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ABSTRACT
Research in interactive machine learning has shown the effective-
ness of live, human interaction with machine learning algorithms in
many applications. Metric learning is a common type of algorithm
employed in this context, using feedback from users to learn a dis-
tance metric over the data that encapsulates their own understand-
ing. Less progress has been made on helping users decide which
data to examine for potential feedback. Systems may make sug-
gestions for grouping items, or may propose constraints to the user,
generally by focusing on fixing areas of uncertainty in the model.
For this work-in-progress, we propose an active learning approach,
aimed at an interactive machine learning context, that tries to min-
imize user effort by directly estimating the impact on the model of
potential inputs, and querying users accordingly.

With EigenSense, we use eigenvector sensitivity in the pairwise
distance matrix induced by a distance metric over the data to es-
timate how much a given user input might affect the metric. We
evaluate the technique by comparing the output points it proposes
for user consideration against what an oracle would like to choose
as inputs.

Categories and Subject Descriptors
I.5.5 [Pattern Recognition]: Implementation—Interactive Systems;
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Human Factors

Keywords
Active Learning, Metric Learning, Interactive Machine Learning

1. INTRODUCTION
The field of interactive machine learning has demonstrated the

effectiveness of using human interaction to improve machine learn-
ing results, and simultaneously using machine learning algorithms
to improve user experiences. Example systems help people group
or model their data without having to understand machine learning
techniques [14].

One concept in the machine learning apparatus underlying many
examples is metric learning. Understanding the similarity between
objects is a powerful way to model them for grouping or label-
ing. In metric learning, a distance function over the data is learned
from side information about the data, often in the form of con-
straints for which objects are similar. For an interactive context,

the algorithm must update incrementally by making improvements
iteratively with increasing user feedback.

User feedback is expensive, since human throughput at review-
ing data is far lower than a computer’s throughput at analysis. In
order to maximize utility of user efforts, active learning researchers
develop techniques to query users for feedback in ways that will
help the machine learner. A common approach is to query users
about points chosen so that the user feedback will resolve uncer-
tainty in the model.

Emphasizing the interactive learning perspective, our approach
keeps the user in control, providing suggestions only when the user
initiates a direction of inquiry. We target our active learning method
toward predicting the impact of any given user input. Using our
method, a user can judiciously spend the effort of developing feed-
back on data that will affect the underlying model as much as pos-
sible.

In this work-in-progress, we first introduce EigenScore, a mea-
sure that leverages “eigenvector sensitivity” to predict how much
a potential user input will change an underlying metric learning
model. We then propose EigenSense, which uses EigenScores to
guide a user toward making the most productive feedback while
minimizing his or her effort (in terms of data points examined). Fi-
nally we provide two types of evidence of the efficacy of this algo-
rithm. First, we compare EigenScores to the ground-truth of what
they estimate: the amount that particular constraints would change
the metric learning model. Second, we show with simulations that
the few points selected for user review by EigenSense often include
the best possible choices as evaluated by an oracle.

2. MOTIVATION: EIGENVECTOR SENSI-
TIVITY TO FIND CRITICAL POINTS

The eigenvectors of a matrix have been used to represent its un-
derlying structure for applications in many domains including con-
nectivity graph analysis [33], face recognition [43], and clustering
[47]. The eigenvectors of symmetric matrices A for which entry
Ai j represents some measure of distance between objects i and j is
of particular relevance. For example, the PageRank [33] algorithm
uses an n×n pairwise matrix to represent the transition probabili-
ties between pairs of the n webpages. Here entry Ai j corresponds
to the probability of landing on node (page) j during a length-one
random walk, having started at node i. Raising that matrix to the
power k gives a matrix of the probabilities of landing on node j
having started a length-k random walk at node i. Increasing powers
of Ak will show the asymptotic behavior of flow through the graph.
Conveniently, following from the definition and orthogonality of
eigenvectors, the dominant eigenvector approximates this quantity.
For a real, symmetric matrix A, suppose we have the eigenval-
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ues λ1, . . . ,λn sorted in decreasing order, and their corresponding
eigenvectors v1, . . . ,vn. Because the eigenvectors are orthogonal,
any vector x ∈ Rn can be written as a linear combination of the
eigenvectors, with coefficients αi. We can observe the asymptotic
behavior:

x = α1v1 +α2v2 + . . .+αnvn

Ax = α1Av1 +α2Av2 + . . .+αnAvn
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Note that because the dominant eigenvalue, λ1 ≥ λi, i = 2 . . .n in
the final sum, the v1 term dominates.

