
Decomposing a Sequence into Independent
Subsequences Using Compression Algorithms

Hoang Thanh Lam
Technische Universiteit

Eindhoven
2 Den Dolech

Eindhoven, the Netherlands
t.l.hoang@ie.ibm.com

Julia Kiseleva
Technische Universiteit

Eindhoven
2 Den Dolech

Eindhoven, the Netherlands
j.kiseleva@tue.nl

Mykola Pechenizkiy
Technische Universiteit

Eindhoven
2 Den Dolech

Eindhoven, the Netherlands
m.pechenizkiy@tue.nl

Toon Calders
Universite Libre de Bruxelles

CP 165/15 Avenue F.D.
Roosevelt 50

B-1050 Bruxelles
toon.calders@ulb.ac.be

ABSTRACT
Given a sequence generated by a random mixture of inde-
pendent processes, we study compression-based methods for
decomposing the sequence into independent subsequences
each corresponds to an independent process. We first show
that the decomposition which results in the optimal com-
pression length in expectation actually corresponds to an
independent decomposition. This theoretical result encour-
ages us to look for the decomposition that incurs the mini-
mum description length to solve the independent decompo-
sition problem. A hierarchical clustering algorithm is pro-
posed to find that decomposition. We perform experiments
with both synthetic and real-life datasets to show the effec-
tiveness of our method in comparison with the state of the
art method.

General Terms
Data mining

Keywords
Pattern mining, independent component decomposition, min-
imum description length principle, data compression

1. INTRODUCTION
Many processes produce extensive sequences of events,

e.g. alarm messages from different components of indus-
trial machines or telecommunication networks, web-access
logs, clickstream data, geographical events record, etc. In
many cases, a sequence consists of a random mixture of in-
dependent or loosely connected processes where each process
produces a specific disjoint set of events that are indepen-
dent from the other events.

It is useful to decompose the sequence into a number of in-
dependent subsequences. This data preprocessing step pro-
vides us with a lot of conveniences for further analysis with
each independent process separately. In fact, independent
sequence decomposition was used to improve the accuracy of
predictive models by building local predictive model for each
independent process separately instead of building it for the

whole data [1, 2]. Besides, in descriptive data mining, people
are usually interested in summarizing the data. They are ea-
ger to discover the dependency structure between events in
the data and also want to know how strong the dependency
is in each independent component [14]. If the dependency
in a component is strong, it maybe associated with an ex-
plainable context that can help people understand the data
better.

The sequence independent decomposition problem was first
introduced by Mannila et al. in [3]. The authors proposed
a method based upon a statistical hypothesis testing for the
dependency between events. A drawback of the statistical
hypothesis testing method is that the p-value derived from
the test is a score subjective to the null hypothesis. The p-
value does not convey any information about how strong the
dependency between the events is. Moreover, the method in-
troduces two parameters which require manual tunings for
different applications. The method is also easily vulnerable
to false detected connections between events (see the discus-
sion in the next section for an example).

In this paper, we revisit the independent decomposition
problem from the prospect of data compression. In order
to illustrate the connection between data compression algo-
rithms and the independent decomposition problem let us
first consider a simple example. Assume that we have two
sequences:

S1 = abababababababababababababababab

S2 = aaababbbabbaabbaabababaaabbbabab

The first sequence is very regular, after an occurrence of a
there is an occurrence of b. In this case, it is clear that a and
b are two dependent events. We can exploit this information
to compress the sequence as follows: send the decoder the
number of repetitions of ab, i.e. 16 times in S1. Then we
send the binary representations of a and b together. If the
Elias code [4] is used to compress the natural number 16 and
one bit is used to represent either a or b, the compressed size
of S1 is 9 + 1 + 1 = 11 bits. On the other hand, if we do not
exploit the dependency between a and b we need at least 32
bits to represent S1. Therefore, by exploiting the knowledge

67

a

b

c
e

d

f

False connection
𝑔1

 𝑔2

Figure 1: An example of two strongly connected and
independent components. False connection between
b and d is recognized just by chance or due to noise.
The Dtest algorithm will merge two components to-
gether even only one false connection happens.

about the dependency between a and b we compress the
sequence far better than the compression that considers a
and b separately.

The second sequence seems like a random mixture be-
tween two independent events a and b. In this case, it does
not matter how a compression algorithm does, the compres-
sion result will be very similar to the result of the compres-
sion algorithm that considers a and b separately.

In common-sense, two examples lead us to an intuition
that if we can find the best way to compress the data then
that compression algorithm may help us to reveal the de-
pendency structure between events in a sequence simply be-
cause it will exploit that information for doing compression
better. This intuition is inline with the general idea of the
Minimum Description Length (MDL) principle [5] which al-
ways suggests that the best model is the one that describes
the data in the shortest way. We get to the point to ask a
fundamental question: What is the connection between the
best model by the definition of the MDL principle [5] and
the independent decomposition problem?

