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ABSTRACT
In this paper we present an interface based on a recent generative
model, the counting grid, here re-introduced in its basic version
and largely revised to allow it to deal with large corpora. We show
that it is possible to visualize thousands of high order word co-
occurrence patterns by only viewing for a few minutes a new em-
bedding we propose for text visualization, browsing and search pur-
poses. We performed preliminary experiments with user tasks such
as word spotting, rapid content search and collateral information
acquisition.

1. INTRODUCTION
Embedding text documents into a 2D space (e.g. [13, 3]) has

always been an appealing idea: If we can turn a discrete complex
dataset into something that looks like an image, perhaps our brains’
low to medium-level processing layers will take the lead and help
us consume the dataset in a flash, the way our eyes process al-
most any natural image. The old idea that various types of knowl-
edge may already be captured in image-like mental representations
in our mind [8] further strengthens our expectation that even the
knowledge that is inherently as discrete, hierarchical and propo-
sitional as that encoded using language, can be transformed into
something continuous and referentially isomorphic, a data-driven
smooth mapping that our eyes can easily saccade over. Another
vehicle for of obtaining a “birds-eye-view” is the notion of the
word/tag cloud where a smaller or larger handful of characteristic
words is shown to the user as a summary and a very rudimentary
index of the data.

However, multiple dangers lurk here. Our eyes saccade over text
differently than over natural images [10, 7, 2]. The speed of visual
word recognition is highly dependent on the words’ immediate con-
text, which can both speed it up and slow it down [2].
This of course has consequences to visualization and user interface
design. For example, a 2D embedding of titles in a distance-based
document embedding is hard to make sense of as the processing
required for us to understand the discovered links is at a too high
a level to gel well with the visual traversing paradigm. High level
category labels are often added to aid the user in making sense of
different areas in the embedding, but as indicated above, these la-
bels are likely to make it even more difficult to understand the out-
liers that happen around the boundaries. This is why some visual-
izations only show documents as dots of different colors indicating

broad categories, but essentially hiding all of their content until the
user mouses over. Data that way does become more image-like but
is akin to a very simple image.

On the other hand showing a large number of constitutive words
from a document is problematic due to the users’ reading habits.
For instance, alphabetically arranged tags can easily be misinter-
preted by a user who tends to look for a meaning in groups of
words, and so the sequence of tags “living man missing money
news” from a word cloud from one day of CNN news may all refer
to different news stories, yet it is difficult for a human reader not to
jump to a conclusion that either money or the man is missing.

It has been shown, e.g. in [12], that semantic organization of
words significantly affects the user’ interaction with the data, mak-
ing lower-level connections (folksonomy based) better suited for
consumption than the higher level language models. Thus it is not
surprising that most previous user studies of various text visual-
ization techniques similar to these resulted in the conclusion that
when the user is interested in a very specific bit of information,
the regular search engine interface will suffice, and that in most
other situations the beneficial effects of the visualization are hard
to quantify, other than through user satisfaction levels. Users tend
to favor these tools, perhaps because, as we stated above, the idea
of being able to extract the essence of the data and lay it out onto
the screen in a rich, yet easy to grasp manner is just as appealing to
the users as it is to the researchers, even if it is hard to realize.

In this paper we present an interface built upon the recent Count-
ing Grid model [6] and we strongly believe that the approach may
be a step forward. We also propose few learning algorithm aimed
at avoiding local minima and producing more grids for usable for
users.

1.1 The counting grid: A way forward?
We imagine a large grid of cells, each with a few words of dif-

ferent weights so chosen so that words collected from any single
document in the dataset can be represented well by the weighted
words in one small window encompassing several cells in the grid
Fig. 1a. Aided with a good optimization technique and a user in-
terface that fits the model well, several very interesting properties
of such an embedding arise.

Firstly, it is possible to make the mapping very dense, avoiding
the excessive levels of empty space in typical distance-preserving
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embedding methods (note that our visual system distorts distances,
see, for example [5]).

