. The probability of a pattern being drawn
can be calculated efficiently [6] by using the sampling technique
coupling from the past.

Pattern sampling is a good showcase to demonstrate our approach
and can be a good option in cases where the space of all patterns is
extremely large, such that classical pattern-mining algorithms take
too long to terminate. This is especially important if the analyst is
on a time budget and the listing strategy of the mining algorithm
does not correlate with the relevance of the patterns to the analyst.
In this case, sampling from the whole pattern space can yield inter-
esting patterns much earlier. Boley et al. [5] show such an example
on the primary-tumor dataset, where the patterns that are most
discriminating between the labels are among the least-frequent.

Apart from local pattern discovery, there is also related work in
the area of embedding data into a lower-dimensional space for
visualization and interaction. Many classic techniques are un-

supervised and static, like the well known principle component
analysis (PCA) [16], multi-dimensional scaling (MDS) [8], iso-
metric mapping [31] and locally linear embedding [29]. These
methods consider the distances between the data records in differ-
ent ways and find lower dimensional embeddings which exhibit
similar the distance relations. The projection pursuit method [10]
follows a different objective, it searches for interesting projections
of the data that display a high degree oy non-gaussianity.

In order to incorporate interaction into the dimensionality-reduction
algorithms, the static embedding approaches are typically extended
to consider additional user feedback and thus provide an interface
with the lower-dimensional embedding of the data to the ana-
lyst. There are different approaches for deriving the embedding
and incorporating interaction. Some techniques enable the user
to relocate selected points within the embedding and incorporate
the placement of these control points as constraints or regular-
ization into the optimization problem of a (kernelized) principal
component analysis (PCA) [28, 26]. Other techniques embed the
data via MDS user-suggested locations of the control points [7, 9,
22]. In contrast to these methods, least squared error projections
[27] calculate the embedding solely by considering the control
points’ original attributes and user-specified embedding locations,
ignoring the covariance among the rest of the data records. The
interactive embedding technique used in our upcoming study in
Section 4 minimizes the uncertainty of the resulting embedding,
given a prior belief about it, conditioned on the control points’
placements [17]. Throughout this paper we refer to this technique
as most-likely embedding (MLE). In addition, this method can
also be used to actively propose control points to the analyst that
minimize the uncertainty about the resulting embedding and thus
should be placed next.

Finally, but without a focus on interaction, Berardi et al. proposed
to embed collections of patterns in order to discover structures
among them by using MDS as the embedding technique [3]. The
pairwise similarities between the patterns, required by MDS, were
derived by calculating the Jaccard index between two patterns.

3. A GENERAL INTERACTIVE PATTERN
EXPLORATION PROCEDURE

Our approach to studying a larger collection of patterns is to embed
them into a lower-dimensional space for further interactive visual
analysis. Due to the many different ways this can be done, we
do not want to propose one particular exploration technique, but
rather give a guiding framework on how to gain insights from a
larger pattern collection by exploring it interactively. Our proposed
procedure comprises the following steps:

1. Mine a large collection of patterns.

2. Represent the patterns in a canonical way as vectors.

3. Embed these vectors with an interactive embedding method
and explore the pattern distribution.

4. Inspect the emerging structures of interest deeper.

In our upcoming exemplary study, we utilize a two-dimensional
scatterplot for visualization, with each pattern being a point within
the plot. Often the initial visualization of the pattern distribution,
before any interaction at all, already exhibits interesting structures
that invite the analyst to deeper inspection. By further interacting
with the embedding by, e.g., selecting single patterns as control
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Table 1: Exemplary results of the ten highest quality patterns, delivered by different pattern-mining approaches on the cocktail
dataset. Note that here the top-10 frequent item sets are also all closed. The high-lift patterns were sampled according to their rarity
measure [6]. In case of subgroup discovery, the label indicates whether a cocktail is creamy or not.