In this work, we study theoretical answers for the afore-
mentioned question. In particular, we prove that the best
model by the definition of the MDL principle actually cor-
responds to an independent decomposition of the sequence.
This theoretical result motivates us to propose a data com-
pression based algorithm to solve the independent decompo-
sition problem by looking for a decomposition that can be
used to compress the data most.

Beside being parameterless, the compression-based method
provides us with a measure based on compression ratios
showing how strong the connection between events of an in-
dependent component is. It can be considered as an interest-
ingness measure to rank different independent components.
We validate our method and compare it to the statistical
hypothesis testing based approach [3] in an experiment with
synthetic and real-life datasets.

2. RELATED WORKS
The sequence independent decomposition problem was first

studied by Mannila et al. in [3]. The authors proposed a
method based on statistical hypothesis testing for depen-
dency between events. In this work, we call their method
Dtest as for Dependency Test. The algorithm first performs
dependency tests for every pair of events. Subsequently, it
builds a dependency graph in which vertices correspond to
events and edges connecting two dependent events.

An independent component of the output decomposition

corresponds to a connected component of the graph. The
Dtest approach has a drawback: it can merge two indepen-
dent components together even when there is only one false
connection (not a connection but erroneously detected as
a connection) between two vertices across two components.
For instance, Figure 1 shows two strongly connected compo-
nents g1 and g2 of the dependency graph. If the dependency
test between b ∈ g1 and d ∈ g2 produces wrong result, i.e. b
and d pass the dependency test even they are independent,
two independent components g1 and g2 will be merged into
a single component.

In the experiment, we show that false connection is usu-
ally the case because of the following two reasons. First,
the Dtest algorithm has two parameters. Setting of these
parameters to avoid false connections is not always a triv-
ial task. Second, the dependency between b and d can be
incorrectly detected due to noises. Being different from the
Dtest algorithm, our compression-based method is not eas-
ily vulnerable to false connections. Indeed, if two strongly
connected components are independent to each other, the
loose connection between b and d is not an important factor
that can improve the compression ratio significantly when
the two components are compressed together.

Indeed, independent component analysis for other types
of data is a well studied problem in the literature [6]. For
example, the ICA method was proposed to decompose a
time series into independent components. However, the ICA
method does not handle event sequence data.

Another closely related work concerns the item clustering
problem studied under the context of itemset data [7]. The
authors proposed a method to find clusters of strongly re-
lated items for data summarization. The work relies on the
MDL principle which clusters items together such that it
minimizes the description length of the data when the clus-
ter structure is exploited for compressing the data. On one
hand, our work proposes a different encoding to handle se-
quence data which is not handled by the encoding of [7]. On
the other hand, we show a theoretical connection between
the MDL principle and the independent component analy-
sis. It gives a theoretical judgement for the model usually
neutrally accepted as the best model by the definition of the
MDL principle.

Finally, the idea of using data compression algorithms in
data mining is not new. In fact, data compression algo-
rithms were successfully used for many data mining tasks
including data clustering [8] or data classification [9]. It was
also used for mining non-redundant set of patterns in item-
set data [10] and in sequence data [11]. Our work is the first
one that proposes to use data compression for solving the
independent sequence decomposition problem.

3. PROBLEM DEFINITION
Let

∑
= {a1, a2, · · · , aN} be the alphabet of events; de-

note St = x1x2 · · ·xt as a sequence, where each xi ∈
∑

is generated by a random variable Xi ordered by its times-
tamp. The length of a sequence S is denoted as |S|.

We assume that S is generated by a stochastic process P.
For any natural number n, we denote Pt(Xt = xt, Xt+1 =
xt+1, · · · , Xt+n−1 = xt+n−1) as the joint probability of the
sequence Xt+1, Xt+2, · · · , Xt+n−1 governed by the stochas-
tic process P, i.e. the probability of observing the subse-
quence xtxt+1 · · ·xt+n−1 at time point t.

A stochastic process is called stationary [4] if for any n the

68

joint probability Pt(Xt = xt, Xt+1 = xt+1, · · · , Xt+n−1 =
xt+n−1) does not depend on t, which means that Pt(Xt =
xt, Xt+1 = xt+1, · · · , Xt+n−1 = xt+n−1) = P1(X1 = x1, X2 =
x2, · · · , Xn = xn) for any t ≥ 0. In this work, we consider
only stationary processes as in practice a lot of datasets
are generated by a stationary process [4]. This assump-
tion is made for convenience in our theoretical analysis al-
though it is not a requirement for our algorithms to oper-
ate properly. Therefore, for a stationary process the joint
probability Pt(Xt, Xt+2, · · · , Xt+n−1) is simply denoted as
P (X1, X2, · · · , Xn). For a given sequence S the probability
of observing the sequence is simply denoted as P (S).