Secondly, in such dense mappings the grid is too small to avoid
overlaps of windows, and so then the extent of the similarity of
the nearby documents in terms of simple word usage statistics can
readily be seen directly in the grid: The words shared between the
two documents will tend to be seen in the region of the overlap
of the two windows. Thirdly, if we travel slowly across the grid
and look at the documents mapped there, we should often see grad-
ual thematic shifts as the words early in our path are dropped and
new ones are added, but the overlap in content between our new
area of focus and the one just before tends to stay high. Obviously
for diverse enough datasets, occasionally the smoothness in theme
shifts will have to be violated in areas where two different topics
expanding from different points clash in a single area creating a
rift between two less related groups of documents. Finally, in most
places we look, the words we can get from the nearby cells will tend
to be highly related, and this should make it easier to perform visual
word recognition tasks if all these words are shown on the screen,
such as word spotting in a search for a particular word it should
be often easy to pick out document groupings, focus on one of the
relevant ones, and then follow the trail to the point of interest, then
jump to another grouping of interest and focus on the new area, etc.

We call this model the counting grid, as it is a grid of word
counts, and in the next section we state this idea mathematically.
Then, we describe the techniques needed to properly optimize and
present the counting grid to the user as an interface to various
medium-sized datasets (cooking recipes, research papers, movie
descriptions, etc.). Finally, we demonstrate that our interface does
indeed expose high order statistics (word co-occurrence statistics
beyond pairs) which then become a powerful visualization tool for
both understanding the extent of the dataset and discovery of items
of interest. We show that both the word combinations are mean-
ingful beyond what was previously attempted, increasing the word
spotting speeds, and that they lead to good indexing of a diverse
dataset enabling users to perform dozens of semi-related search
tasks in parallel in mere minutes and then walk away with much
more collateral information that seeped into their brains serendipi-
tously.

Algorithm 1: EM-Algorithm to learn the Counting Grids.

Input: Bag of words, ctz for each sample
while Convergence do

% E-Step ;
foreach Sample t = 1 . . . T do

1. Update qtk ∝ exp
∑

z c
t
z · log hk,z ;

% M-Step ;

2. Update πk,z ∝ πold
k,z ·

∑
t c

t
z

∑
i|k∈Wi

qti
hi,z

;

3. Compute hk,z = 1
W1×W2

∑
i∈Wk

πi,z;
4. Compute the Log-Likelihood (Eq. 1) ;
5. Check for convergence ;

6. Return πk,z and {qtk} ;

2. THE COUNTING GRID MODEL
The counting grid consists of a set of discrete locations in a map

of arbitrary dimensions (32 × 32 or 64 × 64 in the examples used
in this paper). Each location contains a different set of weights
for the each of the words in the vocabulary. A document has its

own word usage counts cz and the assumption of the counting grid
model is that this word usage pattern is well represented at some
location i in the grid. The window floating over the grid captures
well variation in certain types of documents where we can see slow
evolution of the topics, where certain words are dropped and new
ones introduced.

A particular example of a counting grid and its weights are il-
lustrated in Fig. 1 using font size variation, but showing only the
top 3 words at each location. The shaded cells are characterized
by the presence, with a non-zero probability, of the word “bake”1.
On the grid we also show the windows W for 5 recipes. Nomi
(1), an Afghan egg-based bread, is close to the recipe of the usual
pugliese bread (2), as indeed they share most of the ingredients
and procedure. Note how moving from (1) to (2) the word “egg”
is dropped. Moving to the right we encounter the basic pizza (3)
whose dough is very similar to the bread’s. Continuing to the right
words often associated to desserts like sugar, almond, etc emerge.
It is not surprising that baked desserts such as cookies (4), and pas-
try in general, are mapped here. Finally further up we encounter
other desserts which do not require baking, like tiramisu (5), or
chocolate crepes.

Formally, the basic counting grid πi,z is a set of normalized
counts of words / features indexed by z on the 2-dimensional dis-
crete grid indexed by i = (i1, i2) where each id ∈ [1 . . . Ed] and
E = [E1, E2] describes the extent of the counting grid. Since π is a
grid of distributions,

∑
z πi,z = 1 everywhere on the grid. A given

bag of words/features, represented by counts {cz} is assumed to
follow a count distribution found somewhere in the counting grid.
In particular, using windows of dimensions W = [W1,W2], each
bag can be generated by first averaging all counts in the window
Wk = [k, . . . ,k + W] starting at grid location k and extend-
ing in each direction by Wd grid positions to form the histogram
hk,z = 1

W1×W2

∑
i∈Wk

πi,z , and then generating a set of features
in the bag. In other words, the position of the window k in the
grid is a latent variable given which the probability of the bag of
features {cz} is

p({cz}|k) =
∏
z

(hk,z)
cz =

1

W1 ×W2

∏
z

(
∑
i∈Wk

πi,z)
cz ,

Fine variation achievable by moving the windows in between any
two close by but non-overlapping windows is useful if we expect
such smooth thematic shifts to occur in the data, and we illustrate
in our experiments that indeed it does.

