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ABSTRACT

Analyzing the relationship between location and time in a
spatio-temporal data is not trivial. It is even more chal-
lenging if the data contains uncertainty. In this paper, we
present a new method that visualizes spatio-temporal data
with uncertainty. This method is an extension of our 2D vi-
sualization technique called Storygraph, and it handles two
types of data uncertainty: (1) the spatial and temporal un-
certainty about an event; (2) the spatial and temporal un-
certainty between two events. We applied this method to
a case study that involves data extracted from witness tes-
timonies and field reports containing uncertainties inherent
to natural language.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/methodology

1. INTRODUCTION
The introduction of geo-location sensors in mobile devices

and other commodity hardware has greatly aided in spatio-
temporal data collection. As a result, novel and effective
methods are needed to help analyze these great amounts of
spatio-temporal data. Traditional methods like maps fail to
show the temporal sequence of the events. An event in this
paper refers to a row in the dataset having distinct time and
location. If two events occur at the same location at different
times, the markers will overlap, resulting in a single marker.
Time series charts are helpful for presenting temporal infor-
mation but difficult for analyzing spatial information. Other
methods such as small multiples, animations, and 3D maps
have significant drawbacks.

In our previous work, we introduced a technique called
Storygraph [1] to address these issues. Storygraph is a 2D
technique that visualizes both spatial and temporal com-
ponents in an integrated graph. Our case studies demon-
strated the benefits of this method on datasets containing
precise geolocations and time such as military war logs [1]
and software commit histories [2]. However, when applying
our method to spatio-temporal data extracted from witness
testimonies and field reports, we encountered problems of
uncertainty in space and time. For example, our study of
511 interviews with first responders during the attack on
World Trade Center (WTC) on September 11, 2001 showed
that the narratives of these interviewees, who were trained
to report incidences, still contained a fair amount of uncer-
tainty in their descriptions of locations and times.

To address these issues, we developed a new version of Sto-
rygraph visualize uncertainty. In our revision, we begin by
categorizing uncertainty into two categories: (1) event un-
certainty and (2) between-event uncertainty. We designed
our method to distinguish and visualize these two types of
uncertainty. Event uncertainty is the spatio-temporal uncer-
tainty about the event itself, including events with poorly
specified spatial and/or temporal attributes. Between-event
uncertainty is the uncertainty between two precisely recorded
events, which we call them key events. This concept is in
part influenced by Hagerstrand’s Time Geography [3][4][5].
After specifying the key events, the between-event uncer-
tainties are visualized as space-time prisms between the key
events. Through this process, our visualization technique
can be used to study the interactions between people (or
characters) in both space and time.

The rest of the paper is organized as follows: Section 2
discusses related work in spatio-temporal and uncertainty
visualization. Section 3 presents the mathematical model of
Storygraph. Section 4, describes the classification of uncer-
tainty. Section 5 discusses how uncertain events are visual-
ized in Storygraph. Section 6 discusses how between-event
uncertainty is visualized. Section 7 presents a case study
featuring fire fighter interviews from WTC corpus. Section
8 concludes by summarizing our work and discussing future
works.

2. RELATED WORK
Maps and time series charts are the most common visual-

ization techniques to present spatial and temporal data sets.
Other techniques include [6] [7] [8] [9] [10] [11] [12] [13] [14]
[15] [16] [17] [18] [19]. These techniques, however, do not
deal with uncertainties in spatial or temporal dimensions
even though data collected from real world often contains
various levels of uncertainty because of unreliable memory,
unreliable source, or the inherent ambiguity of natural lan-
guage.