Let C = {C1, C2, · · · , Ck} be a partition of the alphabet∑
into k pairwise disjoint parts, where Ci

⋂
Cj = ∅ ∀i 6= j

and
⋃k
i=1 Ci =

∑
. Given a sequence S, the partition C

decomposes S into k disjoint subsequences denoted as S(Ci)
for i = 1, 2, · · · , k. Let Pi(S(Ci) = s) denote the marginal
distribution defined on a set of subsequence with fixed size
|s| < |S|.

Example 1. Let the alphabet
∑

= {a, b, c, d, e, f, g} be
partitioned into three disjoint parts: C = {C1, C2, C3} where
C1 = {a, b, c}, C2 = {d, e} and C3 = {f, g}. The partition
C decomposes the sequence S = abdffeadcdeabgg into three
subsequences S(C1) = abacab, S(C2) = dedde and S(C3) =
ffgg.

Denote αi as the probability of observing an event belonging
to the cluster Ci. Assume that Pi is the stochastic process
that generates S(Ci).

Definition 1 (Independent decomposition). We say
that C = {C1, C2, · · · , Ck} is an independent decomposition
of the alphabet if S is a random mixture of independent sub-
sequences S(Ci):

P

(
S

(
k⋃
i=1

Ci

))
=

k∏
i=1

α
|S(Ci)|
i Pi (S(Ci))

There are many independent decompositions, we are in-
terested in the decomposition with maximum k; denote that
decomposition as C∗. The problem of independent sequence
decomposing can be formulated as follows:

Definition 2 (Sequence decomposition). Given a se-
quence S and an alphabet

∑
, find the maximum independent

decomposition C∗ of S.

Theorem 1 (Unsolvable). Observing a sequence gen-
erated by a stochastic (stationary) process with bounded size
M there is no deterministic algorithm that solves the se-
quence independent decomposition problem exactly.

Proof. Assume that there is a deterministic algorithm
A that can return the maximum independent decomposi-
tion exactly when up to 2 ∗ M events of a sequence are
observed. Consider the following alphabet

∑
= {a, b} and

two different stationary processes:

• The events a and b are drawn independently at random
with probability 0.5

• The events a and b are drawn from a simple Markov
chain with two states a and b and P (a 7→ b) = P (b 7→
a) = 1.0

The sequence S = (ab)M with length 2M can be gener-
ated by both stationary processes with non-zero probability.
Therefore, by observing S, the algorithm A cannot decide
the maximum independent decomposition C∗ because for
the latter process C∗ = {{a, b}} while for the former pro-
cess C∗ = {{a}, {b}}. This point leads to contradiction.

4. SEQUENCE COMPRESSION
Given an observed sequence with bounded size, Theorem

1 shows that the problem in Definition 2 is unsolvable. How-
ever, in this section we show that it can be solved asymptot-
ically by using data compression algorithms. We first define
encodings that we use to compress a sequence S given a
decomposition C = {C1, C2, · · · , Ck}.

Given an event ai denote I(ai) = j as the identifier of the
cluster (partition) Cj which contains ai. Let S = x1x2 · · ·xn
be a sequence, denote I(S) as the cluster identifier sequence,
i.e. I(S) = I(x1)I(x2) · · · I(xn).

Example 2. In Example 1, given the decomposition C1 =
{a, b, c}, C2 = {d, e} and C3 = {f, g} the cluster identifier
sequence of S is I(abdffeadcdeabgg) = 112332121221133.

If the distribution of the cluster identifiers is given as
α = (α1, α2, · · · , αk) , where

∑k
j=1 αj = 1, the Huffman

code [4] can be used to encode each cluster identifier j in the
sequence I(S) with a codeword with length proportional to
− logαj . In expectation, if the identifiers are independent to
each other that encoding results in the minimum compres-
sion length for the cluster identifier sequence [4]. Denote
E∗(I(S)) as the encoded form of I(S) in that ideal encod-
ing.

In practice, we don’t know the distribution (α1, α2, · · · , αk).
However, the distribution can be estimated from data. An
encoding is called asymptotically optimal if:

lim
S 7→∞

|E+(I(S))|
|S| = H(α)

Where H(α) denotes the entropy of the distribution α.
An example of E+ is the one that uses the empirical value
|S(Ci)|
|S| as an estimate of αi.

Let Z be a data compression algorithm that gets the in-
put as a sequence and returns the compressed form of that
sequence. Z is an ideal compression algorithm denoted as
Z∗ if |Z∗(S)| = − logP (S). In expectation, Z∗ results
in the minimum compression length for the data [4]. In
practice, we don’t know the distribution P (S) however we
can use an asymptotic approximation of the ideal compres-
sion algorithm, e.g. the Lempel-Ziv algorithms [4]. An
algorithm is asymptotically optimal denoted as Z+(S) if

lim
S 7→∞

|Z+(S)|
|S| = H(P), where P is the stationary process

that generates S.
Given a decomposition C = {C1, C2, · · · , Ck} and a com-

pression algorithm Z, the sequence S can be compressed in
two parts, the first part corresponds to the compressed form
of the identifier sequence I(S). The second part contains k
compressed subsequences Z(S(C1)), Z(S(C2)), · · · , Z(S(Ck)).
In summary, the compressed sequence consists of the size of
the sequence in an encoded form denoted as E(|S|), the com-
pressed form of the cluster identifier sequence and k com-
pressed subsequences. In this work, we use the term ideal
encoding to refer to the encoding that uses E∗ and Z∗ and
asymptotic encoding to refer to the encoding that uses E+

and Z+.

