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ABSTRACT
Visual analytic tools are invaluable in the process of knowl-
edge discovery. They let us explore datasets intuitively us-
ing our eyes. Yet their reliance on human cognitive abilities
forces them to be highly interactive. The interactive na-
ture of visual analytic systems is facing new challenges with
the emergence of big data. Massive data sizes are pushing
against the boundaries of current visualization capabilities.
Also the emergence of complex datasets is asking for new
ways of navigation in the high–dimensional space. EVA (Ex-
plorable Visual Analytics) is an in-progress work for develop-
ing a web–based tool for visual exploration of large and com-
plex datasets. EVA tries to handle large data sizes through
utilizing local GPU resources and a novel client/server archi-
tecture. It also provides an easy navigation mechanism for
exploring high–dimensional data. This paper presents our
experiments in knowledge discovery with EVA, using US
Census employment dataset as our testbed. We hope our
experiences result in designing guidelines and techniques for
the future visual analytic tools of the big data era.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Gen-
eral; H.4 [Information Systems Applications]: Gen-
eral; H.1.2 [User/Machine Systems]: Human Informa-
tion Processing

Keywords
visual analytics, data exploration, visualization, dimension
reduction, data mining

1. SENSEMAKING AND BIG DATA
A data explosion is happening, promising invaluable op-

portunities in scientific and technological progress, yet this
vast potential relies not only on our ability to collect and
access this data, but also on us being able to understand

it. Despite this fact, it seems that knowledge discovery from
raw data has not still reached its full power. We are pro-
ducing much more data than we can explore leading to mas-
sive amounts of untapped data waiting for future discoveries.
But what makes knowledge discovery hard?

There are in general two major approaches to do knowl-
edge discovery: either we use mathematical methods (e.g.
machine learning) or we use human judgment by directly
looking at data (e.g. visual analytics). Mathematical meth-
ods are profoundly powerful tools yet they still rely on hu-
man intuition for the following reasons. First, mathematical
methods are a collection of tools. Finding the right tool, us-
ing the right models, tuning its parameters and feeding the
right feature space into it are often done by human experts.
Second, mathematical methods are not context-aware. It is
this extra knowledge that usually leads human experts to
find the right features or ask the right questions. Third,
mathematical methods are not good at providing explana-
tions. A famous example is a Neural Network which is great
at finding patterns but does not provide any explanation
for how does it find it. And last but not least, mathemati-
cal methods are best practiced by mathematicians and com-
puter scientists while most data experts are from other fields,
not proficient enough in using these tools on their own data.
These facts force us to keep the human in the knowledge
discovery loop. Therefore the important question to answer
becomes how do people make sense of the data?

Jerome Bruner [10] argued that children posses three modes
of representation, (1) interactive, (2) visual and (3) sym-
bolic, and they use these modes to understand a new object
or system. In other words we act, we see, and we ask to
make sense of something new. For example, upon encoun-
tering a new object, the child uses her hands to play with
the object, looks at it to find out what happens when she
touches it and in the more abstract level she may even ask a
question to acquire new sources of knowledge. This process
is then repeated until the child amasses enough knowledge
about the object until she can build a reliable mental model
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representing it (Figure 1). It can be argued that even sci-
entists upon facing a new system, be it a simple object or
a complex dataset, go through the same process in order to
build a mental model of it. This multi-modal exploration of
data is an essential step in building the right intuition and
plays a significant role in choosing and applying the right
rigorous methods in the following steps. For example in
a classification problem using machine learning tools, data
scientists usually first draw the raw data and do some basic
interactions with the data (e.g. scaling). This step provides
the initial guidance which then translates into choosing the
right model/machine learning tool. This process of build-
ing a mental model of the data is called sensemaking. It
is only after acquiring this intuition that we can apply our
mathematical tools in their full power and extract meaning
and knowledge out of the raw data. It is worth mentioning
that the model presented in Figure 1 has a hidden assump-
tion: the feedback we see from interacting with an object
should be almost instantaneous. If we devise a new theory
and test it on the object/data but receive our answer after
several hours, we will not be able to effectively build a men-
tal model as we lose our train of thought after only a few
seconds. Therefore query latency can have a major impact
on the sensemaking process.

• Interaction

• Visualization

• Language

Testing a New

Hypothesis

Figure 1: Multi-Modal Exploration: how people un-
derstand an object or a system.