When studying population dynamics, biologists take advantage
of this fact with a matrix L, called a “Leslie” matrix, where each el-
ement Li j represents an organism’s survival prospects to age i from
age j 1. To see the equilibrium point of a population, biologists
study the dominant eigenvector of this matrix [22].

Extending this technique to see how the population can be af-
fected by environmental factors, biologists adjust survival rates at
different times in the lifecycle by editing the matrix, and reconsider
the new dominant eigenvalue. This sensitivity of the eigenvalue to
change in particular matrix entries is the eigenvalue sensitivity [22].

Motivated by biologists’ successes with eigenvalue sensitivity in
Leslie matrices, we consider the behavior of the dominant eigen-
vector of our related n×n pairwise distance matrices, and we adapt
the concept of sensitivity to the context of active metric learning.
We will use the dominant eigenvector of a pairwise distance matrix
as a standin for its overall structure, and calculate the sensitivy of
that eigenvector with respect to changes in entries of that matrix.
Since each entry corresponds to a pair of data points, we will use
this approach to estimate how individual user inputs, i.e. user con-
straints that certain pairs of points have small distances between
them, will affect the structure of the distance matrix and the under-
lying distance metric.

3. RELATED WORK
This work builds on previous efforts in both machine learning

and human-computer interaction. We begin with an overview of
related work in interactive machine learning and then discuss met-
ric and active machine learning.

3.1 Interactive Machine Learning
Interactive machine learning researchers strive to use human in-

teraction with machine learning to improve machine learning re-
sults and improve user experiences, leveraging computers’ raw ana-
lytical power and humans’ reasoning skills to achieve results greater
than either alone [39]. Several methods coupling machine learning
techniques with visualization to cluster or classify data have been
proposed [6, 10, 17]. Systems have been built for grading [11], net-
work alarm triage [5], building social network groups [4], ranking
search results with user context [2], managing overeating [16], and
searching for images [3].

Another vein of this research, from visual analytics, focuses on
data analysis tasks, and on effectively leveraging user interaction to
refine an underlying model, generally by adjustments of layouts or
clusterings [14, 20, 23, 13].
1The matrix represents different age groups’ rates of survival and
reproduction by setting the first row to the fertility rate of each age
group, and the lower off-diagonal entries to organism survival prob-
abilities from one age group to the next.

All of this work integrates human reasoning with machine learn-
ing without asking the human to understand the machine learning.
However, these systems do not offer strong active learning support
to help the user give the most efficient feedback. The EigenSense
approach aims to provide this support by guiding the user toward
the most important data to review.

3.2 Metric Learning
Many of the examples above of interactive machine learning

use metric learning algorithms at their core. This powerful ap-
proach has been the subject of much research since 2003 [8, 12,
19, 25, 34, 38, 42, 45, 46, 48, 51, 52] and has proven applicable
in many real-world application domains including information re-
trieval, face verification and image recognition [18, 26, 29].

Most of these methods assume that the machine learner is given
additional information beyond the data itself, most often as pair-
wise constraints between data points, i.e. that certain pairs should
or should not be close together. With that information, metric learn-
ing techniques learn a distance function optimized to produce rel-
atively small distances between points that belong close together,
and large distances between those that belong far apart [52].

It is generally assumed that a domain expert can easily provide
pairs of similar data points and pairs of dissimilar data points, but
that assumption implies a perfectly accurate user who is motivated
and available to review all of the data. This work-in-progress be-
gins to address this gap by introducing a technique for paring down
what points an expert would actually have to review in an inter-
active machine learning context by trying to guide a user toward
constraints that will be most impactful to the distance metric.