69

Example 3. In Example 1, given the decomposition C1 =
{a, b, c}, C2 = {d, e} and C3 = {f, g}, the sequence S in Ex-
ample 1 can be encoded as follows: E(15) E(I(S)) Z(S(C1))
Z(S(C2)) Z(S(C3))

5. THE MDL PRINCIPLE AND INDEPEN-
DENT DECOMPOSITIONS:

The description length of the sequence S using the de-
composition C can be calculated as: LC(S) = |E(|S|)| +
|E(I(S))| +

∑k
i=1 |Z(S(Ci))|. In this encoding, the term

|E(|S|)| is invariant when S is given. The decomposition
C can be considered as a model and the cost to describe
that model is equal to the term |E(I(S))|, meanwhile the

latter term
∑k
i=1 |Z(S(Ci))| corresponds to cost of describ-

ing the data given the model C. Therefore, according to the
minimum description length principle we may try to find a
decomposition resulting in the minimum description length
in expectation, which is believed to be the best model for
describing the data.

This section introduces two key theoretical results: sub-
section 5.1 shows an ideal analysis that given the data with
bounded size, under an ideal encoding the best model de-
scribing the data corresponds to an independent decomposi-
tion and vice versa. Subsection 5.2 discusses an asymptotic
result showing that under an asymptotic encoding, any in-
dependent decomposition corresponds to the best model by
the definition of the MDL principle.

5.1 Analysis under the ideal encoding
We recall some definitions in information theory. Given a

discrete probability distribution P = {α1, α2, · · · , αk} where∑k
i=1 αi = 1, the entropy of the distribution P denoted as

H(P) is calculated as −
∑k
i=1 αi logαi.

Given a stochastic process P which generates the sequence
S, denote H(P) as the entropy rate or entropy for short of
the stochastic process P. Recall that H(P) is defined as

lim
n7→∞

1

n
H(X1, X2, · · · , Xn), whereH(X1, X2, · · · , Xn) stands

for the joint entropy of the random variablesX1, X2, · · · , Xn.
It has been shown that when P is a stationary process

lim
n7→∞

1

n
H(X1, X2, · · · , Xn) exists [4].

Theorem 2 (MDL vs. independent decompositio).
Under an ideal encoding, given data with bounded size, the
best decomposition which results in the minimum data de-
scription length in expectation is an independent decomposi-
tion and vice versa.

Proof. Given a decomposition C = {C1, C2, · · · , Ck},
for a given n assume that S is a sequence with length n.
Under an ideal encoding, the description length of the cluster
identifier sequence of S is |E∗(I(S))| = −

∑k
i=1 |S(Ci)| logαi.

In the ideal encoding, since the length of the compressed
subsequence Z∗(S(Ci)) is |Z∗(S(Ci))| = − logPi(S(Ci)) the
total description length is:

LC(S) = |E(n)| −
k∑
i=1

|S(Ci)| logαi (1)

−
k∑
i=1

logPi(S(Ci)) (2)

E(LC(S)) =
∑
|S|=n

P (S) ∗ LC(S) (3)

= |E(n)| −
∑
|S|=n

P (S) (4)

log

k∏
i=1

α
|S(Ci)|
i Pi(S(Ci)) (5)

= |E(n)|+HP (X1, X2, · · · , Xn) + (6)

D(P |Q) (7)

Where Q is the random mixture of the distributions Pi de-
fined on the space of all sequence S : |S| = n, i.e. Q(S) =∏k
i=1 α

|S(Ci)|
i Pi(S(Ci)) and D(P |Q) is the relative entropy

or the Kullback-Leibler distance between P and Q. Since
D(P |Q) ≥ 0 [4] we can imply that E(LC(S)) ≥ |E(n)| +
HP (X1, X2, · · · , Xn). The equality happens if and only if
D(P |Q) = 0, i.e. P ≡ Q which proves the theorem.

5.2 Analysis under the asymptotic encoding
In the ideal analysis, it requires an ideal encoding which

is not a practical assumption. However, we can still prove a
similar result under an asymptotic encoding. First, we prove
a basic supporting lemma. The lemma is a generalized result
of the Cesàro mean [12].

Lemma 1. Given a sequence (an), a sequence (cn) is de-

fined as : cn =

n∑
i=1

bi(n)ai where

n∑
i=1

bi(n) = 1 and bi(n) > 0

∀n > 0. If lim
n7→∞

an = A and lim
n7→∞

bi(n) = 0 ∀i > 0 then we

also have lim
n7→∞

cn = A.