Unsupervised pattern-mining methods Supervised pattern-mining methods

Frequent (closed) item sets Sampled patterns with high lift closed subgroups ∆1-relevant subgroups

Vodka Vodka & Cranberry juice Baileys Baileys
Orange juice Vodka & Triple sec Crème de cacao Crème de cacao

Amaretto Baileys & Kahlúa Milk Milk
Pineapple juice Vodka & Gin Kahlúa Kahlúa

Grenadine Vodka & Blue curaçao Baileys & Kahlúa Cream
Gin Pineapple juice & Malibu rum Cream Irish cream

Baileys Vodka & Amaretto Irish cream Crème de banana
Tequila Vodka & Rum Vodka & Baileys Butterscotch schnapps
Kahlúa Orange juice & Amaretto Crème de banana Whipped cream

Triple sec Vodka & Tequila Baileys & Butterscotch schnapps Vodka & Kahlúa

points and relocating them in a playful manner, the analyst can see
how other patterns relate, as they move accordingly. On the other
hand, the analyst does not have to ‘play’ with the embedding, but
can also directly express desired similarities among patterns by se-
lecting similar ones and placing them close to each other in the
embedding. In this way the analyst can also incorporate domain
knowledge into the embedding. The above mentioned structures
that occur in the visualization can come in various shapes; clusters
of patterns, regions of higher density, outliers, or mirroring shapes
can all be fruitful to investigate. Reasoning about the contents of
these structures and how they differ from another usually uncovers
interesting aspects about the patterns and the original dataset.

4. AN EXEMPLARY STUDY
In this section, we demonstrate the use of our interactive pattern-
exploration approach by performing an artificial exemplary knowl-
edge discovery session on a cocktail-ingredient dataset. The data is
an excerpt of the drinks presented on the website webtender.com.
It can be downloaded, together with our interactive embedding tool
from http://kdml-bonn.de/InVis. In the following we give an exam-
ple of a concrete instantiation of the above introduced framework.
This setup is precisely the workflow that we use in our exemplary
study in Section 4.1. For the other examples in Sections 4.2 and
4.3, only the first step changes, as the pattern collection is retrieved
using different algorithms.

1. Mine the 1000 most-frequent item sets from the cocktail
dataset. Here, every cocktail is described as the set of ingre-
dients it contains.

2. Represent each of the 1000 frequent item sets by a binary
vector over all occurring items of the pattern collection in
lexicographical order.

3. Visualize the pattern vectors, using the most-likely embed-
ding technique with an initial PCA embedding as the prior
mean and interact with it to shape out interesting structures.

4. Inspect these structures by highlighting patterns that contain
certain ingredients and by listing the five most-present single
items of the structure in a tag cloud.

A list of the ten highest-quality patterns, found by several classical
pattern-mining algorithms, is given as a reference in Table 1. The
first three methods, frequent, closed frequent, and sampled high-lift

patterns, do not consider label information, but provide us with an
overview on the most-striking ingredients and ingredient combina-
tions. The subgroup- and relevant-subgroup-discovery methods on
the other hand do use a label and show us ingredients (and their
combinations) that are strongly related to it. For these methods, we
manually assigned a label to each cocktail according to whether it
is “creamy”. In Sections 4.1, 4.3 and 4.2 we will apply our interac-
tive approach on the output of different pattern-mining algorithms
with the goal of gaining additional insights into the results of Table
1 and to understand the patterns’ relations. In each session we mine
1000 patterns and represent them as binary vectors over all items
that occur within the patterns, sorted in lexicographical order. We
then visualize the mined patterns using an interactive embedding
technique and search for emerging structures in an interactive man-
ner.

In the following studies we employ a variant of Iwata, Houlsby and
Ghahramani’s most-likely embedding technique [17] to interact
with the embedding via control points. The general idea behind
this method is to customize a matrix that projects the data into
the embedding space in a probabilistic way. This projection ma-
trix is assumed to be matrix-normal distributed, a matrix-valued
extension to the normal distribution. Ultimately, MLE calculates
the embedding with the least uncertainty about the placement of
the data records, given a prior belief on the projection matrix and
conditioned on the control points’ placements as evidence. In con-
trast to Iwata et al.’s method we do not use the Laplacian of the
nearest-neighbour graph, but instead the projection onto the first
two principal components as prior belief about the embedding (see
Appendix A.1).

Finally, inspecting the structures that emerge when interacting with
the embedded patterns can be done in various ways. In our exem-
plary study we use two simple, yet effective methods. The first is
highlighting all the patterns within the embedding that contain an
item of interest. Second, we also consider presenting the five most-
frequently occurring items in a studied structure in a tag cloud. It
is also possible to use more-sophisticated methods to study the pat-
tern distribution. For example, we could perform pattern mining
on the previously discovered patterns that form such a structure.
Alternatively, we can also find a single well-suited representative
pattern of the structure However, as our study shows, it is possi-
ble to gain insights and craft hypotheses using only our employed
naïve methods.
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4.1 Frequent Itemsets
In this section we show our proposed approach in action and
demonstrate how the frequent patterns reflect rudimentary prop-
erties of the original dataset. Note that investigating the most
frequent item sets with our proposed method serves mostly the pur-
pose of a sanity check and demonstrating our approach in action.
Figure 1 shows the 1000 most-frequent item sets of the cocktail
dataset represented as binary vectors over all items, embedded onto
their first two principal components. Immediately, we can see two
well separated clusters that resemble roughly in their shape. In-
vestigating these clusters closer reveals that the right one contains
only patterns that include the ingredient Vodka, the most-frequent
single item in the original dataset, whereas the left one doesn’t (see
Figure 1, left). The second most-frequent ingredient, Orange juice,
determines whether a pattern is mapped to the top or to the bottom
of the embedding (see Figure 1, right).