Much work has been done in visualizing uncertainty [20].
Here, we focus on closely related work in spatial temporal
data visualization. The most common method is to over-
lay uncertainty information on top of a map. For exam-
ple, Love et al. [21] used color coding, displacement map-
ping, and bar glyph on a 3D map to visualize uncertainty.
Some authors also used color to visualize probabilities on a
2D map [22][23]. Zuk et al. [24] used transparency, wire
frame, or location shift to present uncertainties on 3D mod-
els. Some scientific visualization methods deal with location
uncertainty by plotting multiple versions of the simulations
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or observations, which creates a spaghetti-like drawing of
data points. Other methods use contour lines or sound to
indicate uncertainty. However, most of the previous works
are about visualizing uncertainty data associated with loca-
tion and time rather than uncertainty in location and time
themselves. For example, color coding, displacement map-
ping, and bar glyph on a map cannot show the area of possi-
ble (but uncertain) locations. Wire frame and transparency
indicate the existence of uncertainty but not the possible
range of uncertain locations or times. Pebesma et al. [23]
used animation to show variability in time; but, with ani-
mation, users only see one image at a time, and it’s difficult
to conduct data analysis on a timeline [25][26]. Most impor-
tantly, previous methods have shown difficulty integrating
spatial and temporal uncertainty in one view.

The main difference between our method and previous
works is that, in our method, uncertainty information is not
displayed on a map but on the more abstract Storygraph.
The benefit is that it can visualize both spatial and tem-
poral uncertainty in a single 2D view. Our method can
clearly differentiate between uncertainty in location (spa-
tial uncertainty), time (temporal uncertainty) as well as a
combination of the two (spatio-temporal uncertainty). In
other methods, such differences are not clearly distinguish-
able. Our method also visualizes between-event uncertainty,
which is mostly ignored by other methods. Our between-
event uncertainty visualization is influenced in part by Hager-
strand’s Time Geography [3][4][5], a 3D map based visual-
ization.

3. STORYGRAPH
Storygraph is a visualization technique that presents an

integrated 2D view for spatio-temporal data [1]. It is a three-
axis coordinate system with two parallel vertical axes for
latitude and longitude and an orthogonal horizontal axis for
time. Figure 1 illustrates the basic ideas of Storygraph.

The top sub-figure in Figure 1 shows 6 accidents marked
on a map. Two accidents have been reported at each loca-
tion at different times of the year. However, as shown in this
figure, plotting these data points on a map results in over-
lapping markers. For the remaining non-overlapping mark-
ers, maps fail to show the temporal distance between these
events. The sub-figure at the bottom shows the same events
presented in Storygraph. Here, events are plotted on the
location lines with no overlapping. In addition, Storygraph
presents the temporal distance between the events. Figure 2
shows a Storygraph generated from the World Trade Cen-
ter (WTC) corpus generated by our program. Few patterns
that can be observed in this Storygraph are: (1) The points
are clustered around location (40.70,−74.00), (2) At times
t1 - t4 and later on around 15 : 12, there are events simul-
taneously taking place at many different locations.

Interpreting spatial information on Storygraph is not as
intuitive as that on a map; however, analyzing temporal in-
formation on Storygraph is quite intuitive. The following
analysis discusses the process of interpreting the spatial in-
formation on Storygraph.

Based on [1], let αmax and αmin be the maximum and
minimum latitude, and βmax and βmin be the maximum
and minimum longitude. Likewise, let Tmax and Tmin be
the maximum and the minimum timestamps.

The mapping function f(α,β, t) → (xstorygrah, ystorygraph)
of event E(lα, lβ , t) is given by:

Latitude Longitude

33.74

33.79

33.82

-84.39

-84.38

-84.35

Jul Aug Sep Oct Nov DecJun

July 4, July 28

July 4, Dec 24

July 4, July 15, Aug 6

A(33.74, -84.35)

B(33.79, -84.39)

C(33.82, -84.38)

Figure 1: Example of Storygraph constructed from
hypothetical accidents. Top: Outline map showing
the major highways in Atlanta and hypothetical ac-
cident taking place at the junctions A, B, and C on
the dates shown. Bottom: Same information plot-
ted on Storygraph (not drawn to scale for illustra-
tive purposes). Each location is represented as a
line joining the latitude and longitude in the ver-
tical axes. An event occurring at that location is
represented by a point on the line. This represen-
tation allows users to see the temporal context of
the events together with spatial context (i.e. when
did most accidents take place? July-August in the
figure above.)

