
Interactive Exploration of
Comparative Dependency Network Learning

Diane Oyen
Los Alamos National Lab

Los Alamos, New Mexico, USA
doyen@lanl.gov

Terran Lane
Google, Inc

Cambridge, MA, USA
terran@cs.unm.edu

ABSTRACT
Comparative dependency network learning is a growing field
of research, especially in systems biology. Domain scientists
would like to discover patterns of variable dependency that
are conserved across conditions or discover pathways that
are disrupted due to disease. In machine learning, multitask
graphical structure learning algorithms have been developed
to help solve this problem by learning network models from
multiple related datasets. These algorithms typically have
regularization hyper-parameters that have the effect of re-
ducing the number of spurious edges learned and the num-
ber of spurious differences learned. We propose a mecha-
nism to allow the end-user to control these regularization
hyper-parameters in real-time to interactively explore the
huge space of potential dependency network solutions. This
is a critical element of a visualization system that enables
domain scientists to discover interesting patterns in mul-
tivariate data. Yet, this is a computationally challenging
endeavor as complex models must be learned in real-time
and, additionally the number of differences learned in each
network and the number of differences between them must
be translated by the machine learning algorithm into the
correct change in the setting of the hyper-parameters. This
paper introduces a general framework for interactively ex-
ploring the similarities and differences among a set of depen-
dency networks and demonstrates our work-in-progress on a
specific implementation for multiple Bayesian networks.

1. INTRODUCTION
Probabilistic graphical models encode patterns of depen-

dency among variables in multivariate data [11]. Attention
is turning to the problem of comparative network analy-
sis; that is, identifying dependencies that are conserved or
different among related sets of data. In machine learning,
multitask graph learning algorithms have been developed to
address this problem [17, 4]. Multiple graphs are learned
simultaneously, producing models that are similar except
where the data strongly supports differences, easing compar-
ison (see example in Figure 1). The results of these learning
algorithms are multiple graphical models, requiring visual-
ization software to help the user understand the results.

Multitask graph structure learning is a promising direc-
tion for knowledge discovery in many scientific domains [25,
16, 5, 19]. However, there remain issues of practical con-
cern; namely, the exploration of the solution space for dif-
ferent settings of hyper-parameters. The solution space in-
cludes many graph structures that fit the data nearly equally
well, but the learned solutions vary based on the choice of

hyper-parameters given to the learning algorithm. Mul-
titask graph structure learning algorithms typically have
two hyper-parameters, one that affects the number of edges
learned (sparsity) and the other that controls the strength of
transfer bias (how similar the graphs will be to each other).
Machine learning typically treats these hyper-parameters as
nuisance parameters that must be tuned to learn an opti-
mal model [14, 13, 24, 15, 17]. Yet, to the end user, all
learned models — no matter the choice of hyper-parameters
— are good fits to the data. There is a natural tradeoff
between sensitivity and specificity in machine learning al-
gorithms governed by the hyper-parameters. Domain sci-
entists would like to be able to vary the level of confidence
in learned models to see which are the highest confidence
edges and/or differences to explore all potential dependency
patterns in the data.

Naively, exploration of the solution space is achieved by
performing a grid search over hyper-parameter settings and
then presenting each of these learned graphs to the end user.
Yet, this grid search is not an ideal approach. To illustrate
the problem of grid search, we take a look at example results
from a neuroimaging study. Using an existing multitask
graph learning algorithm [4], we assign the sparsity hyper-
parameter to 10 values evenly spaced in the range [0.1, 1] and
we assign the transfer hyper-parameter to 11 values evenly
spaced in the range [0, 1]. All 110 combinations of sparsity
and transfer settings were run through a multitask algorithm
and the solutions were displayed to a domain expert who
found which solution was most interesting. Taking a broader
look at the results from all 110 settings of these parameters,
Figure 2a summarizes the number of edges learned in the
networks for all of the values in the grid. We can see from
this that if the sparsity setting is too high, then no edges are
learned in the graphs. Yet, if the sparsity parameter is too
small, then all variables are dependent on each other and
this gives little new information to the end-user. Figure 2b
shows the number of edges that are different between the two
learned networks. We see that for many settings of transfer
and sparsity there are many solutions that are uninteresting
because there are no differences. Another frustration with
this grid search is that the number of edges or differences
learned does not change linearly with evenly-spaced steps in
parameter space. Tuning the hyper-parameters over a coarse
grid like this could easily miss the optimal hyper-parameter
setting.

After noticing that the most interesting results are lo-
cated within a narrow range of hyper-parameter settings,
we can re-run the multitask network learning algorithm for

88

(a) Independently learned graphs

(b) Graphs learned with some transfer

Figure 1: Example of a sub-graph learned from neuroimaging data. The nodes in the graph are regions of the brain. Edges
indicate a direct dependent relationship in functional activity as modeled by a multinomial distribution; i.e. an excitatory or
inhibitory pathway between brain regions. When the graphs are learned independently (a), the connections are different. If
this were the only result given to the domain scientist, we might conclude that the Amygdala has a regulating effect on the
pathway between the Hippocampus and ParaHippocampus in one group of subjects, but not in the other group. However,
with even a little bit of transfer bias encouraging them to be similar (b), the differences disappear, suggesting low confidence
that this difference is real. This is a small sub-graph of a much larger graph. Higher confidence differences in the larger graph
could still remain at this low value of the transfer hyper-parameter.

new values of hyper-parameters. As an example, we “zoom
in” on the range [0.5, 0.6] for the sparsity parameter and
the range [0, 0.1] for the transfer parameter. The algorithm
is run with another 100 combinations of values for hyper-
parameters evenly spaced in this new range. Figure 2c gives
the number of individual edges learned in each networks
while Figure 2d displays the number of differences between
the two networks. Here we see that the numbers of edges
and differences learned change smoothly in this local region
of hyper-parameter space.