Figure 1: The 1000 most-frequent item sets of the cocktail
dataset, embedded onto their first two principal components,
labeled by the presence of Vodka (left) and Orange juice (right).

Interacting with the embedding by relocating two control points,
as shown in Figure 2, unravels the blending of the patterns that
contain Orange juice and the ones that don’t. The resulting four
clusters clearly separate the patterns by their presence or absence
of the ingredients Vodka and Orange juice.

Figure 2: Dragging two control points (emphasized in blue) to
new locations, reveals a structure that was previously hidden in
the PCA embedding. The four clusters indicate the presence or
absence of the two ingredients Vodka and Orange juice.

Figure 3 inspects one of these emerging structures, the top-right
“Vodka and no Orange juice cluster” from Figure 2, in a closer
manner.
With a glance at the top-left picture of Figure 3 we can see that the
corresponding patterns containing Vodka but no Orange juice also
frequently contain other strong alcohols, especially Rum, Gin, and
Triple sec. We can also observe a sub-cluster structure within this
particular embedding, which is determined by the presence or ab-
sence of the ingredients Rum (top-right, highlighted in green) and
Gin (bottom-left, highlighted in blue). The ingredient Triple sec

Figure 3: A closer look at the top-right cluster of Figure 2 re-
veals the ingredients that the patterns from the “Vodka and no
Orange juice cluster” are frequently mixed with (top-left). The
other three pictures indicate the presence of Rum (highlighted
in green), Gin (blue), and Triple sec (red).

(bottom-right, highlighted in red), although frequent within this
cluster, seems not to contribute to the sub-structure, but can be
found in all of the sub-clusters. This is an interesting finding, as
Triple sec is much more frequent than Rum. In fact, Rum does not
even occur among the ten most-frequent ingredients, yet it has a
striking influence on the structure of this cluster. Note that this
is an insight that could not have been drawn purely from the re-
sults of Table 1. In the following sections we will perform sim-
ilar studies with pattern collections that were drawn according to
more-sophisticated interestingness measures than frequency of oc-
currence.

4.2 Sampled Patterns
A fruitful way to quickly draw patterns from a dataset according
to different interestingness measures is to sample. Although sam-
pling itself provides diversity among the drawn patterns, sorting
them by the measure and listing only the top-k ones can reintro-
duce a certain amount of redundancy. On the other hand, diversity
is not impaired when exploring the set of all sampled patterns in
our proposed way and the analyst is further enabled to discover the
different concepts among the patterns. In this study, we sampled
1000 patterns from the cocktail dataset, according to their rarity
measure, a variant of the lift measure which promotes patterns con-
taining items that are statistically dependent (see Appendix A.2).
The samples were drawn using the direct local pattern sampling
tool which was provided to us by Boley et al. [6] and can be down-
loaded from http://kdml-bonn.de/?page=software_details&id=23.

The retained collection of the sampled patterns demonstrates well
how our proposed approach benefits from the use of interactive em-
bedding techniques. The plain PCA embedding of the frequent pat-
terns in the previous Section 4.1 already exhibited a clear structure,
which directly invited the analyst to further explore it. For this par-
ticular set of sampled patterns, however, this is not the case. Figure
4 shows the sampled rare patterns embedded into two dimensions,
using different techniques, namely PCA, Isomap, and locally linear
embedding.1

1 The latter two techniques estimated the assumed lower-
dimensional manifold via the 10-nearest-neighbour graph.
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Figure 4: 1000 patterns sampled from the cocktail dataset, ac-
cording to the rarity measure [6] and embedded, using different
techniques: principal component analysis (left), locally linear
embedding (middle), and isometric mapping (right).

Although these static embeddings exhibit no structures that imme-
diately raise the analysts attention, relocating just one control point
in the interactive embedding reveals clusters that were previously
obscured, as Figure 5 (top) shows.