Proof. Since lim
n7→∞

an = A given any number ε > 0 there

exists N such that |an−A| < ε
2
∀n > N . Moreover, because

lim
n7→∞

an = A there exists an upper bound D on |ai −A|.
Given N , since lim

n7→∞
bi(n) = 0 we can choose Mi (i =

1, 2, · · · , N) such that bi(n) < ε
2ND

∀n > Mi. Let denote
M as the maximum value of the set {N,M1,M2, · · · ,MN}.
For any n > M , we have:

|cn −A| = |
n∑
i=1

bi(n)ai −A| (8)

≤ |
N−1∑
i=1

bi(n)(ai −A)|+ (9)

|
n∑

i=N

bi(n)(ai −A)| (10)

≤ (N − 1)D
ε

2ND
+
ε

2
(11)

≤ ε (12)

The last inequality proves the lemma.

Theorem 3 (Independent decomposition entropy).
Assume that C = {C1, C2, · · · , Ck} is an independent de-
composition and Pi is the stochastic process that generates
S(Ci). Denote αi as the probability that we observe an event
belonging to the cluster Ci, we have:

H(P) =

k∑
i=1

αiH(Pi) +H(α1, α2, · · · , αk) (13)

70

Proof. We first prove a special case with k = 2 from
which the general case for any k can be directly implied.
Denote H(X1, X2, · · · , Xn) as H for short. In fact, by the
definition of the joint entropy we can perform simple calcu-
lations as follows:

H = −
∑
|S|=n

P (S) logP (S) (14)

= −
∑
|S|=n

α
|S(C1)|
1 P1(S(C1))α

|S(C2)|
2 P2(S(C2))(15)

log
(
α
|S(C1)|
1 P1(S(C1))α

|S(C2)|
2 P2(S(C2))

)
(16)

= −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1) (17)

α
|S2|
2 P2(S2) log

(
α
|S1|
1 P1(S1)α

|S2|
2 P2(S2)

)
(18)

We denote each term of Equation 18 as follows:

X = −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1)α

|S2|
2 (19)

P2(S2) logα
|S1|
1 (20)

Y = −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1)α

|S2|
2 (21)

P2(S2) logα
|S2|
2 (22)

Z = −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1)α

|S2|
2 (23)

P2(S2) logP1(S1) (24)

T = −C|S1|
n

∑
|S1|≤n

∑
|S2|=n−|S1|

α
|S1|
1 P1(S1)α

|S2|
2 (25)

P2(S2) logP2(S2) (26)

We calculate each term of Equation 18 as follows:

X = −
n∑
i=0

Cin
∑
|S1|=i

∑
|S2|=n−i

αi1α
n−i
2 (27)

P1(S1)P2(S2) logαi1 (28)

= −
n∑
i=0

Cinα
i
1α

n−i
2 logαi1 (29)∑

|S1|=i

∑
|S2|=n−i

P1(S1)P2(S2) (30)

= −
n∑
i=0

Cinα
i
1α

n−i
2 logαi1 (31)

= − logα1

n∑
i=0

iCinα
i
1α

n−i
2 (32)

= −nα1 logα1 (33)

With similar calculation we have Y = −nα2 logα2. We

continue with the calculation of Z:

Z = −
n∑
i=0

Cin
∑
|S1|=i

∑
|S2|=n−i

αi1α
n−i
2 (34)

P1(S1)P2(S2) logP1(S1) (35)

= −
n∑
i=0

Cin
∑
|S1|=i

αi1α
n−i
2 P1(S1) logP1(S1) (36)

∑
|S2|=n−i

P2(S2) (37)

= −
n∑
i=0

Cin
∑
|S1|=i

αi1α
n−i
2 P1(S1) logP1(S1) (38)

= −
n∑
i=0

Cinα
i
1α

n−i
2

∑
|S1|=i

P1(S1) logP1(S1) (39)

=

n∑
i=1

Cinα
i
1α

n−i
2 HP1(X1, X2, · · · , Xi) (40)

With similar calculation we also have:

T =

n∑
i=1

Cinα
n−i
1 αi2HP2(X1, X2, · · · , Xi)

Therefore we further imply that:

H = X + Y + Z + T (41)

= nH(α1, α2) + (42)
n∑
i=1

Cinα
i
1α

n−i
2 ∗HP1(X1, X2, · · · , Xi) + (43)

n∑
i=1

Cinα
n−i
1 αi2HP2(X1, X2, · · · , Xi) (44)

H

n
= H(α1, α2) + (45)

α1

n∑
i=1

Ci−1
n−1α

i−1
1 αn−i2

1

i
HP1(X1, · · · , Xi) + (46)

α2

n∑
i=1

Ci−1
n−1α

n−i
1 αi−1

2

1

i
HP2(X1, X2, · · · , Xi)(47)

Besides, we have:

lim
n7→∞

1

n
H(X1, · · · , Xn) = H(P)

lim
n7→∞

1

n
HP1(X1, · · · , Xn) = H(P1)

lim
n7→∞

1

n
HP2(X1, · · · , Xn) = H(P2)

Therefore, according to Lemma 1 from the last equation
we can imply thatH(P) = α1H(P1)+α2H(P2)+H(α1, α2).