Up until now, this sensemaking process has been done
intuitively, usually through conventional visualization tech-
niques (e.g. plotting). But the emergence of vast and high
dimensional datasets is raising challenging issues not ad-
dressable by our current data analytic approaches. For ex-
ample, current datasets are getting so large that asking even
the simplest questions from them may take hours or days of
computation. Even after accessing the data, usual visual-
ization techniques may not work due to issues like overplot-
ting. Furthermore, it is not even possible to fully visualize
datasets that have hundreds or thousands of dimensions.
Another issue is the lack of hypotheses for analyzing the
data. Due to decreasing trend of storage prices, we are ac-
quiring and storing an ever increasing amount of data with-
out knowing which portions of that might be useful in a
future analysis. Facing with these datasets, even finding the
right questions becomes a part of data exploration process.

EVA (Explorable Visual Analytics) is an effort to seek
for design guidelines and analytic tools which are capable
of visualizing, exploring and analyzing large and complex
datasets. Our hope is to promote a set of practices which
lead to faster and easier data driven knowledge discovery. To
achieve this goal, EVA attempts to facilitate hypothesis gen-
eration and query refinement through a series of consecutive
multi-modal exploration loops. We also seek new compu-

tational techniques which can scale appropriately with the
data size and complexity.

Section 2 gives some examples of how researchers are ap-
proaching large and complex datasets and what are the chal-
lenges they are faced with. In Section 3 we introduce EVA
and give an example of using EVA for knowledge discov-
ery on real data. Section 4 discusses some of the lessons we
have learned so far in exploratory data analysis and suggests
some possible approaches that might expand our ability to
do knowledge discovery in large and high–dimensional data.

2. NEW APPROACHES IN VISUAL ANALYT-
ICS

2.1 Knowledge Discovery, Visualization, and
Big Data

The process of knowledge discovery is a fundamental as-
pect of science in general. A rich model for describing this
process is presented in [22]. The authors argue that scien-
tists navigate in a four dimensional space in order to extract
meaning from their observations. The first dimension in
this paradigm is called data representation. This is where
an abstract representation of data is being formed from a
set of features. The second dimension is hypothesis space.
Here, the scientist generates new assumptions on the possi-
ble causal relationships. Then she moves to the third dimen-
sion of experimental space in order to test those hypotheses.
It should be noted that the experiments themselves live in
an experimental framework that defines the boundaries of
valid experiments and expectable outcomes. Therefore the
fourth dimension is experimental paradigm space where the
scientist can choose a completely different class of experi-
ments for her task. In visual analytics tools, a knowledge
discovery process can be modeled based on the first three di-
mensions. A specific visualization is an example of the data
representation space. The ability to interact with the data
is happening in the experimental space. Finally, the visual-
ization/exploration choices form a series of decisions in the
hypothesis space. By using visual space for doing data rep-
resentation, we have a tangible and more direct connection
to the actual data. By forming a visual query, we actually
form a hypothesis in our mind and when we do a visual
search, we are experimenting with data in order to confirm
or reject our hypothesis. This process has been explained
in literature in various ways. Fry [13] presents this process
in seven steps. First, we should acquire the data. Then
we have to parse it and make it machine readable. This
is then followed by filtering in which we select a subset of
data that is relevant to our work. We then mine for useful
information which usually means some sort of mathemati-
cal transformation. The results are then represented in an
initial visualization. Then comes the refinement and finally
interaction steps in which we explore the visualization and
improve it by redoing the previous steps until we extract or
discover the desired knowledge. A more general perspective
on knowledge discovery is pursued in the field of visual an-
alytics [17, 18]. The goal of visual analytics is to illuminate
the way people understand data and then turn it into an
algorithmic discipline which benefits from both the power
of automated processing techniques and the capabilities of
humans in discerning and analyzing visual patterns.

Visualization research has been successful in turning raw
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data into meaningful visual presentations yet the general
perspective of the field does not differentiate between small
and simple datasets with large and complex ones. This
paradigm is changing as visualization experts face with un-
foreseen challenges unique to the big data era. For example,
as the size of the dataset grows, the responsiveness of tradi-
tional visualization systems drops until it is no longer inter-
active. In addition to the scalability issue, visualizing and
understanding complex datasets with hundreds of features
is very challenging. These issues have opened new lines of
research which often try to change the underlying visualiza-
tion approach in order to overcome these limitations.