The above example demonstrates key limitations of ex-
isting exploratory approaches in comparative dependency
networks, which we address with our interactive approach.
First, instead of changing the hyper-parameters, we must
think about how the results will change. In this case, the end
user thinks about seeing more or fewer edges or differences
(assuming that fewer edges are higher confidence edges, etc).
Therefore, we need a computational model that translates
the human desires (number of edges and differences) into
the domain of the hyper-parameters of the machine learn-
ing algorithm. Second, the end user needs to be able to
get fine-grained results in realtime to effectively explore the

space of solutions that are of interest. Thus, an effective
interactive exploration of dependencies must translate hu-
man desire into machine learning objectives and update in
realtime in response to user feedback.

This paper introduces an interactive machine learning al-
gorithm for multitask graphical models as part of ongoing
research into creating an interactive data exploration visu-
alization system (pictured in Figure 3). A single setting of
the hyper-parameters does not give the full picture that do-
main scientists want to see. Therefore, we propose a graph-
ical structure learning algorithm that allows the user to in-
teractively adjust the number of edges and the number of
differences learned between graphs. As the user makes se-
lections about increasing/decreasing the number of edges or
the number of differences between graphs, we estimate the
necessary change in the hyper-parameter values and re-learn
the networks, displaying the results and allowing further in-
teraction. This approach gives the user an exploration of the
solution space directly, rather than having to guess pairs of
values for hyper-parameters. Essentially, we are giving the
user the ability to explore fine-grained steps in the solu-
tion space, and making the appropriate steps in the hyper-

89

0
0.2

0.4
0.6

0.8
1

0.2
0.4

0.6
0.8

1

0

1000

2000

3000

transfer

Number edges

sparsity

(a) Number of learned edges

0
0.2

0.4
0.6

0.8
1

0.2
0.4

0.6
0.8

1

0

500

1000

transfer

Number differences

sparsity

(b) Number of differences

0
0.02

0.04
0.06

0.08
0.1

0.5

0.55

0.6

0

100

200

300

400

transfer

Number edges

sparsity

(c) Number of learned edges

0
0.02

0.04
0.06

0.08
0.1

0.5

0.55

0.6

0

50

100

150

transfer

Number differences

sparsity

(d) Number of differences

Figure 2: Neuroimaging study: Summary statistics about learned network models for a course (a,b) and fine (c,d) grid of
values of sparsity and transfer hyper-parameters.

parameters to achieve that result, rather than using a typical
grid search in hyper-parameter space.

2. RELATED WORK
To interactively explore graphical models, we need to pro-

vide a means to adjust parameters of interest to the user
and display the resulting graphs. Display of the graphs is
handled through the Cytoscape software that is popular in
bioinformatics [23]. The plugin interface allows us to cus-
tomize the display for comparison of multiple graphs (see
Figure 3). We incorporate sliders that allow a user to mod-
ify the sparsity and degree of transfer among networks. Pre-
viously, in our implementation, these sliders simply looked
up the pre-computed graphs learned from a list of hyper-
parameter values [20]. The user did not have any control
over the granularity of the slider, and furthermore, chang-
ing a hyper-parameter value may not always have the desired
effect (for example, on sparse graphs, even a small amount
of transfer will cause the graphs to be identical). Therefore,
we propose to provide more intuitive controls to the user,
allowing them to change the number of edges or the number
of similarities directly.

The idea of interactive parameter search is inspired by
work in supervised learning models that show that with hu-
man interaction, the optimal parameter settings are found
faster [1] and gives the user control over the objective func-
tion [9]. As in these papers, to achieve this interactive explo-
ration in multitask graph structure learning, we must be able
to estimate the values of hyper-parameters that will produce
the desired change in the solution space. We achieve this by
calculating the gradient of the solution with respect to the
hyper-parameters and then taking a step in the direction
of the gradient to produce a new solution that meets the
requirements of the user.

In graph structure learning literature, much research has
gone into optimizing the selection of the sparsity parameter
[14, 13] without a clear resolution to the problem. Tradi-
tionally, the hyper-parameters are tuned through trial and
error after examining the learned graphs [4] or through a
computationally expensive grid search that optimizes with
respect to holdout data [24, 15, 17, 19]. Graph structure
learning is an unsupervised learning domain and so there
may not be an optimal parameter setting. Even using the
oracle value of hyper-parameters does not guarantee opti-
mal performance [15], instead that paper recommends us-
ing known non-interactions to gauge the optimal level of

sparsity. Selecting the ideal setting of transfer parameters
has received less attention, with cross-validation being the
preferred method [17, 19] and subjective human-selection
being another choice [4]. Cross-validation selects the best
model to match the empirical distribution; yet, distribution
matching is not always the primary goal for using transfer
learning, and therefore cross-validation will not give optimal
results. Giving the user the ability to explore the solution
space is even more important in unsupervised learning. The
user may have desires about learned models that are not ex-
pressible until the learned models are seen [3]. Furthermore,
allowing a user to give feedback about the solutions is more
intuitive than asking the user to adjust hyper-parameters in
the hopes that the adjustments will have the desired effect.

3. FRAMEWORK OF USER INTERACTION
We formalize the general problem of learning multiple

graphical model structures and describe a method for in-
cluding user input in response to learned models.

3.1 Problem Formulation
A graphical model is a joint probability distribution of a

random vector X = [x1, x2, . . . , xp] that can be represented
compactly as factors of local structure, P (X) =

∏p
i=1 f(xi,ne(xi)),

where the set of neighbors of each node, ne(xi), is some sub-
set of variables. The elements of vector X = [x1, x2, . . . , xp]
are random variables represented in the graphical model as
vertices (or nodes) as the set V . If xp ∈ ne(xq), then there
is said to be a direct dependency between these two vari-
ables which is represented with an edge epq. The set of all
edges is called E. In many cases, the graph structure itself
G = {V,E} is of particular interest.