3.3 Active Learning
Active learning is a form of semi-supervised machine learning in

which the learner iteratively queries the user for additional informa-
tion while building its model. The key idea behind active learning
is that an algorithm can achieve greater accuracy or performance
with fewer training labels if it is allowed to choose the most helpful
labels [36].

A common approach is to select the data points that are most un-
certain to classify. Different measures of the uncertainty are based
on the disagreement in the class labels predicted by an ensemble
of classification models [1, 32, 37], by distance to the decision
boundary [15, 35, 41], by the uncertainty of an unlabeled exam-
ple’s projection using the Fisher information matrix [31, 53], or
with Bayesian analysis that takes into account the model distribu-
tion [24, 30, 40, 54].

Active learning and metric learning come together in several
recent works, where authors determine what the user should see
based on uncertainty of labels and coverage of the dataset [21], or
the median points in groups with the same label [44]. Yang and
Jin select pairs of points for feedback based on the uncertainty of
deciding their closeness [50].

In a sub-category of active learning algorithms called active clus-
tering, the end goal is a clustering instead of classification, and the
common approach is to gather constraints by iteratively querying
the user about pairs of points. Points are chosen by uncertainty
[28], or by most informative example pairs [9]. One work by Xu,
et al., is especially related to ours. The authors learn a two-class
spectral clustering with active learning by examining the eigenvec-
tors of the pairwise distance matrix to find points on the boundary
of being put in either cluster [49].

Generally, active learning methods are based on querying the
user for one unit of feedback at a time. In our approach the user
plays an active role in deciding what feedback to provide: no sug-
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gestions are given without an initial seed point of interest from the
user, and then, several suggestions are provided for the user to pe-
ruse.

4. APPLICATION CONTEXT
The EigenSense method is best understood within a real inter-

active learning context. In prior work, Brown et al. created Dis-
Function [14], a system that shows an analyst high-dimensional
real-valued data in a 2D projection, and learns a distance function
iteratively though user feedback. Feedback is provided by drag-
ging together points that should be closer together. The method
is effective with appropriate user feedback, but the user is given
no information about what points would be helpful to the metric
learning backend.

For illustration, we have integrated EigenSense into Dis-Function.
When a user clicks a point of interest, EigenSense responds by
showing several points that may be of interest relative to the first.
Figure 1 presents a screenshot of this modified Dis-Function, specif-
ically the data projection portion. The data have been arranged us-
ing multidimensional scaling (MDS), and colored based on a spec-
tral clustering. The user has clicked the point marked by a red X. In
response, EigenSense adds colored squares showing which points
may be of interest relative to that X. Darker colors indicate a higher
eigenvector sensitivity score, or EigenScore (see Section 5.1).

These predictions of which points could provide the strongest
update to the model are intended to guide the user towards giving
the machine learner fruitful feedback, and taking best advantage of
precious expert user time.

5. THE EIGENSENSE METHOD
In our interactive machine learning context, we have presented

a user with data and need useful side information to improve our
learned model. More specifically, in the context provided by Sec-
tion 4, we assume a user examines a visualization of data and no-
tices points of interest, perhaps outliers, cluster exemplars, or points
aligned with personal expertise. We aim to answer, given one point
of interest selected by the user, which are other points that the user
should examine. We chose this interaction paradigm for two rea-
sons: first, the user guides the process as opposed to simply be-
ing used for point comparisons, and second, having an initial point
sharply reduces the computational complexity (see Section 5.2). In
deciding which points to suggest for user examination, our ideal is
to uncover the point that would make the strongest update to the
model with the user’s feedback, leveraging expertise efficiently to
minimize effort.

In this section, we introduce a technique using eigenvector sensi-
tivity on a pairwise distance matrix to provide these predictions of
strong model updates. First we associate a score (called the Eigen-
Score) with any pair of data points. The EigenScore of a pair is
designed to predict the strength of a model update corresponding
to user feedback about that pair. We then present the EigenSense
algorithm, which uses EigenScores to recommend top candidate
points to the user.