ystorygraph =
(β − α)(x− Tmin)

Tmax − Tmin
+ α (1)

xstorygraph = t (2)

Assuming Tmin = 0 and Tmax = T without loss of gener-
ality, Equation 1 simplifies to

y =
(β − α)

T
x+ α (3)

Equation 3 is also the equation of the location line (Equa-
tion 1 rewritten in slope-intercept form).

In earlier sections, we discussed that a point on the Sto-
rygraph in the absence of location line can be mapped to
range of locations in geographical space. Thus, the function
f ceases to be one-to-one.

Lemma 3.1. A point on a location line in Storygraph at
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Figure 2: Left: Storygraph showing approximately 7000 events within 12 hours during 9/11 attack on WTC.
Annotations t1− t4 mark the key events: t1(8 : 46), first plane crashes into the North Tower; t2(9 : 03), second
plane crashes into South Tower; t3(9 : 59), South Tower collapses; t4(10 : 28), North Tower collapses. At each
of these times, events occurred simultaneously at multiple locations (marked by vertically aligned events). In
addition, it can also be observed that the events clustered around the location (40.70,−74.00). Right: Same
set of events plotted on the map. Maps supplement Storygraphs as identifying locations on maps is relatively
more intuitive.

time t corresponds to a precise point (geo-coordinate) on a
map.

Proof. Setting T = 0 and T = t Equation 3, we get
the ylat and ylng of the Storygraph. Thus, geo-coordinates
(α, β) can be obtained as

α = ylat ×
αmax − αmin

αmin × ymax
(4)

β = ylng ×
βmax − βmin

βmin × ymax
(5)

Lemma 3.2. Without location lines, a point on a Story-
graph at time t corresponds to a line segment on a map.

Proof. We can rewrite equation (3) as

β = (1−
T

x
)α+

yT

x
(6)

Thus, a fixed point (x, y) on the Storygraph corresponds to
many points (α,β) on the Cartesian map at time t = x:
those αmin ≤ α ≤ αmax and βmin ≤ β ≤ βmax satisfying
(6). Plotting these values of (α, β) results in a line segment
with non-positive slope since x ≤ T as illustrated in Fig-
ure 3.

Lemma 3.3. Without location lines, a vertical line seg-
ment at time t on a Storygraph corresponds to an area on a
map.

Proof. Consider a vertical line segment, with end coordi-
nates (x, y1) and (x, y2), y1 ≤ y2. Using 3.2, these extremes
of the line segment in (6) we get two straight line equations

β = (1−
T

x
)α+

y1T

x
(7)

β = (1−
T

x
)α+

y2T

x
(8)

Hence the vertical line segment between (x, y1) and (x, y2)
on the Storygraph corresponds to an area between two paral-
lel lines (7) to (8) in the geographical space. As in Lemma 3.2,
this area is also bounded by the maximum and minimum val-
ues of α and β – this results in a polygon as illustrated in
Figure 4.

Lemma 3.4. Without location lines, a vertical line seg-
ment at t on the Storygraph corresponds to a projected area,
AStorygraph ≥ Aactual in geographical space at t.

Proof. If the area on the plane is bounded by right rect-
angle, since ∀α : α1 ≤ α ≤ α2 and ∀β : β1 ≤ β ≤ β2,
AStorygraph = Aactual. For any other shape, the vertical line
segment in the Storygraph represents a rectangular bound-
ing box (from 3.3). Thus, ∃α : α ∈ AStorygraph − Aactual.
Hence, AStorygraph ≥ Aactual

Corollary 3.5. Real-world area at time t maps to a ver-
tical line segment in storygraph at time t.