The last result can be easily generalized for an indepen-
dent decomposition with any k clusters by induction. In-
deed, we assume that the theorem is correct with k = l
we prove that the result holds for k = l + 1. Denote α as∑l
i=1 αi. Given two independent stochastic processes P and

Q denote the random mixture of them as P
⊕

Q. Consider
the process defined as the random mixture of P1,P2 · · ·Pl

denoted as P1

⊕
P2

⊕
· · ·
⊕

Pl. Since Pl+1 and the se-

71

quence P1

⊕
P2

⊕
· · ·
⊕

Pl are independent we have:

H(P) = H(P1

⊕
P2

⊕
· · ·
⊕

Pl+1) (48)

= αH(P1

⊕
P2

⊕
· · ·
⊕

Pl) + (49)

αl+1H(Pl+1) +H(α, αl+1) (50)

Moreover, by the induction assumption:

H(P1

⊕
P2

⊕
· · ·
⊕

Pl) =

k∑
i=1

αi
α
H(Pi) + (51)

H(
α1

α
,
α2

α
, · · · , αl

α
).(52)

Replacing this value to Equation 50, we can obtain Equation
13 from which the theorem is proved.

Theorem 3 shows that the entropy of the stochastic pro-
cess P can be represented as the sum of two meaningful
terms. The first termH(α1, α2, · · · , αk) actually corresponds
the average cost per element of the cluster identifier. Mean-
while the second term

∑k
i=1 αiH(Pi) corresponds to the av-

erage cost per element to encode the subsequences S(Ci).
By that important observation we can show the following
asymptotic result:

Theorem 4 (Asymptotic result). Under an asymp-
totical encoding, the data description length in an indepen-
dent decomposition is asymptotically optimal with probability
equal to 1.

Proof. Let C = {C1, C2, · · · , Ck} be an independent de-
composition, for any n assume that S is a sequence with
length n. Under an asymptotic encoding, the description
length of the data is:

LC(S) = |E(n)|+ |E+(I(S))|+
k∑
i=1

Z+(S(Ci)) (53)

LC(S)

|S| =
|E(n)|
|S| +

|E+(I(S))|
|S| +

∑k
i=1 Z

+(S(Ci))

|S| (54)

LC(S)

|S| =
|E(n)|
|S| +

|E+(I(S))|
|S| +

k∑
i=1

|S(Ci)|
|S|

Z+(S(Ci))

|S(Ci)|
(55)

Pr

(
lim
|S|7→∞

LC(S)

|S| = H(α1, α2, · · · , αk) +

k∑
i=1

αiH(Pi)

)
= 1 (56)

Pr

(
lim
|S|7→∞

LC(S)

|S| = H(P)

)
= 1 (57)

The last equation is a direct result of Theorem 3. Since
H(P) is the lower-bound on the expectation of the average
compression size per element of any data compression algo-
rithm the encoding using the independent decomposition is
asymptotically optimal.

The ideal analysis shows the one-to-one correspondence be-
tween the optimal encoding and an independent decomposi-
tion. The asymptotic result only shows that an independent
decomposition asymptotically corresponds to an optimal en-
coding. The theorem does not prove the reverse correspon-
dence; however, in experiments we empirically show that the
correspondence is one-to-one.

Algorithm 1 Dzip(S)

1: Input: a sequence S, an alphabet
∑

= {a1a2 · · · aN}
2: Output: a decomposition C
3: C ← {C1 = {a1}, C2 = {a2}, · · · , Cn = {an}}
4: while true do
5: max← 0
6: C∗ ← C
7: for i = 1 to |C| do
8: for j = i+ 1 to |C| do
9: C+ ← C with merged Ci and Cj

10: if LC(S)− LC
+

(S) > max then

11: max← LC(S)− LC
+

(S)
12: C∗ ← C+

13: end if
14: end for
15: end for
16: if |C∗| = 1 or max = 0 then
17: Return C∗

18: end if
19: end while

6. ALGORITHMS
The theoretical analysis in Section 5 encourages us to de-

sign an algorithm that looks for the best decomposition to
find an independent decomposition. When an independent
decomposition is found, the algorithm can be recursively
repeated on each independent component to find the maxi-
mum independent decomposition. Given data S with alpha-
bet

∑
this section discusses a hierarchical clustering algo-

rithm called Dzip to find the desired decomposition.
Algorithm 1 shows the main steps of the Dzip algorithm.

It starts with N clusters each contains only one character
of the alphabet. Subsequently, it evaluates the compression
benefit of merging any pair of clusters. The best pair of clus-
ters which results in the smallest compression size is chosen
to be merged together. These steps are repeated until there
is no compression benefit of merging any two clusters or all
the characters are already merged into a single cluster.