To learn a Counting Grid we need to maximize the likelihood of
the data:

logP =
∑
t

log
(∑

k

·
∏
z

(h
ctz
k,z)
)

(1)

The sum over the latent variables k makes it difficult to perform
assignment to the latent variables while also estimating the model
parameters. The problem is solved by employing a variational EM
procedure, which iteratively learn the model, alternating E and M-
step. The E step aligns all bags of features to grid windows, to
match the bags’ histograms, inferring , i.e., were each bag maps
on the grid. In the M-step we re-estimate the counting grid so that
these same histogram matches are better. The procedure is illus-
trated with algorithm 1; πold

k,z is the counting grid at the previous
iteration.
Even for large corpora the learning algorithm converges in 70-80
iterations, which sums up to minutes for summarizing corpora of

1Which may or may not be in the top three
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Figure 1: a) A particular of an area of a counting grid πi learned over a corpus of recipes. In each cell we show the 0-3 most probable
words greater than a threshold. The area in shaded red has π(′bake′) > 0. b) The interface built upon the (whole) counting grid
shown in panel a) (here shaded in yellow). We also highlighted areas relative to spices (blue), vegetables (green), meats (red).

over 40K documents.
As this EM algorithm is prone to local minima, the final grid will
depend on the random initialization, and the neighborhood relation-
ships for mapped documents may change from one run of the EM
to the next. However, in our experience, the results always appear
very similar, and most of the more salient similarity relationships
are captured by all the runs.
More importantly, a majority of the neighborhood relationships
make sense from a human perspective and thus the mapping gels
the documents together into logical, slowly evolving (in space)

themes. As discussed below, this helps guide our visual attention
to the subject of interest.

3. COUNTING GRID AS A USER INTER-
FACE

In order to use the counting grid as an underlying representation
in a powerful UI, we found three improvements necessary.

3.1 Optimization algorithms
Given the considerations in the introduction, the quality of em-
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a)

b)

Figure 2: Interface: a) Counting Grids b) Distance Embedding + Keywords.

bedding can have a dramatic effect on the user experience. The CG
model is more directly tied to the goal of visualizing higher order
statistics in word usage patterns than previous models: It literally
attempts to lay the words out so that nearby words can be found
commonly in the documents (and even in the intersection of highly
related documents). Thus the direct optimization of data likelihood
should get us good embeddings. However, there are no globally op-
timal likelihood optimization methods for this model. Fortunately,
the basic Em model derived in [6] does at least provably converge to
a local minimum. Furthermore, for the purposes of the browser we
tested here, we experimented with various ways of escaping local

minima, such as sampling methods, random restarts, online learn-
ing/gradient descent, and found that the nicest grids with highest
likelihood tend to be created by a multiresolution approaches.
In a first approach an 8 × 8 grid is first estimated using the 5 × 5
mapping window size. The grid is then upsampled by replacing
each cell with a 2× 2 set of cells with the same distribution. Then
the EM learning of this 16 × 16 grid is continued using the same
size of the mapping windows (5 × 5) until convergence. This pro-
cess is then iterated to the desired size of the grid.
In a second approach we kept fixed the grid size, progressively re-
ducing the window size every 10 iterations until we reached the
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desired window size.

We found that these multi-resolution approaches create longer
thematic shifts and fewer boundaries among areas, which is gen-
erally more pleasing to the eye and makes it easier for the user to
learn “the lay of the land.” We believe that further improvements
in optimization algorithms may create dramatically better results,
esp. for large datasets.