Proof. Inverse of Lemma 3.4, when the exact coordi-
nates of all the four corners are known

we can state that an area Aactual in the geographical space
gets mapped to a line segment in the Storygraph orthogonal
to the time axis. The area formed by this line segment l
bounded by coordinates (α1,β1, t) and (α2, β2, t) is given by
AStorygraph = (α2 −α1)

2 +(β2 − β1)
2. Thus, AStorygraph ≥

Aactual.

Lemma 3.6. Storygraph preserves spatial proximity for lo-
cation lines but does not preserve spatio-temporal proximity
for events.
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!min !max
"min

"max

"1

"2

t

At time t

Figure 3: Top: A point in the Storygraph at time t
and the corresponding location lines the point can
belong to shaded. Bottom: The line segment gen-
erated in the Cartesian coordinate by mapping the
point.

Proof. Two events close to each other in Storygraph
may not be close to each other in geographical space. Con-
sider two locations (α1,β1) and (α2,β2) in geographical space
where α1 ≪ α2. Since both of the axes are ordered in Sto-
rygraph, α1 ≪ α2 holds true as well.

4. CLASSIFICATION OF UNCERTAINTY
Different classifications of uncertainty have been proposed

[27][28]; however, most of these classifications are about un-
certainties introduced in scientific experiments or probabilis-
tic models. In our case, uncertainties are introduced in nar-
ratives. Thus, we classify this kind of uncertainty into three
categories:

Uncertainty about time and/or location of the event. This
type of uncertainty is characterized by the presence of phrases
denoting uncertainty before temporal or spatial description.
An example is “I got there maybe around 11 am.” The
phrase ‘maybe around’ adds uncertainty to ‘11 am’ in this
example. Such uncertainties may also arise from ambiguity
in language. For example, in “I was in Brooklyn when the
plane hit the building,” the word ‘Brooklyn’ does not give
a precise location. We call these types of uncertainties as
event uncertainty which can be further divided into three
sub-categories:

• Spatial uncertainty. This category includes events that
have precise time stamps but uncertain location.

• Temporal uncertainty. In addition to uncertain phrases
(e.g. maybe, about), temporal uncertainty may come
from the language itself. For example, in “I was at the

Latitude Longitude

Time

!max "max

!min "min

"1

"2

Latitude

Longitude

!min !max
"min

"max

"1

"2

!1

!1

!2

!2

t

At time t

Figure 4: Top: A vertical line in Storygraph at time
t and the corresponding location lines the line seg-
ment can belong to shaded. Bottom: The bounded
region generated in the geographical space by map-
ping the line segment.

station in the all day,” the phrase “all day”without any
modifier can refer to a wide range of time introducing
uncertainty.

• Spatio-temporal uncertainty. This category includes
events that have uncertainty in both time and loca-
tion. For example, in “It was in the afternoon, I was
heading south.” The words ‘afternoon’ and ‘south’ are
uncertain.

Uncertainty between two events. In “It was 8 in the morn-
ing I was at home. As soon as I heard about it, I reached
the site at 10.”, the first event (“at home”) and the second
event (“reached the site”) are both certain. However, what
happened between the two events is unknown. We call this
type of uncertainty between-even uncertainty

Uncertainty about the even taking place. In the WTC cor-
pus, we often encounter sentences like “I think Chief pulled
me back”. The word ‘think’ indicates an uncertainty about
whether the event has ever happened. Detecting this type of
uncertainty is difficult and beyond the scope of this paper.
Instead, we focus only on visualizing event uncertainty and
between-event uncertainty.

