
Building Blocks for Exploratory Data Analysis Tools

Sara Alspaugh
UC Berkeley

alspaugh@eecs.berkeley.edu

Archana Ganapathi
Splunk, Inc.

aganapathi@splunk.com

Marti A. Hearst
UC Berkeley

hearst@berkeley.edu

Randy Katz
UC Berkeley

randy@eecs.berkeley.edu

Abstract
Data exploration is largely manual and labor intensive. Al-
though there are various tools and statistical techniques that
can be applied to data sets, there is little help to identify
what questions to ask of a data set, let alone what domain
knowledge is useful in answering the questions. In this pa-
per, we study user queries against production data sets in
Splunk. Specifically, we characterize the interplay between
data sets and the operations used to analyze them using la-
tent semantic analysis, and discuss how this characterization
serves as a building block for a data analysis recommenda-
tion system. This is a work-in-progress paper.

1. INTRODUCTION
Visual data exploration is a key part of data analysis, but

it remains ad hoc, requiring intensive manual intervention
to identify useful information. Although many tools exist
for cleaning and visualizing data, the intermediate step of
determining which questions to ask and how to visualize
their results requires a combination of deep domain knowl-
edge and a willingness to try many approaches. For users
without domain knowledge who are tasked with gleaning
insights from a mass of data, the first step to understand-
ing which aspects of the data are important, interesting,
or unusual often requires involves iteratively applying stan-
dard techniques and interpreting results. Users with domain
knowledge or very specific questions in mind already know
which techniques yield important insights and based on the
semantics of their problem and their data. As a result, do-
main knowledge lets users consider fewer possibilities and
quickly progress to deeper questions.

Leveraging the facts that:
(1) data exploration often involves applying common tech-

niques, therefore different data exploration scenarios typ-
ically have overlapping analysis steps, and

(2) domain experts are likely to have a better idea a priori
what is important to investigate, limiting the amount of
work they have to do to reach later stages of analysis,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEA’13, August 11th, 2013, Chicago, IL, USA.
Copyright 2013 ACM 978-1-4503-2329-1 ...$15.00.

our goal is to build a tool that could make intelligent rec-
ommendations to users as to which data exploration actions
to take. The anticipated result is that users with time con-
straints or without domain knowledge can make quick and
efficient work of data exploration and be well on their way
to formulating hypotheses, assessing assumptions, and plan-
ning their modeling approach.

This tool would make data exploration more efficient by
drawing user attention to more fruitful paths of inquiry and
providing users with intuitive control over exploration oper-
ations. Such a tool should draw on a combination of classic
domain-agnostic exploratory data analysis techniques and
more domain-specific techniques learned by observing what
other users with similar data sets found useful. It should
use these along with modern methods for determining when
the information resulting from a technique was interesting or
unexpected [16]. It should also provide intuitive mechanisms
for interacting with the output of such techniques for hands-
on exploration. Making high-quality suggestions regarding
which actions to take and reacting intuitively to user in-
put requires a thorough qualitative and quantitative under-
standing of the data analysis process. Such suggestions are
prerequesites to applying recommendation, searching, and
ranking techniques to the problem of efficient exploratory
data analysis.

As a first step toward creating such a tool, we study
records of data analysis activity from Splunk users. (Splunk
is a commercial data analysis product.) The logs contain
queries from thousands of users, written in the Splunk query
language. These logs provide information only about what
a certain set of users, primarily IT professionals, do with
certain types of data, primarily IT system data. Moreover,
they represent only a portion of the actions the users per-
form with one particular tool, and as such, only tell us about
a particular portion of the data analysis process. Nonethe-
less, these queries provide a valuable starting point to quan-
titatively characterize the data exploration process. This
characterization is a precursor to acquiring the intuition and
data needed to build an intelligent data exploration recom-
mendation tool.