Fekete [11] provides a nice summary of the challenges
faced by current visual analytics tools and the paradigm
shifts required to overcome these issues. He argues that as
data sizes are getting larger, query latency is posing a se-
rious problem. If the system does not provide an answer
to a particular question within a few seconds, the analyst
may forget her question and not benefit from the answer.
He suggests that by shifting from conventional accurate but
slow analytic tools toward inaccurate but fast paradigms, we
can overcome the query latency issue when we are dealing
with large and complex datasets. It is interesting to see this
mindset has started to gain momentum for example in [12]
where authors use partial but fast querying techniques to
analyze very large databases. Fekete argues that another
issue in current analytic systems is the lack of feedback and
steering. When a user sends a query, the system starts pro-
ducing a report. This process cannot be interrupted by the
user. She should wait until a query–response “episode” is
finished and then start asking a new question. We need to
be able to steer the system toward our desired answer as it is
analyzing the data. For example, we should be able to play
with the parameters of our question or navigate through the
data space and ask for finer and more accurate answers for
a subspace of a large dataset. Interactivity is another im-
portant aspect of visualization systems. For example when
a user tries to rotate a 3D object, the operation should hap-
pen instantaneously, usually within a 100 ms. This poses
a great technical challenge in front of current visualization
tools which their frame rate usually drops considerably fast
even with modest data sizes of tens of thousands [8]. To
summarize these issues we should expect new visual ana-
lytic tools which provide responsive multi-modal exploration
mechanisms to support sensemaking, provide novel steering
abilities to navigate large and high dimensional data, focus
on small query latency even in cost of inaccurate answers,
and provide non–episodic interactions where a user can mod-
ify her query while it is being processed.

2.2 Dealing with Size: Screen–Aware Tools
While data sizes are growing without any foreseeable limit,

our cognitive abilities are fairly limited. We probably can
only perceive a few million features or even less [11]. As it is
us who are the actual bottlenecks in understanding visual-
izations of large data, a new class of solutions are emerging
which focus on the output instead of input. These screen–
aware (or output–sensitive [7]) tools use various data ab-
stractions to reduce the size of presented information and
avoid analyzing portions of data that are out of the scope
of screen. They then use interactive and exploratory mech-
anisms to help the user navigate through the visualization
and understand the data better. These tools are based on

the assumption that we do not care for fine details in a big
data visualization. A data analyst who looks at a visual-
ization of millions of points is often only interested in the
general shape of the visualization; the exact location of a
single pixel is usually not important to her. On the other
hand, she would prefer to be to able to interact (e.g. zoom,
pan) with this visualization in a fluid manner in order to
form a better mental model of the overall characteristics of
the visualization.

One class of screen–aware solutions are called on-demand
processing [7]. They only draw those things that would be
visible. For example if the visual representation of a data
point is smaller than a pixel or outside of the scope of screen,
there is no need to process it. One of the most common tech-
niques used in this class is semantic zoom [15]. In contrast
to geometric zoom which redraws all pixels upon zooming,
the semantic zoom provides more detail when zooming in
and hides some of the detail when zooming out. This can
result in tremendous conservation in processing and com-
munication load and therefore it has been used extensively
in visualization systems, such as online maps, etc. Semantic
zooming is usually used in conjunction with multi–resolution
data structures. The basic idea of a multi–resolution data
structure is to pre–compute the visible data for each zoom
level. As an example, this technique has been used in Giga-
Pan and TimeMachine [21] to present massive high resolu-
tion images and videos in an interactive setup which allows
zooming on any desirable part of the video while keeping the
communication and processing under a manageable limit.
Another example of multi-resolution data structures is pre-
sented in [19]. Here, the data structure is more complicated
and has many dimensions but the fundamental idea is to ag-
gregate over different features and pre–compute these values
for several desirable zoom levels. This can then be used to
interactively visualize multi–dimensional datasets with over
billions of data points.

Another class of data abstraction solutions go further than
only showing visible things and instead focus on only show-
ing the important things. In one popular set of techniques,
it is the computer/algorithm itself that decides on what is
considered important. These techniques are usually pursued
as clustering, sampling, aggregation, filtering, . . . where the
algorithm either combines several data points or selects a
smaller subset of them and only processes those smaller rep-
resentations. An excellent example in this class is presented
in [12]. Here, when the user sends a query to visualize some
aspects of the data, the algorithm will randomly select a
small sample of data points and then visualizes only those
points. It also presents some confidence intervals around
each visualized object in order to help the analyst in un-
derstanding the error range of the incomplete visualization.
With more time, the system grabs more data points and in-
creases the accuracy of its visualization (also decreasing the
confidence intervals). This system provides a very promis-
ing approach to visualization of large datasets by using both
aggregation (in the form of queries) and sampling while in
the same time it provides an inaccurate but responsive ex-
perience.