Dzip can be recursively applied on each cluster to get the
maximum decomposition. However, in our experiment we
observe that in most of the cases the cluster found by Dzip
cannot be decomposed further because of the bottom-up
process which already checks for the benefits of splitting the
cluster.

Dzip uses the Lempel-Ziv-Welch (LZW) implementation
[4] with complexity linear in the size of the data. It utilizes
an inverted list data structure to store the list of positions
of each character in the sequence. Moreover, it also caches
compression size of merged clusters. In doing so, in the worst
case the computational complexity of Dzip can be bounded
as O(|S|N2) . This number is the same as the amortized
complexity of the Dtest algorithm [3].

7. EXPERIMENTS
We consider the dependency test method Dtest [3] as a

baseline approach. All the experiments were carried out on
a 16 processor cores, 2 Ghz, 12 GB memory, 194 GB local
disk, Fedora 14 / 64-bit machine. The source codes of Dtest
and Dzip in Java and the datasets are available for download

72

in our project website1.
Dtest has two parameters: the significance value α and

the gap number G. We choose α = 0.01 and G = 300 as
recommended in the paper [3]. We also tried to vary α and G
from small to large and observed quite different results. The
algorithm is slow when G increases, while smaller value of α
results in low false positive yet high false negative rate and
vice versa. However, the results with different parameters
do not change the comparisons in our experiments.

7.1 Synthetic data
There are three datasets in this category for which the

ground truths are known:

• Parallel: is a synthetic dataset which mimics a typical
situation in practice where the data stream is gener-
ated by five independent parallel processes. Each pro-
cess Pi (i = 1, 2, · · · , 5) generates one event from the
set of events {Ai, Bi, Ci, Di, Ei} in that order. In each
step, the generator chooses one of five processes uni-
formly at random and generates an event by using that
process until the stream length is 1M.

• Noise: is generated in the same way as the parallel
dataset but with additional noises. A noise source
generates independent events from a noise alphabet
with size 1000. Noise events are randomly mixed with
parallel dataset. The amount of noises is 20% of the
parallel data. This dataset is considered to see how
the methods will be sensitive to noise.

• HMM: is generated by a random mixture of two dif-
ferent hidden Markov models. Each hidden Markov
model has 10 hidden states and 5 observed states. The
transition matrix and the emission matrix are gener-
ated randomly according to the standard normal dis-
tribution with mean in the diagonal of the matrix.
Each Markov model generates 5000 events and the
mixture of them contains 10000 events. This dataset
is considered to see the performance of the methods in
a small dataset.

Since the ground-truths are known we use the Rand index
[13] to compare two partitions of the alphabet set. The
rand index calculates the number of pairs of events that are
either in the same cluster in both partitions or in different
clusters in both partitions. This number is normalized to
have value the interval [0, 1] by dividing by the total number
of different pairs. The rand index measures the agreement
between two different partitions, where a value of 1 means
a perfect match, while 0 means two partitions completely
disagree to each other.

Figure 2 shows rand index (y-axis) of two algorithms when
the data size (x-axis) is varied. It is clear from the figure
that the Dzip algorithm is possible to return a perfect de-
composition in all datasets. When the data size is smaller
the performance is slightly changed but the rand index is
still high.

The performance of the Dtest algorithm is good in the
Parallel dataset although the result is not stable when the
datasize varied. However, Dtest does not work well in the
Noise and the HMM dataset especially when a lot of noises
are added. In both datasets, Dtest seems to cluster every

1www.win.tue.nl/~lamthuy/dzip.htm

events together; this experiment confirms our discussion in
section 2 that Dtest is vulnerable to noise.

7.2 Real-life data
There are three datasets in this category:

• Machine: is a message log containing about 2.7 million
of messages (more than 1700 distinct message types)
produced by different components of a photolithogra-
phy machine.

• MasterPortal: is a historical log of user behaviors in
the MasterPortal2 website. It contains about 1.7M of
events totally of 16 different types of behaviors such
as Program view, University view, Scholarship view,
Basic search, Click on ads banner and so on.

• Msnbc: is the clickstream log by the users of the MSNBC
website3. The log contains 4.6M events of 16 different
types each corresponds to a category of the website
such as frontpage, sports, news, technology, weather
and so on.

For the Machine dataset, the Dzip algorithm produced 11
clusters with three major clusters contains a lots of events.
Meanwhile, the Dtest algorithm produced 4 clusters with
one very big cluster and 3 outlier clusters each contains only
one event. The result shows that Dtest seems to cluster ev-
ery events together. Since the ground truths are unknown
we compare the compression ratios when using the decom-
position by each algorithm to compress the data. Our ob-
servation shows that the data is compressed better with the
decomposition produced by the Dzip algorithm because the
compression ratio is 2.37 on the Dzip algorithm versus 2.34
on the Dtest algorithm.