3.2 Pan-zoom-click-search interface to a CG
The interface, shown in Fig. 2-4, allows several modes of inter-

action with the data and the grid. The grid itself is rendered so that
the font size denotes the local weights of different words directly
imported from the model. The weights essentially indicate how
likely the words are in context of other nearby words. We have im-
plemented a fast pan-zoom interface for exploration of the grid in
Silverlight (Fig.3 shows the zoom). A click (or a tap on touch de-
vices) shows the set of documents whose mapping windows over-
lap the point we clicked on. The list is shown on the right without
changing the grid view. The grid can be filtered in two ways: by
typing the search term in the search box, or by simply selecting a
word (right click on long tap). Two search results are illustrated by
Fig.4: in panel “a” memory, in panel “b”, forest (see the text box
on the top of the interface).

Assuming that a very specific search goal with a well formu-
lated query cannot be aided much by dataset summarization and
diversity exposure, we did not test the counting-grid representa-
tions primarily on such tasks. Instead, we have made our inter-
face as close to traditional search-based interfaces as possible for
such situations: The user can enter the search terms and the results
will be presented in the list on the right hand side of the interface.
However, through grid filtering described above, our interface also
provides a diversity viewing experience that aims to expose the
user to themes related to a specific successful query, as well as a
summary/grouping of relevant content for less specific queries and
summary, organization and visualization of the entire dataset for
multi-objective or free-form browsing experience. Importantly, the
counting grid representation combined with the pan-zoom-click-
search interface enables a unified way of data consumption across
these levels of granularity of user interest. For example, a high-
quality query that results in high relevance of returned items will
filter the very same grid representing the entire dataset, with the ef-
fects shown in-place, so that gradual removal of search query words
will expand the scope till the entire dataset is shown. As the relative
positioning of topics/themes stays fixed through this experience,
moving back and forth among different search goals with possibly
varying levels of specificity does not throw the user out of con-
text, which in traditional interfaces poses a barrier for multifarious
search and makes the user focus and organize their tasks linearly,
rather than in parallel. Perhaps most importantly for the diverse
application of the ideas presented here, the user interface is created
automatically from the dataset as the input, using an unsupervised
machine learning algorithm, and the result can in principle be re-
fined by professional curator/designer or collaboratively by users,
who can add their content or labels anywhere in the grid.

4. EVALUATION
We evaluated our interface in several ways. First, we were cu-

rious to see how much the direct optimization, in maximum likeli-
hood sense, of embedding word sharing patterns aids the visualiza-
tion of higher order co-occurrence statistics, and if these improve-
ments indeed yield to increased speeds of resulting word cloud

+
Neighborhood

3-Tuple = [ Spin, A tom ic, Latt ice ]

+
3-Tuple = [ Mice, Disease, Death ]

Neighborhood

a)

b)

Figure 5: a) A word embedding produced by an euclidean em-
bedding method. b) The process of tuple sampling: A position
is randomly picked on the grid and words are sampled from a
neighborhood.

skimming. As these results indicated a clear advantage of count-
ing grids over the alternatives, we next investigated the amount of
gleaned information during a short exposure to the data through
our interface and compared this directly with the state-of-the art,
but traditional web site interface to the same data, as such com-
parisons in the past tended to not show a quantifiable advantage of
word clouds over simple search interfaces, while at the same time
the user surveys usually showed that users like word clouds and are
under the impression that the clouds may aid them in goal-free ex-
ploration of the content.
In all the experiments we employed the multiresolution approach
of Sec. 3.1 to learn the grids, removing stop-words and applying
the Porter-stemmer algorithm [9].

4.1 Word combinations at random focus ar-
eas: Numerical comparisons

One of the immediate goals of CG optimization is to create a
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a)

b)

Figure 3: Zoom: a) A counting grid learned using Science magazine papers and reports. The user can zoom until visualizing the top
words of each source (panel b)

visualization in which high order statistics of many word combi-
nations can easily be visualized: In any local area of the grid, the
words seen in the neighboring cells should “go together” so as to
make the consumption of the grid easier. This aspect of the count-
ing grids can be quantified directly without user studies, through
hundreds of grid sampling steps.