While using computer algorithms in choosing the impor-
tant aspects of data results in highly scalable visualization
systems, it is not obvious whether the algorithms will al-
ways choose the correct abstraction. This is why another
class of solutions insert the user in the loop and ask her
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to provide feedback on what is important and what should
be visualized. The most common type of these techniques
is query–based visualization [7]. Here, the user creates a
query or search term and reduces the amount of data to a
smaller subset which is then used for the final visualization.
For example, Beyer et al. [6] present a query–based system
for visualizing neurons in a terabyte scale dataset. The user
selects regions and neurons of interest and then the system
presents neighboring neurons and their relationship in an
interactive setting. Another technique used for finding the
correct abstraction is steering. Here, the user guides the vi-
sualization system in a two–way mechanism — the system
provides an initial visualization and then the user refines it
by steering the system toward her regions of interest and
then the process repeats. An excellent example in this area
is presented in [24] where the system uses a dimension re-
duction algorithm to present a large and high–dimensional
dataset but instead of keeping users as passive observers,
it actively engages them: the system gradually shows more
points in the projected visual space while the user can steer
the system towards her desirable regions. This allows the
system to only focus on projecting data points in that re-
gion, therefore avoiding unnecessary calculations.

2.3 Dealing with Complexity: Human–Assisted
Navigation

High–dimensional datasets are inherently hard to visualize
(think of a 4-D cube) yet current big data trend is not only
expanding in data size, but also in data complexity. Most
high–dimensional visualization systems focus on some sort
of dimension reduction. One class of these techniques are
human–assisted methods which benefit from human feed-
back in their dimension reduction process [23]. These meth-
ods are often heavily interactive as it seams interacting with
a visualization can somehow compensate for our inability to
perceive high–dimensional space. Human–assisted dimen-
sion reduction usually starts with a projection algorithm
that has some parametric values. The role of the human is
to fiddle with these parameters until the final projection is
more suited to her needs. This approach adds an extra layer
of sophistication to the visualization system and extends its
capabilities in generating meaningful projections of the com-
plex data. It also has the added benefit of engaging the op-
erator in the visualization process. This can both increase
the awareness of the analyst plus through her feedbacks, the
system can save valuable computational resources. One of
the early examples of human–assisted methods in visualizing
high–dimensional datasets is Grand Tour [23]. In a Grand
Tour, the analyst can choose any arbitrary nonorthogonal
projection of the data. This can reveal features that may
remain hidden in the conventional orthogonal projections
used in some other approaches such as parallel coordinate
plots. Another early example of human–assisted methods is
presented in [20]. This system has been used to visualize
documents in a multi–dimensional setting. Each dimension
is represented as a point in the visualization plane and doc-
uments would attract/repel to these points based on their
similarity to each dimension. Also, by moving these feature
points, the user can see how each document reacts. This
helps in clustering documents into similar groups in their
complex environment.

Steering is one of the recent techniques in human–assisted
approaches. Williams and Munzner [24] introduce a navi-

gation mechanism in which the operator steers the system
toward the desired subspace of the original dataset. The
projection algorithm is then focused on this area, avoiding
unnecessary computations on the rest of the dataset. Also,
by actively engaging the user in the process of complex-
ity reduction, the operator builds a better mental model
of the data. Ingram et al. [16] provide a different mech-
anism for engaging the user. Here, the system provides a
collection of different dimension reduction algorithms and
provides tools for tuning their parameters. The analyst can
combine these algorithms together until she finds a desirable
low–dimensional representation of the data. This is espe-
cially beneficial when the user is not an expert in machine
learning and dimension reduction techniques. The authors
also extensively use the idea of navigation and landmarks.
Different levels of global and local navigation improve the
exploration ability of the visualization tool while landmarks
help the user to find interesting projections of the data. In
a similar fashion, Gratzl et al. [14] introduce a tool for ex-
ploring rank–based data. Here, the projection algorithm
is a simple weighted linear combination of dimensions, but
the user has much more power on selecting each weight and
the overall combination rules. The tool is also highly inter-
active, making it easy to create new hypotheses and then
testing them through a simple drag and drop process.