Figure 5: Relocating a control point, using our interactive em-
bedding reveals a clear cluster structure (top). The middle pic-
tures highlight the patterns containing Vodka (left) and Orange
juice (right). The bottom pictures inspect the composition of
two of these clusters.

The two middle pictures of the figure highlight the patterns contain-
ing Vodka (left) and Orange juice (right). Clearly we can identify
the Vodka cluster, but the other clusters come as a surprise. They
do not relate to the Vodka / Orange juice segmentation that was al-
ready discovered in Section 4.1, but capture concepts of their own.
The two highlighted ones at the bottom of the figure revolve around
juicy and Rum-heavy cocktails. Because of the initially mentioned
redundancy among the highest rated rare patterns, the results from
Table 1 mainly exhibit patterns associated with Vodka. Our pro-
posed interactive discovery approach, however, was able to over-
come this drawback and reveal other, novel concepts among the
high-rarity patterns.

4.3 Subgroup Descriptions
Patterns can be discovered according to different measures of in-
terest. In the previous sections we studied pattern sets that were
drawn proportional to their measure of frequency or rarity. In some
cases, however, the analyst might also want to consider label infor-
mation. A classic pattern-mining approach that does so is subgroup
discovery. It ranks the patterns by how much the label distribution
of the data records described by the pattern diverges from the la-
bel distribution of the whole dataset. In this section we study the
top-1000 closed subgroup descriptions from the cocktail dataset,
ranked according to the binomial test quality measure [4] (see Ap-
pendix A.3). Figure 9 shows the embedding of these 1000 patterns
onto their first two principal components.

Figure 6: The top-1000 subgroup descriptions associated to the
label creamy, embedded onto their first two principal compo-
nents. The four clusters coincide with the presence/absence of
the two most striking ingredients among creamy cocktails: Bai-
leys (left) and Kahlúa (right).

Similar to the embedding of the frequent item sets, but without the
help of any interaction, the mined patterns fall directly into four
clusters. This time, the clustering goes along with the presence
or absence of two other frequently occurring ingredients: Baileys
(left) and Kahlúa (right). From the list of frequent patterns in Ta-
ble 1 we know that these ingredients are highly frequent, and from
the list of subgroups we know that they have a stark impact on
the label of a cocktail. In this sense, the observed segmentation
doesn’t come as a total surprise. However, following the results
of Table 1 we might instead have expected Crème de cacao, in-
stead of Kahlúa. The visualization helps to understand the relations
among the listed patterns and invites for further exploration of the
exhibited structure. To do so, this time we do not interact with
the embedding via the earlier utilized control points, but rather by
focusing on a subset of the distribution. We filter the pattern collec-
tion to keep only the ones that contain neither Kahlúa nor Baileys
and re-embed them onto their first two principal components. The
selection corresponds to the patterns belonging to the bottom right
cluster of Figure 6. The re-embedding of these selected patterns
can be seen in Figure 7 below.

Figure 7: A PCA embedding of the patterns belonging to the
bottom right cluster of Figure 6. Again, the embedded patterns
can be neatly segmented by the presence of two highly frequent
ingredients, this time Vodka (left) and Crème de cacao (right).
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As the re-embedding is not a zoom, but a newly calculated PCA
embedding, we are able to discover structures that were previously
hidden due to the covariance among the patterns that are now fil-
tered out. Once again we observe that the patterns form four clus-
ters, corresponding to highly frequent ingredients, this time Vodka
and Crème de cacao. Note that this ‘four cluster segmentation’ is
not part of our proposed method, but stems form the sparsity which
transactional databases often expose. To achieve a clearer separa-
tion of the clusters in the visualization, we use again the placement
of a control point, as shown in the following Figure 8.

Figure 8: To retrieve a better separation between the clusters,
we interact with the embedding by selecting and relocating an
appropriate control point.

As an example, we pick two of the clusters from Figure 8 and study
their compositions. Figure 9 below shows the five most-frequent
ingredients within the patterns of these clusters in a tag cloud.

Figure 9: Inspecting the contents of two of the emerging clus-
ters. One interesting finding is the occurring separation be-
tween milky and chocolaty patterns. The cluster segmentation
stems from the presence of the ingredients Vodka and Crème de
cacao.