In this paper, we focus on the interplay between certain
data set features and the analysis operations applied to those
data sets, and discuss how this information could be used by
a recommendation tool. In particular, we adopt a technique
from natural language processing and use it to measure simi-
larity between data set column names and the ways in which
they are used. We then discuss how such a technique could
be extended for use by intuitive, intelligent data exploration

10

tools. We begin, in Section 2, by providing context for the vi-
sion we outlined above and relate this idea to existing tools.
We describe Splunk and the data set we explore in Section 3.
In Section 4, we elaborate on the methodology we use ana-
lyzing the ways different types of data is used and present
our main result. We discuss future directions in Section 5.
Lastly, in Section 6, we outline the goals for building a rec-
ommendation system for exploratory data analysis.

2. RELATED WORK
The field of information visualization and data exploration

is very large; this section focuses on related work on tools
for automated suggestions for portions of the exploratory
data analysis process. Many intuitive user interface features
that would be ideal to have for an exploratory data analy-
sis tool are available in Tableau [1] which is descended from
earlier research in exploratory data analysis such as Polaris
[14] and Mackinlay’s earlier work [9]. Tableau includes a
“Show Me” feature, which is meant to reduce the burden
on users by automatically creating a good visualization of
a view of their data. The user selects a tuple of columns,
and Tableau returns a list of possible visualizations tem-
plates that could be used with these columns. It does this
by automatically detecting whether columns are numerical
or categorical, and suggesting all visualizations which are
compatible with the selected column types. However, de-
spite the ease with which users can use Tableau to create
attractive visualizations, even with the “Show Me” feature,
they are still left with the task of manually indicating which
columns of the data to visualize and which of several visual-
ization templates to use to visualize them, and this is done
one tuple at a time. For large data sets which have many
aspects to explore, this overhead could be significant.

The vision for VizDeck is very similar to that which we
have described here in that it aims to automatically suggests
visualizations for exploratory data analysis [8]. VizDeck
supports seven visualization types, such as histograms and
scatter plots, and a few transformations, such as filter. It
generates all type-compatible visualizations for a given data
set, then ranks them. VizDeck ranks visualizations by record-
ing a few statistical measures for each visualization when a
user indicates that a certain visualization is interesting, for
example, the entropy of the columns involved. It then at-
tempts to predict unseen scores from these statistical mea-
sures based on their similarity to other highly ranked visual-
izations. This differs from our strategy, which, as described
in Section 5, is to predict what transformations or visual-
izations are desirable for a data set based on its similarity
to other data sets for which transformations and visualiza-
tions have been recorded. Moreover, while generating all
type-compatible visualizations works for small data sets, this
approach may not scale to larger data sets and larger sets
of visualizations. (See Section 6 for a discussion of this.)
However, it is valuable to compare to and build from the
techniques used in this and the systems described above.

SAGE is a collection of tools for constructing graphical
designs by selecting graphical elements, mapping them to
data, combining them, and for finding and customizing prior
designs. [11]. Published work on SAGE touches upon a num-
ber of ideas related to those we present here. For example,
users of SAGE can partially sketch out designs in a number
of ways and SAGE attempts to intelligently infer remain-
ing properties, like the mapping of data to visual elements.

In addition, SAGE provides users the ability to browse and
search related designs based on criteria such as the graphi-
cal elements used and the data types of the data mapped to
these graphical elements.

DataWrangler is a tool for facilitating data cleaning, in
particular, data reformatting [6]. Although this use case is
slightly different and possibly subsumed by exploratory data
analysis, DataWrangler is relevant in that it uses statistics
to disambiguate user actions and rank the most likely de-
sired operation as suggestions to the user. It defines a set of
data cleaning transformations and upon user input, provides
some guesses as to which of these transformations the user
might want to take to re-format the data.

In a similar vein, Profiler is a tool for data quality as-
sessment, for instance, finding missing values, outliers, and
misspellings [7]. Profiler is related because data quality as-
sessment is again a subset of exploratory data analysis, and
because it provides automatic visualization suggestions for
anomaly assessment.