2.4 Next Steps in Visual Analytics
The solutions discussed here are reshaping the conven-

tional visualization paradigm. They put priority over speed
and responsiveness even if it results in reduced accuracy,
presenting a subset of data or presenting an abstract and
compressed version of it. These solutions are also often
screen–aware, which means their computational complex-
ity is usually dependent on the screen size rather that data
size. This makes them great candidates for emerging vi-
sual analytic tools that are capable of scaling with growing
data sizes. Future visual analytic systems should also of-
fer non–episodic interaction with the data. In this type of
interaction, the user can constantly fiddle with the param-
eters of the query while the system instantly demonstrates
new visualizations. This means that when the system re-
ceives a new input from the user, it would not wait until
it completes the previous data analysis action. Instead, it
adjusts its results to the new query. This interactive query
building is essential in forming and improving our hypothe-
ses about the data and as Fisher et al. [12] show in a case
study, this can be highly beneficial for data analysts. Non–
episodic interaction can be useful because in knowledge dis-
covery we often need to ask many questions and perform
multiple iterations on our hypotheses before we can form
the right questions. A data analyst seldom asks only one
question. She should form many assumptions and refine
those assumptions through consecutive visualizations until
she can find the answers she is looking for. The ability to
change query parameters on the fly should be accompanied
by fast response times from the system. Our memory is very
limited, specially when dealing with vast quantities of visual
information. Short query latency and intuitive navigation
mechanism can help us go back and forth between several
visualizations and look at the data from multiple perspec-
tives, therefore increasing our chance for finding meaningful
patterns.
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3. EVA PROTOTYPE
Explorable Visual Analytics (EVA [5]) is a visualization

system prototype. It has been developed to address the chal-
lenges arising in dealing with large and complex datasets.
The main philosophy behind designing EVA is to improve
hypothesis generation, both in quality and quantity. EVA
tries to provide easy to use and intuitive navigation mech-
anisms. Through them, the user can easily navigate in a
large space of data objects. It also helps the analyst to
look at the multi–dimensional data from multiple perspec-
tives, hence giving her a better chance for finding interesting
phenomena in the data. In general, the interactive nature
of EVA is critical in sense making and creating a mental
model of the data. Also, EVA is designed to be responsive
as it is beneficial to minimize the time between generating
a question and testing it. There is an important period be-
tween when an analyst forms a question in her mind until
she can see the relevant visualization to test that hypothesis.
If it takes too long (e.g. even more than 10 seconds), the
analyst may lose her train of thought. This is mainly due
to our limited working memory. EVA minimizes this delay
period and therefore lets the analyst to instantaneously test
her new ideas. This is in turn helpful in generating more
questions. In conclusion, EVA provides a simple naviga-
tion mechanism for studying a large and complex dataset
through visual inquiries. It also has short processing time
in order to avoid any delay between receiving a query from
the user and visualizing it. EVA is also designed to provide
a high resolution visualization, as richness of details is an
important factor in doing knowledge discovery. All of these
aspects helps the user to start with a relatively small set
of assumptions, test them, generate new questions, refine
them, and gradually build a better model of the data, which
then results in finding new and meaningful patterns.

Based on the knowledge discovery framework presented
in Section 2.1, EVA is composed of three major conceptual
sections. In the data representation section, EVA provides a
5 dimensional visual space consisting of spatial coordinates
(X, Y , Z), color and visibility period (named as Time).
Each data point can be assigned to an instance of this visual
space. In the hypothesis space, the user can use a simple one-
to-one mapping function from data space to visual space. It
is also possible to scale data values to better fit them in
the visual space. In the experimental space, EVA provides
various tools for interacting with and manipulating the visu-
alization in order to do a visual search and find interesting
patterns. These mechanisms include tools and techniques
such as zoom, pan, rotation, choosing color palette, scaling,
camera features, external visual aids such as Google Maps
and also some textual helpers such as an information panel.

EVA is a web–based tool developed at CMU’s CREATE
Lab [1]. It is a part of Explorables [2] collaborative which
consists of various projects aiming at interactive visual rep-
resentations of large datasets. EVA is accessible from http:

//eva.cmucreatelab.org. It is written in JavaScript and
HTML. It uses a selection of color palettes presented in
Color Brewer [9]. It also uses the WebGL–based Three.js [4]
library for its graphical engine. Choosing web–based tech-
nologies has been helpful in sharing EVA with other ex-
perts and incorporating their suggestions during develop-
ment phase. EVA fully utilizes the GPU and RAM in order
to visualize large datasets without sacrificing its response
time. Currently, it can handle data sizes of up to a few mil-

Figure 2: EVA’s main screen.

lion points consisting of tens of dimensions. Figure 2 shows
a screenshot of EVA in a browser.