In the problem of multitask graph structure learning, we
have several sets of data, Dk for k ∈ {1, 2, . . . ,K}, from
which we learn several graphs G = {G1, . . . , GK}. The
multitask structure learning algorithm relies on two hyper-
parameters, which we call Λ = [λ1, λ2], where generally
0 < λ1 ≤ 1 controls the sparsity and 0 ≤ λ2 ≤ 1 controls the
strength of transfer. We treat the graph structures G and Λ
as unknowns to be learned. For a fixed Λ, the graphs can
be learned from the data with existing algorithms. The user
will interactively learn Λ by giving feedback to the learning
algorithm about the number of edges and edge similarities
that they would like to see in the learned graphs.

In this paper, we represent the set of edges in all of the K
graphs with G, an m×K binary matrix, where m is the total

90

Figure 3: Interactive multi-graph visualization. Our system consists of the following components: a visual display of multiple
learned graphs, user controls to increase/decrease the number of edges in each graph, user controls to increase/decrease the
degree of similarity among pairs of graphs, efficient update of learned graphs in response to user controls.

number of potential edges (for directed models m = p(p−1)
and for undirected models m = p(p− 1)/2). Each entry Gik
represents the presence (Gik = 1) or absence (Gik = 0) of
the edge i in task k. In a slight abuse of notation, we use Gik
to refer to edge i in task k, while Gk refers to all potential
edges in task k. The structure of the learned graphs depends
on the training data and the hyper-parameters Λ = [λ1, λ2].
While looking at a given solution, a human end-user may
desire to see a solution with more (or fewer) edges in some
Gk or with more (or fewer) edge differences between some
Gi and Gj for tasks i and j. These desires are encoded in
a binary matrix S that correspond to the edge matrix G
(explained in further detail later).

3.2 Sketch of Interactive Approach
Our interactive approach alternates between learning graph

structure, G = f(D,Λ), and learning hyper-parameters, Λ =
g(D,G,S), based on feedback S from a human who is look-
ing at a visualization of the learned graphs G. To initialize
the interaction, we learn a set of graphs from given datasets.
These graphs can be learned with transfer bias (λ2 = 0) ini-
tially with an arbitrary value for the sparsity (e.g. λ1 = 0.5).
These graphs will be displayed in Cytoscape, along with in-
formation in the Control Panel about the number of edges
learned in each graph and the number of differences in edges
among the tasks. The user can then adjust the desired num-
ber of edges learned (up or down) or adjust the number of
differences among pairs of tasks. Based on the user input, S,
we compute the necessary Λ to achieve the requested change
(details in the next section). Using the computed Λ, we re-
learn the graphs, G, and update the visualization, allowing
the user to further interact until satisfied with the solution.

3.3 Representation of User Feedback
When a user clicks to change the number of edges in a

graph or the number of differences among graphs, the user
is not directly changing the hyper-parameters. We must
translate the feedback into an appropriate change in the
hyper-parameters to produce the desired outcome. To rep-
resent user preferences, we use a binary matrix, S, the same
size as G (m × K). Each entry, Sik, indicates the user’s
desire to see the presence or absence of edge i in task k. Us-
ing this input, we can move the learned structures G in the
direction of the user preferences S by finding an appropriate
adjustment to Λ.

An example illustrates how the user representation works.
Consider the case where a user wishes to see fewer differences
between tasks a and b. Let the currently existing set of non-
zero edges in graph a be A and the set of non-zero edges
in graph b be B. Then the user feedback defines a set U of
edges, any one of which could change to satisfy the user. If
the user wishes to see fewer edges that exist in a but not b
then the set difference A \ B must get smaller. Therefore
U = A \ B. We set Sea = 0 ∀e ∈ U and Seb = 1 ∀e ∈ U . S
encodes the user-preferences to see one of the specific edges
to be added or removed. The remaining entries in S are set
to the current values of G, i.e. Sek = Gek ∀e /∈ U and ∀k.

Formally, the rules for representing user feedback depends
on the action taken by the user. The rules are defined as:

• Fewer edges in task i:
Assign Sei = 0 ∀ e = {1, 2, . . . ,m}.
Assign Sek = Gek ∀ e = {1, 2, . . . ,m} and ∀ k 6= i.

• More edges in task i:
Assign Sei = 1 ∀ e = {1, 2, . . . ,m}.
Assign Sek = Gek ∀ e = {1, 2, . . . ,m} and ∀ k 6= i.

91

• Fewer edges in task i that are not in task j:
Define set U = {e = {1, 2, . . . ,m}

∣∣ Gei = 1∧Gej = 0}.
Assign Sek = 0 ∀ e ∈ U and k = i.
Assign Sek = Gek otherwise.

• More edges in task i that are not in task j:
Define set U = {e = {1, 2, . . . ,m}

∣∣ Gei = 0∧Gej = 0}.
Assign Sek = 1 ∀ e ∈ U and k = i.
Assign Sek = Gek otherwise.