In each step, a “neighborhood” in the window picked uniformly
at random 2, and then k words are drawn from that window ac-

2the curves look very similar for 3×3 to 7×7 window choices even
though the grids were learned using assuming that each document
maps to a 5× 5 window

cording to the local word distribution. This sampling process is
illustrated by Fig.5b.
Then these k-tuples are checked for consistency and diversity of
indexed content. The consistency is quantified in terms of the av-
erage number of documents from the dataset that contained all
k words selected, while the diversity of indexed content is illus-
trated through the cumulative graph of acquired unique documents
as more and more k-tuples are sampled and used to retrieve docu-
ments containing them.

We would expect that the CG model should show good consis-
tency of words selected this way as the model is in fact optimized
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a)

b)

Figure 4: Search results are presented as (non contiguous) islands on the grid, where different islands capture different semantics
of keywords. For example, a) search result of the word “memory” reveals three islands related to computer memory, brain memory
and the limbic system. Analogously b) search for the word “forest” revealed an island about deforestation and one about biodiversity
in forests. By interacting with these islands the user can filter out unwanted results, or discover new things.

so that documents’ words map into overlapping windows, and so
through the positioning and intersection of many related documents
the words should end up being arranged in a fine-grained manner
so as to reflect their higher-order co-occurrence statistics.
To the best of our knowledge there is currently no other technique
that attempts to perform similar optimization, so we compare here
with an approach based on previous techniques that achieved visu-
ally most similar arrangements, at least at a first glance (see Fig.2).

Some previous embedding techniques proposed word embed-

ding based on pairwise distances, or joint embedding of words
and the documents based on document-document and document-
word distances [11, 4]. The problem with these approaches is that
each word is assigned to a single location but certain highly infor-
mative words still assume multiple meanings in different contexts.
For example, the word “memory” in the corpus of Science mag-
azine papers can be found in articles on neuroscience, but also in
immunology (immune memory of the adaptive immune system),
device memory, as well as in quantum mechanics and occasional
computer science papers. This would make such a word a nexus

113



Corpus # Docs # Words Tokens Notes
Science Magazine 36K 24K 2.0M Papers and Reports

Allrecipes 43K 4K 10M
Arxiv 25K 31K 2.3M Computer Science
IMDB 18K 25K 0.9M Popular movies

Table 1: Statistics of the four corpora considered

of several different clusters, making the browsing confusing in that
area. Things are worse given that there are in fact many such words,
and the attempts of embedding into 2D in this way usually collapse.
Another promising approach is to simply focus on document em-
bedding and then show representative words from nearby docu-
ments in the plane [3]. The problem here is that most embedding
methods create a lot of empty space among clusters, which leads to
dramatic under use of screen real estate (see Fig.5a).

Nevertheless, we embark on this approach to build a reasonable
baseline for our method by further deforming the neighborhood re-
lationships are maintained but the grid is denser (otherwise, this
method would suffer on diversity measures described above). This
baseline is further aided by making an effort to avoid local word
repetitions which further reduce the information content of the grid
and thus the diversity measure above. Fig. 2a shows the best so ob-
tained embedding for allrecipes.com data, containing 43k recipes.
Although at a first glance the two visualizations share a lot of com-
mon qualities, the sampling experiments show a dramatic differ-
ence in favor of CG on four different datasets, all approximately
50K in size: Science Magazine articles from the last 10 years, all
of arxiv CS articles, allrecipes.com, and the most popular movies
from IMDB. Details of each dataset are reported in table 1.

As shown in Fig.6 the more traditional distance embedding +
keyword spraying approach matches, more or less, the quality of
CG when we sample for word pairs (k=2). However, as this ap-
proach, or any other in the literature does not attempt to directly
capture higher level statistics of word usage, even though the gen-
eral clusters look meaningful at a first glance that capture grow
structure of the data, the fine grained local structure of CGs much
better captures higher order correlation, with this advantage typi-
cally growing with k. One outlier seems to be the most diverse Sci-
ence dataset with the richest vocabulary. The curves in Fig. 6 are
pretty close, but Fig. 7a which shows the diversity of the indexed
information explains the difference. Fig. 7b, shows the gradient of
the last curve of Fig. 7a.
An embedding of words that creates the same trivial combinations
of words in many areas of the grid (e.g. {salt, paper, sprinkle}
would boost the fraction of dataset covered by this triple. How-
ever, the number of new documents would then not grow. In case
of counting grid, not only are the k-tuples meaningful, but they are
diverse and with repeated jumping over the grid more and more
content is being retrieved, which is the combination we want in a
user interface meant for summarizing, browsing and retrieval.