Choosing the right dataset for EVA has been based on sev-
eral factors. First, we wanted a dataset large enough to be
beyond the processing capacity of usual visualization tools,
yet not too large to complicate the development of our first
prototype. As current tools are usually limited to visualizing
a few tens of thousands of objects, we chose a limit around a
few millions of points for our dataset. The second factor in
choosing a dataset is its complexity. A dataset with a few di-
mensions (say 4) can be visualized completely using spatial
dimensions and color. On the other hand, manually select-
ing and navigating through hundreds or more dimensions
is tedious and very complicated. Therefore, we limited the
datasets dimension cardinality to tens of dimensions. It is
also important to chose a meaningful dataset acquired from
real world measurements. This can lead to relevant and use-
ful knowledge discovery. Also, the analyst can benefit from
her expertise in the contextual information accompanying
that dataset. Finally, the data should have some meaning-
ful representation in the spatial space, otherwise a purely
visual exploration may not be as beneficial.

Based on these characteristics, we chose United States
Census Longitudinal Employer–Household Dynamics (LEHD
[3]) dataset. This dataset provides information on employ-
ers and employees across country. This information includes
categories such as employees earning, age, ethnicity, educa-
tion level, etc1. It is aggregated over census blocks which
are small geographical regions usually equivalent to a city
block. Also, the data is produced yearly, therefore provid-
ing enough details both on the spatial and temporal levels.
This dataset is being used by a wide span of scientists and
analysts from economists to urban researchers. As such, it
can be used with a rich set of contextual knowledge from
various fields and therefore it can be a good candidate for
doing meaningful knowledge discoveries. Currently, the vi-
sualization tools dedicated to LEHD are limited and they
often work on aggregations of the original data, hence they
do not visualize it with fine details. The LEHD dataset in
its entirety is very large (more than a 100GB). Therefore we
have limited our work to the state of Pennsylvania2. This

1Details of LEHD data structure is available
at http://lehd.ces.census.gov/data/lodes/LODES7/
LODESTechDoc7.0.pdf
2Particularly to the residence–based workforce informa-
tion subsection of LEHD. For Pennsylvania, this dataset is
around 300MB.
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Figure 3: Earnings more than $3333 per month
for Pennsylvania. Each dot represents the center
point of the corresponding census block. Red areas
show regions with a higher percentage of residents
in high–end income range. The color palette on the
right shows the minimum percentage of employees
with the aforementioned income level in each census
block.

subsection of LEHD has around 2.8M data entries and 44
dimensions. Next, we will go through some examples of us-
ing EVA on LEHD for understanding the data better and
then doing discoveries as we interact with the data.

Figure 4: Earnings more than $3333 per month for
Pittsburgh.

The first example is a simple visualization of income (Fig-
ure 3). Each dot represents one instance of data. The longi-
tude dimension of each data instance is assigned to the vi-
sual dimension X (the horizontal orientation of the figure).
The latitude dimension is assigned to the visual dimension
Y (the vertical orientation of the figure)3. The visual di-
mension of color represents the ratio between the number of
jobs with an income of $3333 or more per month with the
total number of jobs. Therefore a pixel with bright red color
shows a relatively wealthy neighborhood while a pixel with
yellow color shows a poorer area. In general, there are 2.8
million pixels in the visualization. From this visual repre-
sentation, it is easy to locate the major population poles of
the state, such as Philadelphia on the bottom right corner
or Pittsburgh on the left side. It is also possible to dis-
tinguish the major geological features of the area such as
the distinctive Appalachian Mountains in the middle of the

3The latitude and longitude measures represent the central
location of the corresponding census block.

map. The other important observation is the non–uniform
distribution of wealth throughout the state. Most of high–
end income earning neighborhoods are concentrated in the
suburbs of Philadelphia and Pittsburgh while the regions in
the middle are usually less populated and often have a lower
amount of income. Figure 4 shows a zoomed in version of
Figure 3, focusing on Pittsburgh. This picture also includes
a Google Map helper in the background. This layer can be
helpful in distinguishing the exact location of each census
block. Based on this map, the main wealthy neighborhoods
are seen in the middle of the picture, where the University
of Pittsburgh and Carnegie Mellon University are located.

Figure 5: Earnings more than $3333 per month (as
color) combined with total number of jobs (as ele-
vation).