3.4 Local Move Toward User Desires
The goal is to obtain a setting for Λ = [λ1, λ2] that creates

graphs that are nearly the same as the current solution,
but one edge closer to the user’s desires S. Therefore, we
define an objective function that measures the squared error
between S and G:

g(Λ) =

K∑
k=1

∑
e∈E

(Sek −Gek(Λ))2 . (1)

The user’s feedback asks us to take just one step in the
direction of this objective (only one edge is added or deleted
at a time). We are not fully optimizing the objective. The
gradient is given in Eq 2:

∇Λg = −2

K∑
k=1

∑
e∈E

(Sek −Gek(Λ)) · ∇ΛGek(Λ)

= −2 · JΛ(~G) · (~S − ~G) ,

(2)

where ~S and ~G are vectors formed by stacking the columns
of the S and G matrices respectively. JΛ(~G) is the 2 × | ~G|
Jacobian matrix, with each entry in the first row the par-
tial derivative of Gek with respect to λ1 while the second
row is with respect to λ2. Our objective is to find the mini-
mum step size η that gives the incremental change requested.
Once η is found, the new value of the hyper-parameters is:

Λnew = Λ− η · ∇Λg . (3)

The new hyper-parameter values are fed back into the learn-
ing algorithm, the visualized results are updated and the
cycle continues if the user gives more feedback.

3.5 Computational Challenges
The above objective requires two computationally expen-

sive steps. The first is the calculation of the Jacobian (the
gradient ∇ΛGek(Λ)). The computational complexity of this
depends on the specific model of multitask graph struc-
ture learning used. For the Bayesian discovery of multitask
Bayesian networks format given in the next section, the par-
tial derivative with respect to λ1 (sparsity) is trivial, but the
partial derivative with respect to λ2 (the transfer strength)
is computationally equivalent to calculating the multi-task
family scores. Which is to say that it is exponential and
could take minutes (depending on complexity-reducing ap-
proximations). However, we note that the gradient depends
only on the current model and not user feedback. Therefore,
the gradient can be calculated in the background while the
user is looking at the previously learned graphs and making
a choice about feedback to give.

The other computationally expensive procedure is the in-
ference of G(Λ) for each task. For the Bayesian discovery
of multitask Bayesian networks approach given here, to up-
date G the graphs must be re-learned (exponential time, or
approximated with MCMC).

4. EXPLORATION OF MULTITASK
BAYESIAN NETWORKS

Here we apply the above framework for interactive graph
exploration to the specific problem of Bayesian discovery of
multiple Bayesian networks, particularly those with transfer
bias from related data. Then we discuss how to cache in-
termediate calculations to make updating the transfer bias
faster on subsequent calculations. Finally, we show how dis-
crete graphs are obtained from the expectations on edges.

4.1 Preliminaries
A Bayesian network is a directed acyclic graph that repre-

sents a joint probability distribution as P (X) =
∏p
i=1 P (xi|πi),

where πi is the parent set of child i. That is, the value of
xi depends directly on the values of all xj ∈ πi. Bayesian
structure discovery produces a posterior estimate of the ex-
pectation of each edge in a Bayesian network [7, 10]. For
multitask Bayesian networks, there is a posterior estimate
of the expectation of each edge in each task, which we or-
ganize into a matrix W, denoted 0 ≤ wek ≤ 1. An edge
is described by an indicator function fi(πi) such that the
edge xv → xi exists (and fi(πi) = 1) iff xv ∈ πi, otherwise
fi(πi) = 0. The probability of the edge wek is therefore the
expectation of f in task k for that edge. The expectation is
calculated over all orderings, ≺, of the nodes in the Bayesian
network, as in Equation 4. For a given ordering, the parents
of a node i must precede i in the order.

wek =
∑
≺

P (≺)
∑
G⊆≺

P (G|≺)P (D|G)fe(πe) , (4)

where G ⊆≺ means that the graph structure G is consistent
with the order ≺; and πe is the parent set of node xe in
graph G.

Relatively efficient methods for exactly calculating each
we for single-task learning exist [10]. The method breaks
down into three steps:

1. Calculate the family scores from data. These are called
the β functions, βi(πi) = P (πi)P (xi|πi)fi(πi). It is
assumed that the computational complexity of each of
these is some function C(n) that depends on the num-
ber of samples n. The maximum number of parents
allowed for any node is typically fixed to a small nat-
ural number, r. Therefore, there are O(pr+1) of these
functions to calculate for a total computational com-
plexity of O(pr+1C(n)).

2. Calculate the local contribution of each subset U ⊆
V − {i} of potential parents of i. These are called
the α functions, αi(U) =

∑
πi⊆U P (πi)P (xi|πi)fi(πi).

There are an exponential number of subsets U , there-
fore there are an exponential number of α functions.
Using a truncated fast Möbius transform [2], all of the
α functions can be computed in O(p2p) time, assuming
that the β functions are pre-computed and that there
is a limit, r, on the maximum size of the parent sets.

3. Sum over the subset lattice of the various Ui to ob-
tain the sum over orders ≺. Although the number of
orders is p! there is no need to enumerate each order
explicitly. The potential parents of each node i depend
only on the set of parents Ui that precede it, not on
the ordering of the parents within Ui. Using dynamic
programming, this sum takes time O(p2p) [10].

92

The total computational complexity for a single task isO(p2p+
pr+1C(n)). This is the exact calculation of the posterior.
For large networks, roughly p > 30, the exponential term is
intractable. In these cases, we can use MCMC to approx-
imate the sum over orders [18]. To limit the computation
of the polynomial term, we can choose a sufficiently small
r or further reduce the number of potential families using
candidate parent sets [8].