5.1 Calculating EigenScores
The EigenScore between two points represents our prediction for

how strongly a change in distance between them would affect the
underlying structure of the pairwise distance matrix. Specifically,
it is a measure of the sensitivity of the dominant eigenvector of that
matrix to changes in its elements, which correspond to pairs of data
points.

Given a distance function and a data set with N points, we calcu-

Figure 1: EigenSense demonstrated on an interactive scatter-
plot of projected data – all data points are laid out with mul-
tidimensional scaling (MDS) and colored by a spectral cluster-
ing. The point with a red X is the one the user clicked, ask-
ing what other data should be considered in relation to that
point. The colored squares show the EigenSense response, with
darker colors indicating higher EigenScores (see Section 5.1).
Only the top five percent of scores from each cluster are high-
lighted, helping the user target the most fruitful data to exam-
ine.

late the pairwise distance matrix

D ∈ RN×N where Di j = distance(xi,x j)

Note that no specific type of distance function is required. To model
how that matrix changes with specific xi and x j assumed to be per-
fectly close together, i.e. because the user specified so with feed-
back, we construct a new distance matrix D′ which is identical to
D, except that we set Di j = D ji = 0. These entries now reflect that
xi and x j should be close to one another.

We next compute the dominant eigenvector for D, called v1, and
for D′, which we indicate with v′1. We compute the cosine similar-
ity between v1 and v′1. Note that we desire a dissimilarity metric,
showing how much v′1 is different from v1, so we define

EigenScore(xi,x j) = 1−CosineSimilarity(v1,v′1)

Algorithm 1 summarizes this process.
Note that computing the function eig(D) to return the dominant

eigenvector is computationally expensive if implemented using fac-
torization methods [27]. Techniques such as SVD [27] and the
Cholesky decomposition [27] return all eigenvectors of the ma-
trix D. However, because computing the EigenScore requires only
the dominant eigenvector (and because we are restricted to a real-
valued symmetric matrix), we can dramatically improve perfor-
mance by using the Lanczos method [27], which returns only the
dominant eigenvector and which we denote eigs(D,1) as in MAT-
LAB.

5.2 Using EigenScores to make EigenSense
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Algorithm 1: EigenScore
Input: Data points xi,x j, distance matrix D
Output: ESi j ∈ [0,1]

1 Calculate v1 = eigs(D,1) [dominant eigenvector]
2 Let D′ = D
3 Set D′i j = D′ji = 0
4 Calculate v′1 = eigs(D′,1)
5 Set ESi j = 1−CosineSimilarity(v1,v′1)
6 return ESi j

The EigenScore algorithm maps a pair of points to a scalar value
representing potential impact on the distance metric, and thus im-
plicitly provides a ranking over pairs of points. This section ad-
dresses how to use this ranking with the goal of reducing user ef-
fort.

Calculating EigenScores over all pairs of points is prohibitively
expensive for an interactive context. However, recall that in our us-
age context, the user has selected one point of interest and we must
suggest options for a second point to pair with the first for a po-
tential user constraint. Evaluating possibilities for just the choices
of a second point requires only (N−1) evaluations of EigenScore.
We further limit the number of suggestions the user sees to some
proportion k ∈ (0,1] of the total data to save the user from examin-
ing every point. Rather than returning a fully ranked list of the top
k ∗ (N−1) of the (N−1) total points, we want to choose a diverse
set of points for consideration. Our rationale is that we expect high
EigenScores to correspond to pairs of points where user constraints
would cause big updates to the model, but these may not be good
updates. For example, outliers in the dataset will often contribute to
high EigenScores, but should not necessarily be used in constraints.

To create the desired set of suggestions, we first cluster the data
(using the current learned distance function), then sort the points in
each cluster c by their EigenScore and return the top k ∗ |c| points
within each cluster. This process is detailed in Algorithm 2.

The performance of our implementation is critical to demonstrat-
ing the feasibility of this technique for interactive systems. Our pro-
totype system provides EigenSense recommendations on demand
as response to interaction with a visualization. The current imple-
mentation connects to MATLAB from C# via a COM interface to
take advantage of the Lanczos algorithm for quickly calculating
the dominant eigenvector. Still, as an example of performance ca-
pability, on a laptop with an Intel i5 480M processor, for a dataset
of about 200 points with about 20 dimensions, an EigenSense re-
sponse takes about one second.