4.2 High speed multifarious search and the ex-
tent of collateral information gleaned

As we discussed in the introduction, the main motivation in re-
search on visualizing datasets by mapping documents and/or dis-
playing word clouds is in the potential ease in understanding the
extent of the dataset, locating topics of interest quickly when these
interests are not well defined, as well as accidental discovery of in-
teresting and useful information [1] that is somewhat related to the

original goals of the information seeking process.

Here we test the ability of users to rapidly gain insight both into
specific and broad topics which are either directly or indirectly re-
lated to a mix of topics of interest, as well the collateral information
gleaned in the process.
The traditional search paradigm would force us to try to look for
this research linearly, focusing on one are at a time, getting new
ideas for search only once we read the discovered papers. The
counting grid visualizations with orders of magnitude more words
than usual tag clouds and at a same time much denser and better
organized embedding of relevant documents may (and did) enable
us do some of these investigation rapidly and in parallel, jumping
from topic to topic as the links are revealed. We assume, of course,
that such multifarious search, where a variety of topics are of in-
terest, some at a high level, and others needing to be explored in
depth is often attempted by Internet users in a variety of tasks, and
we focus here again on the allrecipes dataset.

We created a questionnaire with 60 questions of various speci-
ficity about the contents of the dataset by repeatedly sampling recipes
form the dataset and formulating questions at different level of de-
scription depth, like “Are there Indian dishes here?”, “Are there
crepe recipes in this dataset?”, “Are there savory recipes?”, “Do
any recipes use zucchini?” etc. Then we added several control
questions for which we knew that they referred to items not cov-
ered by the dataset, like “Wine reviews” or “Cheese platters” or
“Cooking book reviews”. We expect that the users’ performance
on this task should be predictive of the experience they would have
with our tool in many real world scenarios.
We compared the CG interface with the allrecipes web’s own pro-
fessionally and community-curated easy-to-use and powerful inter-
face, which includes a modern search engine, various categoriza-
tions of the data, user-supplied votes and labels, etc.

We recruited seven subjects for the study and told them that they
would be asked to answer a series of questions, including a list of
ten that we read to them, and that they had 3 minutes to find out as
many answers as they can using one combination of a dataset and
an interface at a time.

We told the users that they would do this for two such combina-
tions and we convinced them that the two combinations differ both
in the extent of the data and the user interface, and that other than
the initial 10 questions, the questionnaires would also be randomly
related. However, to avoid issues with comparisons of different
questionnaires and datasets on a small sample of users, we in fact
varied only the interface, and used the same dataset asked the same
questions, but placed the competing interface second in the study,
where it would presumably have an advantage over our method
if the users would never the less be inclined to look for answers
to the questions beyond the initial ten questions. We hoped that
the limited amount of time provided for the task would minimize
that advantage anyhow, as our preliminary tests on the authors and
pre-test subjects indicated that more than five minutes were need
to perform all the searching necessary to cover a large fraction of
questions if the user is searching based on their memory of the en-
tire questionnaire. In addition, we found that no subject was able
to find information relevant to more than about half of the ques-
tions asked, indicating again that there was not enough time for the
traditional interface to gain significant unfair advantage over our
interface. No single question was answered correctly by all users,
except for the control questions, for which the real answer was no
(There were no wine reviews in the data, etc.), indicating that they
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Figure 6: Consistency results
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Figure 7: Diversity results

were giving us honest representations of what they remembered.
All seven users performed better using counting grids (p<0.01),
with the average gain in the number of questions answered of 60%
over the allrecipes.com interface, despite the potential advantages
that the latter may have had due to order of testing. The ability
to glean collateral information beyond the 10 questions to which
the users were primed was certainly biased by users’ food prefer-
ences or familiarity with cooking styles. Only our one Chinese test
subject detected traces of the Chinese cuisine in the counting grid
based on the combination of ingredients much more typical of the
Chinese cuisine; a quick click there indeed revealed Chinese dishes
he had in mind. The types of meat and vegetables the users found
or did not find in the dataset typically correlated with their prefer-
ence for these foods.
However, for all users in this small study, the intersection of their
preferences with the questions asked was enough to provide enough
answers in order to see the difference between the two interfaces.
Interestingly, the percentage of answered questions varied more
widely after using the allrecipes.com standard interface (as low as
22% and as high as 46%) than for CG interface (42% - 51%), which
provides another indication of the interaction between the users’
own memory and the CG. Using the standard search interface the
users could not remember or think to explore further items of low
interest to them, even after seeing recipes that could provoke fur-
ther investigation. But the word associations in the CG interface
seemed to more readily enter their visual field and remind them of
the task defined by the initial questions. Results are summarized in
Fig. 8.