To learn multiple Bayesian networks simultaneously, we

replace the single-task prior P (πi) with a transfer bias P (π
(k)
i , π

(j)
i)

that shares information among tasks k and j [19]. The trans-

fer bias penalizes the number of parents in π
(k)
i that are not

also in π
(j)
i for all pairs of tasks (k, j). This transfer bias

encourages similar graph structures to be learned for each
task, and has been shown to produce more robust networks
[17, 19]. In terms of the three-step method above [10], this
means replacing the β functions with [19]:

βki(πi, λ2) =fi(π
(k)
i)P (x

(k)
i |π

(k)
i)P (π

(k)
i , π

(j)
i)

=fi(π
(k)
i)P (x

(k)
i |π

(k)
i)× 1

(K − 1)(4− λ2)|Ui|
×∑

j 6=k

∑
π
(j)
i ⊆Ui

P (x
(j)
i |π

(j)
i)(1− λ2)∆(π

(k)
i ,π

(j)
i)

 ,

(5)

where ∆(π
(k)
i , π

(j)
i) = |π(k)

i \ π(j)
i |. We assume each β func-

tion takes time C(nk) to compute, where nk is the number
of samples in task k. Under transfer learning, there is a now
a sum over parent sets for each task, therefore the compu-
tational complexity is O(Kpr) for each β function. There
are Kpr+1 of these functions to calculate. This gives a to-
tal computational complexity for all multitask β functions
of O(K2p2r+1). Note that for visualization and interactive
purposes, the number of tasks is typically K = 2 for ease of
end-user interpretation of the results.

Once the multitask β functions are calculated, the rest
of the posterior estimate can be calculated using existing
algorithms, such as exact expectation over orders [10, 21] or
MCMC approximations [18].

4.2 Efficient Computation of Transfer Bias
We store intermediate calculations to speed up any future

calculations with different values for λ2. We achieve this by
noting that the function ∆ can only produce a finite number
of integer values in the range [0, r]. By grouping the parents
sets, we can re-arrange terms to group together the parent

sets π
(j)
i that will produce the same value in the ∆ function.∑

π
(j)
i ⊆Ui

P (x
(j)
i |π

(j)
i)(1− λ2)∆(π

(k)
i ,π

(j)
i) =

=

r∑
δ=0

∑
π
(j)
i |∆(π

(k)
i ,π

(j)
i)=δ

P (x
(j)
i |π

(j)
i)(1− λ2)δ

=

r∑
δ=0

(1− λ2)δ
∑

π
(j)
i |∆(π

(k)
i ,π

(j)
i)=δ

P (x
(j)
i |π

(j)
i)

(6)

By separating the sum over individual scores, we can store
the sums and re-use them later if λ2 changes. We define the

(a) W1 (b) W2

Figure 4: Estimated posterior likelihoods for two tasks with
λ2 = 0. There are 8 variables, and 8 × 7 possible directed
edges, which are organized as a weighted adjacency matrix.

γ functions as these sums:

γkiδ(πi, δ) =
∑
j 6=k

∑
π
(j)
i |∆(π

(k)
i ,π

(j)
i)=δ

P (x
(j)
i |π

(j)
i) ,

for all πi ⊆ V − {i}, δ ∈ Z, 0 ≤ δ ≤ r .
(7)

With a maximum parent set size r, the maximum value that
δ can take is r. Therefore, the number of γ functions to be
calculated are: Krpr+1, one for every family in every task for
every value of δ. The calculation of all of these γ functions
is O(K2rp2r+1C(n)).

We rewrite the β functions using the pre-computed γ func-
tions. Notice that the computational complexity of the β
function is now linear in r. This means that the functions
can be computed quickly for various values of λ2.

βki(πi, λ2) =
fi(π

(k)
i)P (x

(k)
i |π

(k)
i)

(K − 1)(4− λ2)|Ui|
·
r∑
δ=0

(1− λ2)δγkiδ(πi, δ)

(8)
These γ functions are also used in the calculation of the

Jacobian.

4.3 Thresholding for graphs
The feature probabilities, wek, learned from Equation 4

can be organized into square matrices Wk for each task k
representing the directed edges of a network. Figure 4 shows
an example of these learned feature posterior probabilities.

In order to display graphs to the user (see Figure 5), we
threshold the wek values, showing only the edges with like-
lihoods greater than some cut-off value 0 ≤ λ1 ≤ 1. Clearly,
λ1 will control the density of edges in the displayed graphs.
In this work, we employ a soft-threshold sigmoid function to
define the learned graph:

Gek =
1

1 + exp[−β(wek − λ1)]
. (9)

For sufficiently large values of β > 1 this is equivalent to a
hard threshold at λ1.

Mathematically, this thresholding of edge expectations is
a loss of information. For comparative network analysis, it
may seem desirable to keep all edges weighted by their ex-
pectation. However, from the end user perspective, nearly
all graph visualization systems allow thresholding out the
weakest edges to get a clearer picture of the network, and so
we treat thresholding as a necessary step for visualization.
When comparing the similarities and differences among a set
of graphs, it is helpful to be able to control for the number of

93

Smoking

Bronchitis LungCancer

VisitToAsiaTB

TBorCancer

Dyspnoea

Xray

(a) G1 for λ1 = 0.1

Smoking

Bronchitis LungCancer

VisitToAsia TB TBorCancer

Dyspnoea

Xray

(b) G1 for λ1 = 0.5

Smoking Bronchitis LungCancer VisitToAsia TB TBorCancer

Dyspnoea

Xray

(c) G1 for λ1 = 0.8

Smoking

Bronchitis

LungCancer VisitToAsiaTB

TBorCancer

Dyspnoea

Xray

(d) G2 for λ1 = 0.1

Smoking

BronchitisLungCancer VisitToAsiaTB

TBorCancer

Dyspnoea

Xray

(e) G2 for λ1 = 0.5

Smoking

BronchitisLungCancer VisitToAsiaTB

TBorCancer

Dyspnoea Xray

(f) G2 for λ1 = 0.8

Figure 5: By thresholding at λ1, we obtain graphs Gk from the weighted adjacency matrices Wk.