5. EVENT UNCERTAINTY
In this section, we discuss the extraction and visualiza-

tion of event uncertainty. To extract event uncertainty, we
compiled a list of English words that may indicate location
uncertainty, such as “around,” “near,” “close to,” “maybe,”
“perhaps,” etc. We then gave each word an uncertainty
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Figure 5: Three kinds of glyphs used to represent spatial, temporal and spatio-temporal uncertainty. Left:
Dashed I-beam is used to represent spatial uncertainty. The slope of the top and bottom of the beam
disambiguates the range of locations in the geographical space. Middle: parallel lines are used to denote the
temporal uncertainty. Right: Box showing spatio-temporal uncertainty. The slope of the edges of the box
maps to a fixed geographical area within a certain time.

score in the range of 1 − 100 [29][30][31]. The same pro-
cess was repeated for temporal information. We extracted
the named entities from WTC corpus using Stanford NER
[32] and time using SuTime [33]. TARSQI [34] was used to
extract the temporal sequence of the events, and locations
were geocoded using Google Maps API. The results were
then verified and corrected.

In the WTC corpus, we observed all three types of event
uncertainties: spatial, temporal, and spatio-temporal. Some
key events with precise spatio-temporal information were
used as anchor events. These include the first and second
plane hitting the tower, and the plane crashing into the pen-
tagon. These events were chosen as key events because all
of the interviews described more local events in reference to
these global events. Examples include “When the second
plane hit the tower, I was running towards Vesey,” and “I
was at the station when the news about the first explosion
was on TV.”When considering these key events in the con-
text of the first example, the time is certain but the location
is uncertain. Additionally, in a sentence that references no
key events like “When the EMS arrived at the scene, I began
heading south”, both location and time would be considered
uncertain.

For each event, latitude, longitude, date/time, color, spa-
tial uncertainty, and temporal uncertainty were fed to the
visualization program, which then visualized the uncertainty
information along with other information.

Spatial Uncertainty. Spatial uncertainty is visualized as a
vertical dashed I-beam. From Corollary 3.5, we know that
an area on a map corresponds to a line in Storygraph. The
length of the I-beam is proportional to the area of possible
locations. More importantly, the top and the bottom of the
beam disambiguate the range of locations in geographical
space. This is shown by the left sub-figure in Figure 5.

Temporal Uncertainty. We use sloped double lines to rep-
resent temporal uncertainty. Each double line is drawn along
the location line for the corresponding event, which can be
seen in the middle sub-figure in Figure 5. A double line
indicates that the event happens at a particular location
within a certain time frame. In contrast, a single solid line
along the location line means that the character stayed at
the specified location for a period of time. Through these
representations, the two cases are visually distinct.

Spatio-temporal Uncertainty. We use a semi-transparent

box to visualize spatio-temporal uncertainty, which means
both location and time are uncertain. The sloped top and
bottom sides of the box indicate the range of locations while
the vertical sides of the boxes shows the temporal bound.
The box is drawn as semi-transparent to prevent glyph oc-
clusion. This is shown by the right sub-figure in Figure 5.

Figure 6 shows this concept applied to the events ex-
tracted from WTC corpus.

6. BETWEEN-EVENT UNCERTAINTY
The purpose of visualizing between-event uncertainty is to

display the space-time constraints between two key events.
Any activity takes place within a certain span of time and
a certain geographical region. Individuals participating in
these activities have to trade time for space or vice versa.
For example, during a workday lunch hour a person could
walk to a nearby restaurant for a longer meal or drive to
distant restaurant for a shorter meal. Visualizing between-
event uncertainty can assist planning, scheduling, analyzing
possible overlapping in people’s activities.

Our between-event visualization technique is partially based
on Hagerstrand’s Time Geography, a conceptual framework
which focuses on constraints and trade-offs in the allocation
of time among activities in space [5]. However, Time Geog-
raphy is a map based 3D visualization. Therefore it suffers
from the typical problems associated with 3D visualizations,
such as 3D occlusion and difficulty of navigation. Besides,
space and time are not well integrated in Time Geography.
Our work is an attempt to address these issues.