Algorithm 2: EigenSense
Input: Initial point xi, distance matrix D, set of clusters C,

threshold k
Output: S, a set of model-critical points

1 foreach cluster c ∈C do
2 foreach point x j ∈ c do
3 Compute ESi j = EigenScore(xi,x j,D)

4 Let Sc be the set of k×|c| points with the highest ESi j

5 Let S =
⋃

Sc
6 return S

6. EXPERIMENTS AND RESULTS
We validate the accuracy and effectiveness of our proposed method

through two experiments on test datasets from the UCI Machine
Learning Repository[7]. First, we compare EigenScores against
actual values of the quantity they estimate and see that they could
be an effective low-cost estimator of model change. Second, we
evaluate the accuracy of EigenSense by considering the quality of
the sets of points it offers to users compared against the ground-
truth best points. We show that guided by EigenSense, a user could
pick high-quality inputs while reviewing small amounts of data.

6.1 Experiment 1: Compare To Ground Truth
In this experiment we evaluate the EigenScores by comparing

them directly to the value they are attempting to estimate. Recall
that in our interactive metric learning context, EigenScores are an
estimate of how much the distance matrix, as a stand-in for the dis-
tance metric itself, would be changed by constraining a given pair
of points. The ground truth is prohibitively expensive to calculate
for an interactive system, but can be prepared offline.

For three datasets, starting from scratch with no constraints, we
used our prototype system (with interactive metric learning based
on Brown et al. [14]) to calculate for each possible pair of points
the actual change in distance function resulting from constraining
the pair. The graphs in Figure 2 show the comparison of these
values to the EigenScores. We use weighted Euclidean distance
functions, thus the initial distance function is parameterized by the
vector Θinit = (1/M, ...,1/M) of length M. In the graphs, the hor-
izontal axis is the change in the distance metric from applying the
constraint and the vertical axis is the EigenScore:

1−CosineSimilarity(Θinit ,Θpost_constraint)

Although the correlations between EigenScores and actual dis-
tance metric change are not obvious linear relationships, it is ap-
parent from visual inspection that the quantities are related. This
first pass evaluation shows the promise of EigenScores as an esti-
mate of distance metric change, which implies that it could be an
inexpensive way to predict model change for interactive machine
learning.

6.2 Experiment 2: Evaluate Suggestion Qual-
ity

The goal of this experiment is to determine the quality of EigenSense
recommendations by comparing them to the choices an oracle would
make. Given an oracle that can rank all user feedback options in
terms of which yield the best distance functions, we look to see
how the EigenSense recommendations rank in that list.

We simulate choices of a point of interest xi by the user, and then
compute both the oracle’s ranking of all possible constraint pairs
with xi, and the set of EigenSense options that would be presented
to the user. Specifically, the oracle takes advantage of the labels for
our test datasets to calculate, for all pairs of constraints that include
xi, the accuracy (with k-NN) of the distance metric resulting from
an update with the given constraint. That is, given one point xi,
the oracle applies the system’s metric learning algorithm with each
constraint pair (xi,x j) ∀x j, and evaluates each resulting distance
function at classifying the data with k-NN. The accuracy scores
of these evaluations provide a ranking over the constraint pairs. We
compare the EigenSense options against the oracle ranking by find-
ing the EigenSense recommendation with minimum oracle rank.

Figure 3 shows the results of our experiment. Each graph line
corresponds to a different dataset, and each plotted point represents
an average over ten simulations, each of which simulated ten user
inputs. Simulated users picked a first point randomly then some
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(a) Wine (b) Ion (c) Parkinsons

Figure 2: Experiment 1 – In this comparison between EigenScores and the quantity they estimate, each point in each graph represents
a pair of data points from the appropriate dataset. The horizontal axis shows the actual amount the underlying distance function
changes when a given pair of points is constrained together. The vertical axis shows the EigenScore for that pair of points.