We can observe that the inspected regions contain patterns that stem
from two different types of creamy cocktails: milky and chocolaty
ones. This is an interesting finding, as the strict separation between
the clusters does not stem from the milky ingredients within the pat-
terns, but from the ingredients Vodka and Crème de cacao. How-
ever, using our interactive visualization, we were able to craft the
hypothesis that milky and chocolaty cocktails form different types
of creamy cocktails, offering a good next direction to explore.

4.4 Discussion
Using an interactive embedding of the patterns to visualize and
explore it, we were able to remedy the information overload that
comes naturally with the consideration of a large pattern collection.
Our proposed approach mainly collapses into a two step procedure:
(1) mine a large collection of patterns and (2) explore a visualized
embedding of the patterns in an interactive way. We demonstrated
our approach on pattern collections that resulted from three differ-
ent mining techniques, namely frequent pattern mining, sampling
patterns proportional to their lift, and subgroup discovery. In the

second step, we followed the information-seeking mantra and ex-
plored the obtained pattern collections in a top-down manner. We
started with a visual overview of the whole pattern distribution and
dug deeper on striking structures by interacting with the visual-
ization and investigating the emerging structures in different ways,
namely by

• reshaping the embedding via relocating control points.

• filtering out and re-embedding the remaining patterns.

• listing the most-frequent items of an inspected structure.

• highlighting all patterns containing an ingredient of interest.

By interactively exploring the pattern collection, we were able to
gain some minor insights that we could not draw by purely con-
sidering the results of Table 1. To give some examples, from the
list of frequent patterns we know that Vodka and Orange juice are
the most-frequent ingredients of the cocktail dataset, but the PCA
embedding was able to reveal how much more Vodka distinguishes
between the cocktails than Orange juice does. By inspecting the
sub-clusters that emerged from our interaction, we found a sur-
prisingly strong influence of the ingredient Rum on the cocktails
containing Vodka but not those containing Orange juice. This
discovery is backed up by the high-lift pattern Vodka & Rum that
we can find in Table 1. However, considering the mirroring of
the “no-Orange juice-clusters”, located at the top in Figure 2, we
can also craft a theory about a strong influence of Rum among the
non-Vodka patterns in general. We were also able to discover three
strong concepts among the patterns with a high lift: the pattern
Vodka & Something, fruity cocktails, and Rum-heavy cocktails.
This is especially interesting, as Rum does not rank among the ten
most-frequent ingredients. In addition, we were also able to dis-
cover independently from Table 1 that Kahlúa, Baileys, Crème de
cacao and Milk are mainly responsible for a cocktail being labeled
as creamy.

However, the strength of our approach lies not in these discoveries,
but in the deeper understanding of the relations among the patterns
that it provides in combination with the classical pattern-mining
methods. By exploring the pattern embedding, interacting with
it, exposing interesting structures, and always collating the crafted
theories and insights with Table 1, we were able to develop an un-
derstanding of the different concepts that the original cocktail data
revolves around.

5. CONCLUSION
We proposed an extension to the classical pattern-mining approach
that enables the analyst to overcome information overload when
browsing and exploring a larger collection of patterns. The goal
of our proposed method is to help the analyst understand the un-
derlying distribution of the patterns and additionally to invite them
to further exploration. Whereas the classical pattern mining ap-
proach focuses on presenting a condensed set of high-quality pat-
terns, our approach uses interactive embedding techniques to visu-
alize and explore the distribution of a larger pattern collection. To
do so, we proposed a general four-step approach, where each step
can be instantiated in different ways. In our exemplary study, we
demonstrated the use of our approach by exploring and interacting
with three different pattern collections from a cocktail-ingredient
dataset. Collating our findings and the results of different pattern-
mining algorithms, we were able to forge and test hypotheses and
develop an understanding of the mined patterns and the different
concepts that they descend from.
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APPENDIX
A.1 The most likely embedding
Our approach for interacting with a lower-dimensional embedding
of data makes use of the matrix-normal distribution, an extension
of the multivariate normal distribution to matrix-valued arguments.
The idea is to find the linear projection from the original data space
into the embedding space that is most likely, given a prior belief
about the embedding and conditioned on the placement of selected
control points. The (p× q)-dimensional matrix normal distribution
MN p,q(R;M,Σ,Ψ) has the density function

MN p,q(R;M,Σ,Ψ) = (2π)−
pq
2 |Σ|−

q
2 |Ψ|−

p
2

exp
(
− 1

2
tr
[
Σ−1(R−M)Ψ−1(R−M)>

])
,

where:

- R ∈ Rp×q is the matrix-valued argument,

- M ∈ Rp×q is the location parameter, and

- Σ ∈ Rp×p, Ψ ∈ Rq×q are symmetric positive-definite scale
parameters that can be considered the “row” and “column”
covariance matrices, respectively.