6.1 Space-time paths and space-time prisms
We adapted two important concepts from Time Geogra-

phy: space-time paths and space-time prisms. Space-time
path traces the movement of a character in space and time.
Figure 7 shows an example of a space time path adapted
from [5]. The base plane is the geographical space and the
orthogonal axis is time. In this example, an individual trav-
els from location 1 to 2, spends some time at 2 and then
moves on to 3. The time and location of the starting or end
point are known as control points or key events. The straight
line segments connecting two control points are known as
path segments. Path segments are represented by straight
line segments for simplicity [35][36]. In our earlier work, we
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Figure 6: Storylines of four firefighters before the second tower collapsed along with event uncertainty. The
dashed vertical I-beam shows the spatial uncertainty. The slope of the top and bottom portion of the beam
shows the possible range of locations. The parallel lines show temporal uncertainty. The boxes represent
spatio-temporal uncertainty and the circles show certain events.

Figure 7: An example of space time path adapted
from [5]. Space time paths trace the movement
of an individual moving from one location to an-
other. Space-time paths also show the amount of
time spent at a location by the individual before
moving to the next location.

adapted the concept of space-time paths in Storygraph us-
ing storylines[1]. Here, Storylines become space-time paths,
connecting two consecutive key events via dotted line seg-
ment.

Space-time prisms extend space time paths to create a 3D
space consisting of all the possible routes an individual can
take while moving from one point to another. This space is
known as the potential path space. The prism between t1 and
t2 in Figure 8 demonstrates this concept. The slope of the
edges of this prism is determined by the inverse of maximum
velocity. That is, the possible paths are constrained by the
maximum velocity of the individual, a fixed time frame, and
fixed destinations. In our implementation, the maximum
velocity is set by the user.

If an individual is at origin, o, at to and needs to reach

destination, d, at td, the time budget is T = td − to. The
path space from the origin under the time budget is shown
by the red inverted dotted cone. This space shows all the
possible paths and all the possible locations that can be
reached within the time budget with maximum velocity v.
Let this region be denoted by Ro(T ). Similarly, the blue
dotted cone shows the path space towards d under the time
budget. This 3D space gives all the locations from where
d can be reached under time T . Let this region be Rd(T ).
The intersection of these cones give the potential path space
for individual traveling from o to d [37]. Hence,

Rod(T ) = Ro(T ) ∩Rd(T ) (9)

The projection of the space time prism on the geographical
space, as shown by a gray circle in the figure, shows all the
possible locations that the user can reach. This area is called
the potential path area.

Given all the control points within a specific time window,
τ , the construction of space-time prism requires the desti-
nation d to lie within the Ro(T ) and vice versa. Stating it
formally,

∀o, d ∈ φτ : (o ∩Rd(T )¬∅) ∧ (d ∩ Ro(T )¬∅) (10)

In Time Geography, space-time paths and space-time prisms
are generally drawn inside a 3D space-time cube [38] (Fig-
ure 8). In our work, space-time paths and space-time prisms
are drawn on Storygraph in a 2D view.

6.2 Visualizing between-event uncertainty
Storygraph draws space-time prisms based on Equations 9

and 10. From Corollary 3.5, we know that an area in the
geographical space is mapped to a line in Storygraph. Thus
starting from a location, o(α,β), at t0 and taking a snap-
shots of the potential path area at each time step we get a
set of areas sequentially increasing at the rate of the velocity.
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t2
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1/v
Potential

Path Space
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Geographical space

o

d

Figure 8: Space-time prism. In this figure, the indi-
vidual is at location o at t1 needs to be at the same
location d at t2 (o origin of travel ). (S)he has the
time budget of T . The red dotted cone shows the
possible path space starting from o with the max-
imum velocity, v. Similarly the blue dotted cone
shows the path space towards d. The intersection of
these two cones gives the potential path space under
the given time budget T . The potential path area is
shown by the gray area on the geographic space.

The top sub-figure in Figure 9 shows an individual at point
(α, β) at t0 and his/her possible path area after each time
step t1 − t5. The figure simplifies the drawing of the po-
tential path areas by representing them with squares rather
than circles. The bounding of the actual potential path by
squares introduces some uncertainty itself [20] but greatly
simplifies the drawing and the calculations.