(not necessarily optimal) EigenSense recommendation for the sec-
ond. In total, each plotted point represents 100 uses of EigenSense.
The horizontal axis is the k parameter of EigenSense (see Algo-
rithm 2 and Section 5.2), which determines how many points will
be shown to the user. Because the vertical axis shows the best or-
acle ranking of the EigenSense points, lower scores are better. It
is no surprise that with larger values of k, where the user is being
shown more points, the opportunity for the best-ranked points to
be included is higher. Using a low value of k means showing the
user few points and saving effort, whereas using a high value means
showing more points but having a better chance to show the abso-
lute best ones. The results of this experiment suggest that, depend-
ing on the dataset, a user could give strong feedback to a metric
learner while only reviewing less than ten percent of the data, or in
some cases, substantially less.

Figure 3: Experiment 2 – The horizontal axis shows values of
the k parameter to EigenSense, i.e. how much data is shown
to the user. The vertical axis shows the minimum (best) rank
of the EigenSense recommendations in the oracle’s ordering of
all possible point pairs. Note that, as expected, as more data is
shown to the user (k increases), there is more chance of the best
possible options being revealed (rank decreases). Even with a
small amount of data revealed, the EigenSense suggestions pro-
vide strong options.

7. FUTURE WORK

Although we have collected the presented evidence of EigenSense’s
effectiveness, there are opportunities for improving the algorithm
itself. For example, there are several variations on how to generate
pairwise distance or similarity matrices. Further, the performance
of the implementation could be improved by using a library im-
plementation of the Lanczos method for calculating the dominant
eigenvector, instead of using MATLAB via COM calls.

The performance improvement is critical for the main thrust of
future work, which is to complete the evaluation of the technique by
testing it with human subjects. In particular, participants in a user
study will use the tool to cluster some images with known classes.
We can then evaluate their comfort with the tool, confidence in the
recommendations, and progressive accuracy of the distance metrics
learned from their inputs to see if they do better with or without
EigenSense.

8. CONCLUSION
This paper contributes to the study of interactive metric learn-

ing by applying active learning to reduce the workload of the hu-
man actor. We introduced the concept of EigenScores based on
eigenvector sensitivity of distance matrices, and then applied these
to create the EigenSense algorithm, which identifies and recom-
mends points for user consideration given an initial exploratory di-
rection. We presented evidence of the effectiveness of the algo-
rithm by demonstrating its correlation with ground-truth values of
the quantity it estimates, and then by showing the frequency with
which EigenSense presents the best possible option to users. Our
results indicate that EigenSense could help save human workload
by vastly reducing the number of data points to be considered while
maintaining near-optimal metric learning results.

9. REFERENCES
[1] N. Abe and H. Mamitsuka. Query learning strategies using

boosting and bagging. In Proceedings of the Fifteenth
International Conference on Machine Learning (ICML),
pages 1–9, 1998.

[2] R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive
ranking. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, pages
383–394. ACM, 2006.

[3] S. Amershi, J. Fogarty, A. Kapoor, and D. S. Tan. Effective
end-user interaction with machine learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, pages
1529–1532, 2011.

39



[4] S. Amershi, J. Fogarty, and D. Weld. Regroup: Interactive
machine learning for on-demand group creation in social
networks. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 21–30. ACM,
2012.

[5] S. Amershi, B. Lee, A. Kapoor, R. Mahajan, and
B. Christian. Human-guided machine learning for fast and
accurate network alarm triage. In Proceedings of the
International Joint Conference on Artifical Intelligence
(IJCAI), pages 2564–2569, 2011.

[6] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni,
D. Pedreschi, and F. Giannotti. Interactive visual clustering
of large collections of trajectories. In Proceedings of the
IEEE Symposium on Visual Analytics Science and
Technology (VAST), pages 3–10. IEEE, 2009.

[7] K. Bache and M. Lichman. UCI machine learning repository,
2013.

[8] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall.
Learning a mahalanobis metric from equivalence constraints.
Journal of Machine Learning Research, 6(6):937–965, 2005.

[9] S. Basu, A. Banerjee, and R. Mooney. Active
semi-supervision for pairwise constrained clustering. In
Proceedings of the IEEE International Conference on Data
Mining, pages 333–344, 2004.