(a) W1 (b) W2

Figure 6: Estimated posterior likelihoods for two tasks with
λ2 6= 0. There are 8 variables, and therefore 8 × 7 possible
directed edges, which we have organized into a weighted
adjacency matrix.

differences between the graphs. By encouraging the graphs
to be similar, we can reduce the number of spurious dif-
ferences learned, and display only differences that are most
likely to be real (see Figures 6 and 7). The λ2 parameter
controls the amount of similarity bias which encourages the
wek and wej values of tasks k and j to be close, as in Fig-
ure 6. This means that as the w values move closer together,
some will cross the threshold, as in Figure 7, therefore, both
parameters will have a noticeable effect on both the number
of edges learned and the number of differences.

5. NUMERICAL ESTIMATION OF HYPER-
PARAMETERS

The previous section showed how to learn multiple Bayesian
networks given data and hyper-parameter settings. This sec-
tion outlines our method for incorporating user preferences
into the learning algorithm. Once feedback has been re-
ceived from the user, the hyper-parameters Λ(G,S) need to
be updated. This is computationally expensive, and so we

lay out a numerical estimation of Λ.

5.1 Estimation of Λ for Multitask Bayesian Net-
works

To re-learn graphs after getting feedback from the user, we
take one step toward minimizing the distance between the
learned graphs an the given user preferences, as in Equa-
tion 1. First, we need to calculate the Jacobian ∇ΛGek(Λ)
in Equation 2. For multitask Bayesian networks, the partial
derivative with respect to λ1 is fairly straightforward.

∂

∂λ1
Gek =

−βe−β(wek−λ1)

1 + e−β(wek−λ1)

= −βe−β(wek−λ1)Gek

(10)

The partial derivative with respect to λ2, on the other hand,
is more complicated to calculate because the family scores
within the sums depend on λ2. Therefore, the partial deriva-
tive of each of these family scores must be computed, and
the sums re-calculated.

∂

∂λ2
Gek =

= −βe−β(wek(λ2)−λ1)Gek
∑
≺

∑
π
(k)
e ⊆Ue

fe(Gk)P (x(k)
e |π(k)

e)×

 ∑
π
(j)
e ⊆Ue

P (x(j)
e |π(j)

e)
−∆(1− λ2)∆−1+ |Ui|(1− λ2)∆(4− λ2)−1

(4− λ2)2

= −βe−β(wek(λ2)−λ1)Gek

∑
≺

∑
π
(k)
e ⊆Ue

fe(Gk)P (x(k)
e |π(k)

e)×

 ∑
π
(j)
e ⊆Ue

P (x(j)
e |π(j)

e)
(1− λ2)∆ikj

(4− λ2)2
·
(
|Ui|

4− λ2
− ∆ikj

1− λ2

)
(11)

94

Smoking

Bronchitis

LungCancer

VisitToAsiaTB

TBorCancer

Dyspnoea Xray

(a) G1 for λ1 = 0.1

Smoking

Bronchitis

LungCancer VisitToAsia TB

TBorCancer

Dyspnoea

Xray

(b) G1 for λ1 = 0.5

Smoking Bronchitis LungCancer VisitToAsia TB TBorCancer

Dyspnoea

Xray

(c) G1 for λ1 = 0.8

Smoking

Bronchitis LungCancer VisitToAsiaTB

TBorCancer

Dyspnoea

Xray

(d) G2 for λ1 = 0.1

Smoking

BronchitisLungCancer VisitToAsiaTB

TBorCancer

Dyspnoea

Xray

(e) G2 for λ1 = 0.5

Smoking

BronchitisLungCancer VisitToAsiaTB

TBorCancer

Dyspnoea Xray

(f) G2 for λ1 = 0.8

Figure 7: By thresholding at λ1, we obtain graphs Gk from the weighted adjacency matrices Wk with λ2 > 0.

This can be re-written using the pre-computed γ func-
tions.

∂

∂λ2
Gek =

=− βe−β(wek(λ2)−λ1)Gek
∑
≺

∑
π
(k)
e ⊆Ue

fe(Gk)P (x(k)
e |π(k)

e)×

[
r∑
δ=0

(1− λ2)δ

(4− λ2)2
·
(
|Ui|

4− λ2
− δ

1− λ2

)
γkeδ(π

(k)
e , δ)

]
(12)

The minimum step size is η such that Λnew = Λ − η∇Λg
gets G(Λnew) one edge closer to S.

∑
e,k

|Sek −Gek(Λnew)| −
∑
e,k

|Sek −Gek(Λ)| = −1 (13)

We solve for η using binary search until the above criteria is
met.

6. DISCUSSION
There is strong motivation for creating interactive human-

in-the-loop algorithms for exploring comparative dependency
networks. Here we discuss our initial findings on benchmark
networks, share case studies on real data and then suggest
directions for future work.

6.1 Demonstration on Benchmark Networks
We use the benchmark Asia network to explore the prac-

ticality of this interactive approach. The Asia network con-
tains 8 discrete variables [12]. In order to produce multi-
ple networks with some edges different, we randomly delete
each edge with probability p = 0.1. If an edge is deleted,
the conditional probability table for the child is modified by
summing over the removed parent. This produces a set of

0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

0

5

10

15

20

transfersparsity

(a) Number of learned edges

0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

0

5

10

15

transfersparsity

(b) Number of differences

Figure 8: Modified asia networks: summary statistics about
learned network models for various values of sparsity and
transfer hyper-parameters.

networks that are similar to the original Asia network but
with a few edges different.

Using two tasks, and starting with an initial value for
Λ = [0.5, 0], we learn networks G. Then simulated feedback
responses, S, are given by randomly choosing a user action
at each stage. For each of these feedback matrices, we track
the movement in Λ to investigate the effect of S on Λ. For
comparison, we also perform a grid search by running the
multitask network learning algorithm for combinations of
settings of λ1 and λ2 evenly spaced in the valid range for
each parameter. Figure 8 shows results of a grid search
for one set of data, with 100 samples drawn from modified
Asia networks. As expected, neither the number of edges
nor the number of differences learned vary linearly with the
input hyper-parameters. Whereas, by design, the interactive
algorithm takes steps evenly in terms of the number of edges
or differences learned.