Why is this useful? Suppose we have a matrix normal distributed
belief about a linear embedding matrix R:

p(R | θ) =MN (R;M,Σ,Ψ),

where θ represents the hyperparametersM , Σ, and Ψ. Now further
suppose that we have observed data X ∈ RD×N in a potentially
high-dimensional Euclidean space X = RD and that the user has
selected a total of m control points Y ∈ X and has placed them
in preferred locations W ∈ R2×m within the two dimensional
embedding. We will write D to indicate these observed data pairs
(Y,W ).

We also assume that the locations chosen for these points, given by
the user, represent the correct latent locations for these points, cor-
rupted by iid zero-mean isotropic Gaussian noise. Consider RY ,
which represents the embedded locations of Y given knowledge of
the latent embedding matrix R. Our assumption is that the control
points placed by the users are close to their ideal locations:

p(W | RY, θ, σ2) =MN (W ;RY, I, σ2I),

which indicates that each of the values in W differs from RY by
entrywise iid Gaussian noise with variance σ2. Henceforth we will
include σ2 in the set of hyperparameters θ.

Now we can reason about the linear projection matrixR that is most
likely, given a prior believe about the embedding and conditioned
on the observed values W :

p(R | Y,W, θ) =MN (R;MR|D,Σ,ΨR|D),

where

MR|D = M + (W −MY )(Y >ΨY + σ2I)−1Y >Ψ;

ΨR|D = Ψ−ΨY (Y >ΨY + σ2I)−1Y >Ψ.

In order to retrieve the final most likely embedding of all the data
points X , we simply have to calculate the MR|DX .

To utilize this method in a live-update manner, reasonably many
updates have to be calculated per second. If the interaction with
the embedding is only the movement of control points, then solely
MR|D has to be recalculated and multiplied by X to retrieve the

embedding. The following Figure 10 depicts the updates per sec-
ond for this case, depending on the number of attributes, data
records and used control points. However, if the selection of the
control points changes, also ΨR|D has to be recalculated (which on
a regular PC runs in well under a second). As depicted, the update-
rate depends the strongest on the number of data records and drops
with an increasing amount of them. Using our non-tweaked imple-
mentation, a dataset of about 1500 data-records could be interacted
with at an update-rate of roughly 10-15 updates per second. The
dataset used in this experiment was an excerpt from the Commu-
nities and Crime dataset, taken from the UCI dataset repository
[2].
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Figure 10: Achieved updates per second for 1,10 and 20 se-
lected control points, depending on the number of data-records
and attributes of the dataset.

A.2 The rarity measure
The rarity of a pattern approximates the probability of occurrence
of the whole pattern weighted by the probabilities of the single
items that build the pattern not occurring. To put it in a formal way,
letD be a transactional database over a fix set of items. Further, let
P be a pattern, consisting of k of these items P = {p1, . . . , pk}.
The rarity of P is calculated as

rarity(P,D) = freq(P,D)
∏
pi∈P

(
1− freq(pi,D)

)
,

where freq(x,D) denotes the observed frequency of occurrence of
the pattern x in the database D.

There is a relation to the lift measure of a pattern, which is calcu-
lated by

lift(P,D) = freq(P,D)
∏
pi∈P

1

freq(pi,D)
.

Whereas rarity considers the absence-frequency of the singleton
items, lift considers the inverse of them.

A.3 Subgroup quality measures
In the context of subgroup discovery, the interestingness of a pat-
tern is measured by a quality function q(P,D) that considers the
pattern and the dataset and returns a real-valued number. This func-
tion usually combines the size of the support set of the pattern and
its unusualness w.r.t. the designated target label in the following
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way:

q(P,D) = freq(P,D)α ·

(
|D+

[P ]|
|D[P ]|

− |D
+|
|D|

)
,

where D+ denotes the positively labeled share of the data andD[P ]

the portion of the data that supports the pattern P . The coefficient
α of the quality function is a constant 0 ≤ α ≤ 1, characterizing
a family that includes some of the most-popular quality functions.
For α = 1 it is order-equivalent to the weighted relative accuracy
(WRACC) and the Piatetsky–Shapiro quality function. For α =
0.5 it corresponds to the binomial test quality function, which is
used to mine the subgroup description patterns in Section 4.3.
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