In post-test interviews, all users indicated preference for the CG
interface for the task of rapidly discovering lots of information as
well as for organizing the data. They could simply “see much more
in parallel” in the CG interface, and could often recognize recipes
just based on the words in the grid and without opening any of the
documents mapped in the area. They also indicated that they had
a better understanding what data was exposed by the CG interface,
while the boundaries of allrecipes.com interface seemed uncharted
and the data thus appeared potentially vast (even though the num-
ber of recipes was approximately the same). When asked for a sub-
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Figure 8: Information gleaning experiment

jective estimate of how much information they encountered while
using the CG compared to the standard interface, they reported fac-
tors of 2-5, which are either inflated subjective estimates (compared
to the measured factors which varied between 1.2 and 1.9), or they
indicate that the users saw much more of the content related to their
food interests in addition to the content to which we primed them
to look for. The latter possibility would be in line with previously
observed difficulties in measuring the diversity of information the
user accesses during data exploration.

5. CONCLUSION
To the best of our knowledge, the counting grid visualization

we presented here is the first system that directly optimizes for si-
multaneous presentation of word co-occurrence statistics of various
orders well beyond the usual pairwise embedding. This is accom-
plished through a dense word and document embedding that facili-
tates a visual browsing and search paradigm that can more naturally
rely on the cognitive processes we employ when we scan visual
scenes as well as the ones that guide visual recognition of words in
skim reading. We have shown that the CG representation tends to
display words that go together in almost any location in the visual
field, and that by sampling different local combinations of words
we tend to identify a larger fraction of the dataset and in a more
diverse manner across locations than we can achieve using stan-
dard embedding methods to display large number of words from
embedded documents. We also find that this increased semantic or-
der does indeed facilitate faster visual processing of the word map,
as well as faster memorization of the word distributions in word
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spotting experiments. In addition to data organization, the CG vi-
sualization also facilitates interesting patterns of partial document
consumption. By spotting several related words, the user is re-
minded of the knowledge they already have, and may not even need
to open relevant documents. As described in the grocery shopping
case study, in such cases the effect is akin to parallel skim-reading
of hundreds of documents that contain the word combination to
narrow down on a known common theme and extrapolate (remem-
ber) the rest of the document to the extent needed by the user. In
addition, surprising combination of words in the area the user is
interested in can lead to serendipitous discovery of new documents
to be studied in detail.

From the perspective of word/tag cloud usability research per-
haps the most exciting result comes from our preliminary experi-
ments on multifarious search and serendipitous data exposure that
show that thousands rather than dozens of words on the screen can
still be consumed by the user and that the extent of the data ex-
plored this way is high enough that the differences can be quanti-
fied in user studies.

However, despite encouraging preliminary results, a lot about
counting grid representations and interface design remains to be
studied. We found that the quality of the embedding of high order
statistics matters, yet we know from our experiments that the cur-
rent algorithms are prone to local minima. Thus it remains to be
seen if the document packing can be done more optimally in the
maximum likelihood sense and if such improved grids would pro-
vide even better local word combinations that would be even easier
to browse/search. We have experimented with a wide variety of
medium-sized datasets containing tens of thousands of documents.
It remains to be seen what the best way would be to scale this ex-
perience to very large datasets. Interface refinements can play a
big role, too. For example, in our three-tiered approach to visual
searching over the grid – visual scanning, filtering by word seen
in the grid, or filtering by a typed word not yet spotted – the last
modality tended to be avoided by users to unreasonable levels be-
cause it was perceived to be at odds with the smoother experience
of combining visual scanning with mouse/touch actions.
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