One question is whether the gradient direction is typi-
cally aligned with just one hyper-parameter, or if it is usu-

95

ally more “diagonal”. If it is typically aligned with just one
hyper-parameter, then we could adjust each parameter inde-
pendently rather than calculating the gradient. We observe
that it is typically diagonal (takes a step in both λ1 and λ2

directions), however there are some cases where the gradient
direction is nearly zero for either λ1 or λ2.

It is difficult to ascertain the interestingness of a solution
for these benchmark networks. We have shown that grid
search covers objectively uninteresting solutions; in the form
of redundant solutions, overly dense solutions and empty
solutions. These benchmark networks are not from a real
domain (or it is an overly simplistic domain), therefore there
is not a practical way to judge the subjective interestingness
of the solutions to an uninteresting benchmark problem. To
analyze the usefulness of the interactive algorithm from the
end-user perspective, we therefore rely on case studies from
real data.

6.2 Case Studies
Results on both neuroimaging and protein studies were

presented to domain scientists using our interactive com-
parative network visualization. In both cases, a machine
learning expert initially loaded the result networks into the
visualization system and then manned the controls for ad-
justing the number of edges and the number of differences.
After a few minutes of looking through network solutions
with various numbers of edges and differences, the domain
experts typically made requests, such as to see “the highest
confidence edges shared by both tasks.” The domain experts
were able to take over the controls themselves and expressed
appreciation for being able to visualize so many solutions
quickly.

Anecdotally, we find that different domain experts are in-
terested in different levels of confidence in edges and differ-
ences. For the neuroimaging study, the domain expert was
most interested in extremely high confidence differences, se-
lecting difference networks with only three dependencies in
each. On the other hand, the biologists looking at protein
data were interested in difference networks with 100 depen-
dencies. These two anecdotes support the idea that different
users could have different inexpressible objective functions
in mind. However, we need to have different domain experts
analyze the same data to see if the various interests are due
to the users or if it is inherent in the data.

Often in machine learning, the goal is to find the single
best solution to a problem. However, while looking through
the various solutions produced by different hyper-parameter
settings, the domain experts did not ask how to select the
single best solution. They fully understand the concept of
exploring the precision-recall tradeoff. Yet, they did ask
whether there is any way to get a confidence interval for
the dependencies and differences. Instead of adjusting the
number of edges/differences, they would find it preferable to
be able to quantify the confidence of edges/differences.

6.3 Future Work
This paper provides a framework for creating interactive

multitask graph structure learning algorithms. These algo-
rithms remain computationally challenging. The Bayesian
posterior distributions on multiple Bayesian networks, in
particular, do not scale well to large networks. The scal-
ability problem is endemic to the problem of Bayesian net-
work learning. Performing updates in real-time for large

networks will be computationally difficult. We could allevi-
ate this problem through the use of approximate or heuristic
network structure learning. Doing so requires extensive eval-
uation on the tradeoffs between speed and accuracy, and so
we leave this for future work.

Other graph learning algorithms, such as graphical lasso
[15, 4], scale to large networks much better than Bayesian
networks. Therefore, we would like to apply the proposed
interactive method to multitask graphical lasso. However,
the graphical lasso objective with respect to λ1 and λ2 is
discontinuous; therefore, the gradient (Equation 2) is unde-
fined at precisely the points that we care about. Currently,
we are investigating numerical approximations to the reg-
ularization path or heuristics for finding the discontinuous
“hinge” points quickly. Such algorithms that calculate the
regularization path for individual networks have been devel-
oped [6, 22]. However, there is not any such algorithm for
multitask network learning.

Typical grid search methods are inefficient and informa-
tion criteria based tuning guidelines often are not ideal. In-
teractive guidance provides fine-grained control over explo-
ration of the solution space in those areas that are of highest
interest to the user. We could take a hybrid approach, first
computing results over a coarse grid, then giving the user
the ability to take small local steps or to jump to another
area of the hyper-parameter space using the pre-computed
results.

Other forms of feedback could be incorporated rather than
just increasing or decreasing the number edges and differ-
ences. For example, one request from domain scientists is
being able to query a specific edge, and see what the whole
network looks like at the threshold point where that edge
appears. A similar query could be imagined for edge dif-
ferences. These type of queries should be straightforward
to implement algorithmically. The challenge is in creating
a user interface to gather this type of feedback. Working
closely with domain scientists, we could find other queries
that would make exploring solutions easier for the user.

The interactive approach presented here assumes that a
human will guide the objective function via feedback about
the hyper-parameters. However, the idea of beginning at an
initial point in the solution space and exploring solutions by
modifying hyper-parameters could be accomplished without
a human. A virtual user that begins with no transfer and
repeatedly requests fewer differences, is essentially an auto-
mated process for exploring the regularization path along
the “differences” axis. The result of such a solution path is
a ranking of the strength of the differences found. There-
fore, the updates to the algorithm presented in this paper
could be used as steps in an automated iterative algorithm,
instead of an interactive human-in-the-loop algorithm. This
is an interesting direction to explore to see whether the hu-
man users or the automated approaches are more effective
at finding interesting solutions.