In Figure 5, we have utilized all the 3 spatial dimensions.
Here, besides assigning longitude and latitude to X and Y ,
we have assigned total number of jobs in each location to
dimension Z. By rotating the visualization, the user can
look at the high–income levels (as color) and total number
of jobs (as elevation) at the same time. Through this rep-
resentation, it is again easy to find the major population
hubs. Also, it is more evident that there is a more complex
relationship between income level and number of jobs. For
example by looking at Philadelphia at the bottom right cor-
ner, we can see areas of high income (red) and low income
(yellow) with almost the same number of jobs adjacent to
each other. Another interesting example is State College,
home of Pennsylvania State University, located at the cen-
ter of the map. This small city has a relatively low number
of jobs, but the color of those jobs shows a high–income
region, representative of its higher education employment
sector. It should be noted that most of the visual objects
in a point cloud are obscuring each other, therefore it is es-
sential to have interactive capabilities. Through rotation,
zooming and panning, the user has a much better chance of
understanding the general outline of the visual space.

The last visual dimension available in EVA is Time. By
assigning a data dimension to time, we can create an ani-
mation and control it through the bottom slider. Figure 6
shows the high–end income range percentages over a course
of 10 years. As it is evident from comparing Figure 6(a) to
Figure 6(b), the percentage of people with higher incomes
is increasing over the decade. This can be due to the in-
flation in income or a real increase in the overall earnings.
The time slider plays an important role in revealing this
pattern as the user should go back and forth in time multi-
ple times to better perceive the gradual change in earnings.
Again, the interactive nature of visualization is vital in the
knowledge discovery step. The same data is represented in a
different view in Figure 7. Here, instead of the usual assign-
ment of years to Time dimension, we have assigned it to Z.
This results in a series of planes dissecting the data accord-
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(a) 2002

(b) 2011

Figure 6: Earnings more than $3333 per month in
years 2002 and 2011.

Figure 7: Earnings more than $3333 per month. The
year dimension from the data is assigned to the Z
dimension in the visual space.

ing to their year. This is useful for looking at the general
trend. For example, the region in the front of the picture in
Figure 7 is Philadelphia. We can see the lower layer (corre-
sponding to year 2002) has more blue dots (corresponding
to poor neighborhoods). As we go up in the layers we are
going forward in time and we can see the shrinking of blue
regions and the growth of higher–income neighborhoods.

Figure 8 looks at the distribution of races in the city of
Philadelphia over the course of three years (from 2009 to
2011). The green regions represent neighborhoods with a
majority of Whites while purple regions show neighborhoods
with a majority of workforce from African American commu-
nity. The first observation is the segregation between these
two communities. Neighborhoods are mostly dominated by

(a) 2009

(b) 2011

Figure 8: Distribution of employees based on their
race. Purple areas represent neighborhoods with a
majority of African American workforce while the
green areas represent neighborhoods with a major-
ity of Whites. (a) shows this distribution in year
2009 and (b) is for year 2011.

only one race while in between there are some small border
neighborhoods that accommodate a more balanced mixture
of both races. The other observation is the relatively fast
shifts in the population proportions of some border neigh-
borhoods within a course of a few years. For example, the
region marked as A in Figure 8(a) shows an area that is
mostly composed of African Americans in 2009. But as we
go forward in time to year 2011 (Figure 8(b)), this area
becomes a more mixed race neighborhood. The opposite
phenomena is happening in region B where it is changing
from a mixed community to a more single–race neighbor-
hood. During some informal discussion with a Philadelphia
resident, he hypothesized that this population shift may be
related to a new wave of African immigrants settling in the
west side of the city.

The next example shows an accidental discovery. Here,
the exploration was not driven by a hypothesis. Instead, it
was the exploratory nature of the tool that led to an un-
expected visualization. This later resulted in formation of
new hypotheses. When working with geolocated data such
as LEHD, it is common to visualize the data on a map. Fig-
ure 9 shows a visualization of LEHD data in an effort to
view it outside of a geo–spatial representation. Here, each
dot corresponds to one census block (i.e. neighborhood) on
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Figure 9: The relationship between race, gender,
and total number of jobs. The dots on the right–
hand side represent neighborhoods where a major-
ity of workforce are men. The dots on the left–hand
side are areas where the majority of working people
are women. The elevation shows the relative total
number of jobs. The color shows the percentage of
African Americans in that neighborhood (red shows
higher percentage of African Americans in that cen-
sus block).