[10] S. Basu, S. M. Drucker, and H. Lu. Assisting Users with
Clustering Tasks by Combining Metric Learning and
Classification. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 394–400, 2010.

[11] S. Basu, C. Jacobs, and L. Vanderwende. Powergrading: a
clustering approach to amplify human effort for short answer
grading. Transactions of the Association for Computational
Linguistics, 1:391–402, 2013.

[12] M. Bilenko, S. Basu, and R. J. Mooney. Integrating
constraints and metric learning in semi-supervised
clustering. In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 81–88, 2004.

[13] J. Broekens, T. Cocx, and W. Kosters. Object-centered
interactive multi-dimensional scaling: Ask the expert. In
Proceedings of the Eighteenth Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC), pages 59–66,
2006.

[14] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang.
Dis-function: Learning distance functions interactively. In
Proceedings of the IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 83–92. IEEE, 2012.

[15] C. Campbell, N. Cristianini, and A. Smola. Query learning
with large margin classifiers. In Proceedings of the
Seventeenth International Conference on Machine Learning
(ICML), pages 111–118, 2000.

[16] E. Carroll, M. Czerwinski, A. Roseway, A. Kapoor, P. Johns,
K. Rowan, and M. Schraefel. Food and mood: Just-in-time
support for emotional eating. In Proceedings or the Humaine
Association Conference on Affective Computing and
Intelligent Interaction (ACII), pages 252–257, Sept 2013.

[17] J. Choo, H. Lee, J. Kihm, and H. Park. iVisClassifier: An
interactive visual analytics system for classification based on
supervised dimension reduction. In Proceedings of the IEEE
Symposium on Visual Analytics Science and Technology
(VAST), pages 27–34. IEEE, 2010.

[18] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity
metric discriminatively, with application to face verification.
In Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 539–546,
2005.

[19] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon.
Information-theoretic metric learning. In Proceedings of
Twenty-Fourth International Conference on Machine
Learning (ICML), pages 209–216, 2007.

[20] M. Desjardins, J. MacGlashan, and J. Ferraioli. Interactive
visual clustering. In Proceedings of the Twelfth International
Conference on Intelligent User Interfaces, pages 361–364.
ACM, 2007.

[21] S. Ebert, M. Fritz, and B. Schiele. Active metric learning for
object recognition. In A. Pinz, T. Pock, H. Bischof, and
F. Leberl, editors, Pattern Recognition, volume 7476 of
Lecture Notes in Computer Science, pages 327–336.
Springer Berlin Heidelberg, 2012.

[22] S. P. Ellner and J. Guckenheimer. Dynamic models in
biology. Princeton University Press, 2011.

[23] A. Endert, P. Fiaux, and C. North. Semantic interaction for
visual text analytics. In Proceedings of the 2012 ACM
Annual Conference on Human Factors in Computing Systems
(CHI), pages 473–482. ACM, 2012.

[24] Y. Freund, H. Seung, Sebastian, E. Shamir, and N. Tishby.
Selective sampling using the query by committee algorithm.
Machine Learning Journal, pages 133–168, 1997.

[25] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov.
Neighbourhood components analysis. In Advances in Neural
Information Processing Systems 19, pages 513–520, 2004.

[26] M. Guillaumin, J. Verbeek, and C. Schmid. Is that you?
Metric learning approaches for face identification. In
Proceedings of the International Conference on Computer
Vision, pages 498–505, 2009.

[27] M. Heath. Scientific Computing. The McGraw-Hill
Companies, Incorporated, 2001.

[28] T. Hofmann and J. Buhmann. Active data clustering. In
Advances in Neural Information Processing Systems 12,
pages 528–534, 1997.

[29] S. Hoi, W. Liu, M. Lyu, and W. Ma. Learning distance
metrics with contextual constraints for image retrieval. In
Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 2072–2078,
2006.

[30] R. Jin and L. Si. A bayesian approach toward active learning
for collaborative filtering. In Uncertainty in Artificial
Intelligence, pages 278–285, 2004.