7. CONCLUSIONS
The concept of interactive network comparison is com-

pelling. The hypothesis space is large and the learned mod-
els are complex. Presenting only a single solution (even if
it fits the data well) is unsatisfactory. Yet, it is not easy to
display all possible solutions at once and summary statistics
about the potential patterns only tell a part of the solution.
Graphical models are frequently used in knowledge discov-

96

ery because they help to quickly visualize complex patterns
of dependency. In an increasingly interactive world, it is
frustrating to the end user to see static results of a learn-
ing algorithm and not able to explore alternative solutions
on the fly. Therefore, human-in-the-loop interaction is nec-
essary for comparative dependency network learning. The
first challenge in making a machine learning algorithm inter-
active, is to translate user feedback into changes in hyper-
parameters that control the learning algorithm. The second
challenge is to efficiently update results to be seen in real-
time. We introduce a framework for interactive multitask
graph structure learning with a specific implementation of
multitask Bayesian networks and show that the results are
preferable to the standard grid search over hyper-parameter
space. In practice, all machine learning applications involve
some form of interaction between looking at results and ad-
justing the algorithm to investigate alternative results. Au-
tomating this interactive process allows domain scientists
and other end users to work more efficiently while discover-
ing patterns in their data.

8. REFERENCES
[1] S. Amershi, J. Fogarty, A. Kapoor, and D. Tan. Effective

end-user interaction with machine learning. In Twenty-Fifth
AAAI Conference on Artificial Intelligence, 2011.

[2] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto.
Fourier meets Möbius: fast subset convolution. In
Proceedings of the Thirty-Ninth Annual ACM Symposium
on Theory of Computing, pages 67–74. ACM, 2007.

[3] J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, and
D. Blei. Reading tea leaves: How humans interpret topic
models. In Neural Information Processing Systems, 2009.

[4] P. Danaher, P. Wang, and D. Witten. The joint graphical
lasso for inverse covariance estimation across multiple
classes. arXiv stat.ME, 1111(00324v1), November 2011.

[5] A. de la Fuente. From ‘differential expression’ to
‘differential networking’ – identification of dysfunctional
regulatory networks in diseases. Trends in Genetics,
26(7):326 – 333, 2010.

[6] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least
angle regression. The Annals of Statistics, 32(2):407–499,
2004.

[7] N. Friedman and D. Koller. Being Bayesian about network
structure: A Bayesian approach to structure discovery in
Bayesian networks. Machine Learning, 50(1):95–125, 2003.

[8] N. Friedman, I. Nachman, and D. Peér. Learning Bayesian
network structure from massive datasets: the sparse
candidate algorithm. In Fifteenth Conference on
Uncertainty in Artificial Intelligence, pages 206–215, 1999.

[9] A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Performance
and preferences: Interactive refinement of machine learning
procedures. In Twenty-Sixth AAAI Conference on
Artificial Intelligence, 2012.

[10] M. Koivisto and K. Sood. Exact Bayesian structure
discovery in Bayesian networks. Journal of Machine
Learning Research, 5:549–573, 2004.

[11] D. Koller and N. Friedman. Probabilistic graphical models:
principles and techniques. Adaptive Computation and
Machine Learning. MIT Press, 2009.

[12] S. Lauritzen and D. Spiegelhalter. Local computations with
probabilities on graphical structures and their application
to expert systems. Journal of the Royal Statistical Society.
Series B (Methodological), pages 157–224, 1988.

[13] H. Liu, K. Roeder, and L. Wasserman. Stability approach
to regularization selection (stars) for high dimensional
graphical models. In Neural Information Processing
Systems, 2010.

[14] S. Maslov and K. Sneppen. Specificity and stability in
topology of protein networks. Science, 296(5569):910, 2002.

[15] N. Meinshausen and P. Bühlmann. High-dimensional
graphs and variable selection with the lasso. The Annals of
Statistics, 34(3):1436–1462, June 2006.

[16] K. Mohan, M. Chung, S. Han, D. Witten, S.-I. Lee, and
M. Fazel. Structured learning of Gaussian graphical models.
In Advances in Neural Information Processing Systems 25,
pages 629–637. 2012.

[17] A. Niculescu-Mizil and R. Caruana. Inductive transfer for
Bayesian network structure learning. In Eleventh
International Conference on Artificial Intelligence and
Statistics, 2007.

[18] T. Niinimaki, P. Parviainen, and M. Koivisto. Partial order
MCMC for structure discovery in Bayesian networks. In
Twenty-Seventh Annual Conference on Uncertainty in
Artificial Intelligence, pages 557–564, 2011.

[19] D. Oyen and T. Lane. Bayesian discovery of multiple
Bayesian networks via transfer learning. In IEEE
International Conference on Data Mining, 2013.

[20] D. Oyen, A. Niculescu-Mizil, R. Ostroff, and A. Stewart.
Controlling the precision-recall tradeoff in differential
dependency network analysis. In The Seventh Workshop on
Machine Learning in Systems Biology, 2013.

[21] P. Parviainen and M. Koivisto. Exact structure discovery in
Bayesian networks with less space. In Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pages
436–443, 2009.

[22] M. Schmidt, A. Niculescu-Mizil, and K. Murphy. Learning
graphical model structure using l1-regularization paths. In
National Conference On Artificial Intelligence, volume 22,
page 1278. AAAI Press, 2007.

[23] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T.
Wang, D. Ramage, N. Amin, B. Schwikowski, and
T. Ideker. Cytoscape: a software environment for
integrated models of biomolecular interaction networks.
Genome research, 13(11):2498–2504, 2003.

[24] T. Van Allen and R. Greiner. Model selection criteria for
learning belief nets: An empirical comparison. In
Seventeenth International Conference on Machine
Learning, pages 1047–1054, 2000.

[25] A. V. Werhli, M. Grzegorczyk, and D. Husmeier.
Comparative evaluation of reverse engineering gene
regulatory networks with relevance networks, graphical
Gaussian models and Bayesian networks. Bioinformatics,
22(20):2523–2531, 2006.

97