the map. The number of jobs for males has been assigned
to the X dimension and the number of jobs for females has
been assigned to Y dimension. Furthermore, the total num-
ber of jobs in each neighborhood has been assigned to the
Z dimension. Viewing the final visualization from a per-
pendicular angel, we come up with Figure 9 where a dot
on the right–hand side represents a neighborhood with a
higher percentage of workforce being male, while a dot on
the left–hand side shows a region with a higher percentage
of females in the workforce. The elevation shows the total
number of jobs. As it can be expected, most of the neigh-
borhoods are located in the middle, with an almost 50–50
percent distribution of jobs between men and women. But
the unexpected feature of this visualization is the one–sided
distribution of red dots. Here, we have assigned number of
jobs for African Americans to the Color dimension. There-
fore the red dots show neighborhoods with a majority of
workforce from African American community. Seeing that
most of these dots are on the female side of the graph we
can hypothesize that either there is a high unemployment
rate among African American men or that they are work-
ing in areas with a majority of workforce from other races,
hence their presence is not visible. In either case, the ex-
ploratory nature of EVA plus the ability of going through
many visualizations in a short amount of time was crucial
in creating this visualization and therefore forming new hy-
potheses about the nature of the data. It can be imagined
that even randomly going through several different projec-
tions of the data can reveal some interesting patterns that
are not evident in the first place, due to the lack of initial
hypotheses in the mind of the analyst.

4. DISCUSSION
We can summarize EVA’s contributions in three aspects:

high resolution, explorability, responsiveness. High resolu-
tion is the ability of EVA to show as many data points as
possible on a screen without aggregating them into overall
summaries. The aggregation technique is used in many tools
to improve their ability in working with larger datasets, but
it also reduces the clarity of final picture and hides the fine
details of the data. Knowledge discovery can be very de-
pendable on the amount of detail a user can see. In the

explorability aspect, EVA provides usual interactive tech-
niques (e.g. zoom, pan, etc.) plus easy navigation between
multiple projections of data through its dimension assign-
ment tool. Our initial experiments showed that the ability
of viewing data from multiple perspectives is crucial in un-
derstanding the data and finding the “wow” moments where
the analyst observes some unexpected pattern. These mo-
ments usually lead to deeper investigations, new hypothesis
generation, and sometimes to new discoveries. Finally, the
responsiveness aspect of EVA fully utilizes its other features.
Knowledge discovery is a memory intensive process. The an-
alyst should form a series of assumptions and questions in
her mind, and then create a series of visualizations, looking
at one characteristic of the data in each step. It is important
to remember all of these steps and their possible interpre-
tations. If there is a long waiting period between each two
step, the user can easily forget her previous observations and
hence the general knowledge discovery process will be inter-
rupted. EVA is designed from the ground up to address this
issue by fully utilizing local computing resources available in
order to make fast and smooth transitions from one visual-
ization to the other. This is a fundamental feature in data
exploration, specially when data size and complexity grows.

It is worth noting that EVA should be used in conjunc-
tion with a statistical tool. The main purpose of EVA is
to facilitate hypothesis generation. It will also show visual
representations of the data so the analyst can perform an
initial test for each hypothesis, but coming up with a final
accurate and reliable answer is the job of a statistical tool.
Another important note about EVA is the role of experts
in shaping it. From its inception, EVA has benefited from
many experts. The choice of data, its visual characteristics
(such as color palettes used), . . . has been formed through
many joint sessions with analysts from various backgrounds.
Their realtime feedback while working with their own data
on EVA has also been tremendously helpful in recognizing
EVA’s capabilities as well as its limitations. This collabora-
tion would remain an ongoing part of EVA during the future
expansions.

We are going to expand EVA in two major aspects: scaling
and navigation in the action space. Currently, EVA down-
loads the full dataset into the local memory. In this way
it can fully utilize clients local resources such as GPU and
RAM. But this approach is limited to moderate data sizes
of a few million points. Larger datasets take a long amount
of time to download and they often cannot be fitted to lo-
cal memory. Therefore, in the future EVA should support
a client/server architecture which actively limits data trans-
mission based on the screen resolution and user needs. This
screen–aware method would not be accurate and complete,
but can be scaled for large datasets. Another addition to
EVA is a history function. When users explore a dataset
they generate many different visualizations and sometimes
they need to compare several views together in order to form
a better mental model. A history function can help them
navigate in their action space. This can also augment users
working memory and improve the quality of their knowledge
discovery.
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