Both Dzip and Dtest produced one cluster of events for
the Msnbc and the MasterPortal datasets. Therefore, the
compression ratios of both algorithms are the same in each
dataset. Although we don’t know the ground-truths for
these datasets the result seems to be reasonable because
in the case of clickstream data, users traverse on the web
graphs and the relations between the events are inherently
induced from the connections in the web graph structure.
The Msnbc is compressed better than the MasterPortal (the
compression ratios are 1.5 and 1.2 respectively). These num-
bers also tell us that the dependency between events in the
Msnbc dataset seems to be more regular.

7.3 Running time
In section 6, we have shown that the amortized complexity

of the Dtest algorithm and the worst case complexity of
the Dzip algorithm are the same. The result promises that
the Dzip algorithm will be faster than the Dtest algorithm.
Indeed, this fact holds for the set of datasets we use in this
paper. In Figure 3 we compare Dzip and Dtest in terms of
running time. In most datasets, Dzip is about an order of
magnitude faster than the Dtest algorithm.

8. CONCLUSIONS AND FUTURE WORKS
In this paper, we proposed a compression-based method

called Dzip for the sequence independent decomposition prob-
lem. Beside being justified by a theoretical analysis, in ex-
periments with both synthetic and real-life datasets, Dzip
2www.mastersportal.eu
3www.msnbc.com

73

0

0,2

0,4

0,6

0,8

1

1,2

100000 400000 700000 1000000

R
an

d
 in

d
ex

Data size

Parallel

Dzip Dtest
0

0,2

0,4

0,6

0,8

1

1,2

100000 400000 700000 1000000

R
an

d
 in

d
ex

Data size

Noise

0

0,2

0,4

0,6

0,8

1

1,2

1000 4000 7000 10000

R
an

d
 in

d
ex

Data size

HMM

Dzip Dtest

Figure 2: Rand index measures the similarity (higher is better) between the decompositions by the algorithms
and the ground-truths. Rand index is equal to 1 if it is a perfect decomposition.

MasterPortal Msnbc Machine Parallel Noise HMM

Dzip 28 38 131387 8 192 1

Dtest 159 500 201385 138 25130 1

Figure 3: Running time in seconds of two algorithms. Dzip is about an order of magnitude faster than Dtest.

was shown to be more effective than the state of the art
method based on statistical hypothesis testing. There are
various directions to extend the paper for the future works.
At the moment, we assume that each independent process
must produce a disjoint subset of events. In practice, the
case that independent processes produce overlapping sub-
set of events is not rare. Extending the work to this more
general case can be considered as an interesting future work.

9. ACKNOWLEDGEMENTS
The work is part of the project Mining Complex Patterns

in Stream (COMPASS) supported by the Netherlands Or-
ganisation for Scientific Research (NWO).

10. REFERENCES
[1] Kira Radinsky, Eric Horvitz: Mining the web to

predict future events. WSDM 2013: 255-264

[2] Julia Kiseleva, Hoang Thanh Lam, Toon Calders and
Mykola Pechenizkiy: Discovery temporal hidden
contexts in web sessions for user trail prediction
TempWeb workshop at WWW 2013.

[3] Heikki Mannila, Dmitry Rusakov: Decomposition of
event sequences into independent components. SDM
2001

[4] Thomas Cover, Joy Thomas: Elements of information
theory. Wiley and Son, second edition 2006.

[5] Peter Grünwald: The minimum description length
principle. MIT press, 2007.

[6] Hyvärinen A, Oja E. Independent component analysis:
algorithms and applications. Journal of Neural
Network 2000.

[7] Michael Mampaey, Jilles Vreeken: Summarizing
categorical data by clustering attributes. Data Min.

Knowl. Discov. 2013

[8] Rudi Cilibrasi, Paul M. B. Vitányi: Clustering by
compression. IEEE Transactions on Information
Theory 2005

[9] Eamonn J. Keogh, Stefano Lonardi, Chotirat Ann
Ratanamahatana, Li Wei, Sang-Hee Lee, John
Handley: Compression-based data mining of
sequential data. Data Min. Knowl. Discov. 2007

[10] Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes:
Krimp: mining itemsets that compress. Data Min.
Knowl. Discov. 2011

[11] Hoang Thanh Lam, Fabian Moerchen, Dmitriy
Fradkin, Toon Calders: Mining Compressing
Sequential Patterns. SDM 2012: 319-330

[12] Hardy, G. H. (1992). Divergent Series. Providence:
American Mathematical Society. ISBN
978-0-8218-2649-2.

[13] W. M. Rand (1971). Objective criteria for the
evaluation of clustering methods. Journal of the
American Statistical Association 66 (336).

[14] van der Aalst, W. M. P., Weijters, T. and Maruster,
L. (2004). Workflow Mining: Discovering Process
Models from Event Logs.. IEEE Trans. Knowl. Data
Eng., 16, 1128-1142.

74