[31] D. MacKay. Information-based objective functions for active
data selection. Neural Computation, pages 590–604, 1992.

[32] P. Melville and R. J. Mooney. Diverse ensembles for active
learning. In Proceedings of the Twenty-First International
Conference on Machine Learning (ICML), pages 74–83,
2004.

[33] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
Stanford InfoLab, 1999.

[34] R. Rosales and G. Fung. Learning sparse metrics via linear
programming. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining,
pages 367–373, 2006.

[35] N. Roy and A. Mccallum. Toward optimal active learning
through sampling estimation of error reduction. In
Proceedings of the Eighteenth International Conference on
Machine Learning (ICML), pages 441–448, 2001.

40



[36] B. Settles. Active learning literature survey. University of
Wisconsin, Madison, 2010.

[37] H. S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, pages 287–294. ACM,
1992.

[38] C. Shen, J. Kim, L. Wang, and A. Hengel. Positive
semidefinite metric learning with boosting. In Advances in
Neural Information Processing Systems 22, pages
1651–1659, 2009.

[39] S. Stumpf, V. Rajaram, L. Li, W.-K. Wong, M. Burnett,
T. Dietterich, E. Sullivan, and J. Herlocker. Interacting
meaningfully with machine learning systems: Three
experiments. International Journal of Human-Computer
Studies, 67(8):639–662, 2009.

[40] S. Tong and D. Koller. Active learning for parameter
estimation in bayesian networks. In In Advances in Neural
Information Processing Systems 14, pages 647–653, 2001.

[41] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. In Journal Of
Machine Learning Research, pages 999–1006, 2001.

[42] L. Torresani and K. C. Lee. Large margin component
analysis. In Advances in Neural Information Processing
Systems 20, pages 1385–1392, 2007.

[43] M. A. Turk and A. P. Pentland. Face recognition using
eigenfaces. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
586–591. IEEE, 1991.

[44] F. Wang, J. Sun, T. Li, and N. Anerousis. Two heads better
than one: Metric+active learning and its applications for it
service classification. In Ninth IEEE International
Conference on Data Mining (ICDM), pages 1022–1027, Dec
2009.

[45] K. Weinberger, J. Blitzer, and L. Saul. Distance metric
learning for large margin nearest neighbor classification. In
Advances in Neural Information Processing Systems 19,
pages 10:207–244, 2006.

[46] K. Weinberger and L. Saul. Fast solvers and efficient
implementations for distance metric learning. In Proceedings
of the Twenty-Fifth International Conference on Machine
Learning (ICML), pages 1160–1167, 2008.

[47] Y. Weiss. Segmentation using eigenvectors: a unifying view.
In Proceedings of the Seventh IEEE International Conference
on Computer Vision, volume 2, pages 975–982. IEEE, 1999.

[48] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric
learning, with application to clustering with
side-information. In Advances in Neural Information
Processing Systems 15, pages 505–512, 2002.

[49] Q. Xu, M. desJardins, and K. Wagstaff. Active constrained
clustering by examining spectral eigenvectors. In Discovery
Science, pages 294–307, 2005.

[50] L. Yang and R. Jin. Bayesian active distance metric learning.
Proceedings of the Twenty-Third Conference on Uncertainty
in Artificial Intelligence (UAI), 2007.

[51] Y. Ying, K. Huang, and C. Campbell. Sparse metric learning
via smooth optimization. In Advances in Neural Information
Processing Systems 22, pages 2214–2222, 2009.

[52] Y. Ying and P. Li. Distance metric learning with eigenvalue
optimization. In Journal of Machine Learning Research,
pages 1–26, 2012.

[53] T. Zhang and F. Oles. A probability analysis on the value of

unlabeled data for classification problems. Proceedings of
the Seventeenth International Conference on Machine
Learning (ICML), pages 1191–1198, 2000.

[54] Y. Zhang, W. Xu, and J. Callan. Exploration and exploitation
in adaptive filtering based on bayesian active learning. In
Proceedings of the Twentieth International Conference on
Machine Learning (ICML), pages 896–903, 2003.

41