Hence, if the time step, ∆t → 0, then conical region Ro(T )
would be reduced to a triangular region in Storygraph. This
region is shown by the area enveloped by two gray lines in
the bottom sub-figure in Figure 9.

Figure 10 shows the result of mapping the space-time
prism in Figure 8 in Storygraph. The mapping process
resembles the drawing of the space-time prism inside the
space-time cube. Given two control points, maximum ve-
locity and a time budget, these parameters are plugged into
Equation 10 to check whether the control points satisfy this
criteria. If the criteria is satisfied, we compute the extents
(latmax, lngmax) and (latmin, lngmin) of the Ro(T ) with the
following sets of equations,

latmax = maxlatr [
√

(latr − lato)2 + (lngr − lngo)2 = vT ] (11)

lngmax = maxlngr [
√

(latr − lato)2 + (lngr − lngo)2 = vT ] (12)

latmin = minlatr [
√

(latr − lato)2 + (lngr − lngo)2 = vT ] (13)

lngmin = minlngr [
√

(latr − lato)2 + (lngr − lngo)2 = vT ] (14)

Similarly, the extents for the Rd(T ) is calculated. Finally,
Rod(T ) is obtained from the intersection of these regions.

6.3 Intersections of prisms in Storygraph
Space-time paths and prims are both based on the move-

ment data of characters. Given a dataset containing the
movement data of two or more individuals, it is likely that

Latitude Longitude

Time

! "

Longitude

Latitude

Time
t1
t2
t3
t4

!

"

t5

t0 t2 t3 t4 t5t1

Figure 9: Above: Starting from the origin of travel,
α, β, at t0, the potential path areas in each time step
t1− t5 (assuming a certain velocity and regular time
intervals). Below: The same data plotted in Story-
graph. Each potential path area is mapped to a line
segments in Storygraph. For continuous time, this
would result in an area enveloped by two gray lines.
The slope of the gray lines is equal to the maximum
velocity.

the space-time prisms will overlap. However, since Story-
graph does not preserve event proximity (Lemma 3.6), it is
important to note that these overlaps may not necessarily
mean that these prisms intersect in geographical space.

Hence, given a point p and a prism Ra(T ) in the Sto-
rygraph, we first establish the conditions for a valid point-
prism intersection. Building on this, we then present the
validity of intersection between two prisms.

Let Ra(T ) : Ra(T ) = Ro(T ) ∪ Rd(T ), be all the possible
locations that the individual can travel within the time bud-
get T with a maximum velocity v. Then following cases for
point-prism intersection could arise:

1. The point is not inside the prism but the location line
is inside Ra(T ). This case implies that the event oc-
curred within the geographical bounds but the indi-
vidual may not have been involved in the event due to
the travel constraints.

2. The point is inside the prism but the location line is
not inside Ra(T ). This implies that the event occurred
within the time span, T , but at some other location
̸∈ Ra(T ).

3. The point is inside the prism and location line is inside
Ra(T ). This is the only case where the individual could
have been involved in the event.

Theorem 6.1. For a valid point-prism intersection, the
point should be inside the prism and the location line should
lie inside Ra(T ).
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Figure 11: Storylines of WTC victims Chief Ganci and Father Judge. Father Judge was officially identified
to be the first victim of the incident. Only a few key points have prisms between them. For other key points,
the distance between them cannot be travelled within the given time at a velocity set by the user. This could
either mean missing data points, change in velocity, or data reporting error.

Latitude Longitude

Time

! "

t1 t2T

potential path space

potential path area

o d
v

Figure 10: The space-time prism shown in Figure 8
drawn in Storygraph.

Proof. Assume that this is not a valid intersection. It
means that the point representing the event is either spa-
tially or temporally incorrect. This is temporally incor-
rect because for a point to lie inside the prism, it has to
occur within the time budget. This is spatially incorrect
since Ra(T ) defines the maximum distance an individual
can travel at within a time T .

Hence, given two prisms, P1 and P2, the prism-prism
intersection is only valid if there exists a point p on location
line l such that l ∈ RP1

a (T ) ∧ l ∈ RP2
a (T ) ∧ p ∈ P1 ∩ P2.

7. CASE STUDY: WTC 9/11

In the immediate aftermath of the attacks in New York on
September 11, 2001, the NYC Fire Department convened a
task force to interview first responders to the affected areas.
These 511 interviews, conducted in the two months follow-
ing the attacks, were later released by the New York Times.
Each interview was conducted by staff from the New York
Fire Department assigned to the task force and ran any-
where from 8-20 minutes with the aim to elicit from first
responders their activities on September 11. The language
of the reports is typical of event interviews and oral histo-
ries. Despite having a population with high area knowledge
and normalized reporting practices, locations and times were
predominately referred to referentially. Known individuals
seen by the interviewee are named, but most are either not
named or referred to solely by rank. The primary reason
to visualize this data is to enable historians and investiga-
tors to identify accurate and inaccurate information and to
allow for more ready recognition of corroborating evidence.
When viewed as a corpus rather than separate interviews, it
becomes possible to identify overlaps in the reported events
of the witnesses. The challenge posed to this task by the ref-
erential language usage of the witnesses is pervasive in oral
history and other investigatory work reliant on interviewing.

Event Uncertainty Visualization. Time, location, and char-
acters (or people) in this corpus were extracted using Java
code and the aforementioned natural language processing
tools. Each event was given an uncertainty score using the
method described in Section 5. We first drew a Storygraph
without uncertainty information (Figure 2). In this figure,
key events – such as when the first and second plane hit and
when the towers collapsed – are shown by t1− t4. There are
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many co-occurring events around 15 : 00 hrs, but the causes
of these patterns are not yet clear.

Next, we plotted the storylines of four fire fighters before
the South Tower collapsed with event uncertainty (Figure 6).
It should be noted that two storylines crossing does not
necessarily mean the two characters encounter each other;
rather, it only means that two people were moving in direc-
tions diagonal to each other. One limitation of using un-
certainty glyphs is that they might result in occlusion and
ambiguity for large datasets. When the dataset is large, the
bigger glyphs (e.g. the ones representing spatio-temporal
uncertainty) could occlude the smaller ones.

Between-event Uncertainty Visualization. Figure 11 visu-
alizes the between-event uncertainty for two victims: Father
Judge and Chief Ganci. The space-time prisms in Story-
graph enable users to see the possibilities of individuals en-
countering each other between key events. There are two
patterns in this figure: (1) the prisms are only present be-
tween some key events, and (2) some prisms overlap. The
first pattern indicates that locations of the two events are
too far apart in that it would be impossible for a person to
cover that distance at the maximum velocity. It does not
necessarily mean that part of the story is false; rather, it
may be the result of missing information between two events
or uncertainty in the events themselves. From overlapping
prisms (from Theorem 6.1), we can also deduce that Chief
Ganci and Father Judge might have encountered each other
within that time frame and region.

8. CONCLUSION
In this paper, we presented a new method for visualiz-

ing uncertainty in spatio-temporal data set. This method
is an extension of our previous work Storygraph, a visual-
ization technique for displaying spatio-temporal data sets
in an integrated 2D view. Our method can visualize both
temporal-spatial uncertainty about an event and the uncer-
tainty between events. This extended method provides more
accurate and faithful visualization of spatio-temporal data
sets with inherent uncertainties. In addition, between-event
uncertainty visualization can help users analyze the feasi-
bility of spatio-temporal events and possible encounters be-
tween multiple characters. We demonstrated this method in
a case study.

In the future we plan to conduct user studies to evaluate
the effectiveness of this method and compare it with other
methods. We also plan to investigate new methods to ana-
lyze and visualize uncertainty in the identification of people
or groups.
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