Earlier work took more of an artificial intelligence ap-
proach, rather than a data-centric approach. Schiff devel-
oped a method to automatically create cognitively motivated
visualizations from first principles using very small data
sets [12]. St. Amant and Cohen developed a knowledge-
based planning system called AIDE to help users strike a
balance between conventional statistical packages and au-
tomated systems which do not ask the user for any kind
of input [13]. Casner automatically designed graphic pre-
sentations based on an analysis of a logical description of
a task the user was attempting to undertake [4]. More re-
cently, other authors have used an ontology to enumerate
valid data mining processes [2].

A common feature of these systems is that they attempt to
provide intelligent suggestions or recommendations as part
of a broader purpose. As the literature on techniques rec-
ommendation systems is very large, the techniques used to
date by exploratory data analysis systems represent only a
small fraction of proposed approaches [5]. However, they do
represent some of the first few attempts to apply recommen-
dation in the domain of visualization.

3. CASE STUDY: SPLUNK QUERIES
To begin to quantitatively describe our point in the space

of data analysis pipelines, we collected queries from users
of Splunk1. Splunk is a platform for indexing and analyzing
large quantities of data from heterogeneous data sources, es-
pecially machine-generated logs. Customers use Splunk for
a variety of data analysis needs, including root cause failure
detection, web analytics, A/B testing and product usage
statistics. Consequently, the types of data sets indexed in
Splunk also span a wide range, such as system event logs,
web access logs, customer records, call detail records, and
product usage logs.

3.1 Definitions and Overview
Table 1 lists the terminology and definitions introduced

in this section. To use Splunk, the user indicates where
the data they want Splunk to collect and index is located.
For example, data might be in a log directory on a file sys-
tem or collected from a remote server via a certain port.
Upon collection, Splunk organizes this data temporally into

1www.splunk.com

11

Figure 1: The default GUI view displays the first several events indexed, with extracted fields highlighted
on the side, and a histogram of the number of events over time displayed along the top. The user types their
query into the search bar at the top of this view.

events by delineating events based on their timestamp, and
processes these events using a MapReduce-like architecture,
details of which can be found in [3]. Splunk does not require
that the user specify a schema for this data, as much log
data is semi-structured or unstructured, and there is often
no notion of a schema that can be imposed on the data a
priori. Rather, fields and values are extracted from events
at run time based on the source type. Specifically, when a
user defines a new source type, Splunk guides the user in
constructing regular expressions to extract fields and values
from each incoming raw event. Splunk includes a query lan-
guage for searching and manipulating data and a graphical
user interface (GUI) with tools for visualizing query results.
The queries we collected were written in this language.

Users almost always compose such queries in the GUI. The
default GUI view displays the first several events indexed,
with extracted fields highlighted on the left hand side, and
a histogram of the number of events over time displayed
along the top. A screen shot of this default view is shown
in Figure 1. The user types their query into the search
bar at the top of this view. The query consists of a set
of stages separated by the pipe character, and each stage
in turn consists of a command and arguments. We refer
to a query with arguments removed as a query template.
Splunk passes events through each stage of a query. Each
stage filters, transforms or enriches data it receives from the
previous stage, and pipes it to the subsequent stage in the
query, updating the results that are displayed to the user
as they are processed. A simple example of a query is a
plain text search for specific strings or matching field-value
pairs. A more complex example can perform more advanced
operations, such as clustering the data using k-means.

We manually grouped all of the operations users perform
in Splunk into a set of use cases. By use case, we mean
an abstract way in which an argument can be used. For
instance, an argument can be used as a filter, aggregated,
sorted on, or grouped by, and each of these are use cases.
Table 2 lists all use cases we encountered, along with exam-
ples and the shorthand labels we use to refer to each. Note
that these use cases do not represent all possible use cases
in Splunk, but rather are just those we encountered in our
examination of a subset of arguments used in the queries.

When the user enters a query that performs a filter, the
GUI updates to display events which pass through the fil-
ter. When the user uses a query to add or transform a
field, the GUI displays events in updated form. Most queries
result in visualizations such as tables, time series, and his-
tograms, that appear in the GUI when the query is executed.
Users can specify these visualizations by typing queries in
the default view, as described above, and can also create
“apps,” which are custom views that display the results of
pre-specified queries, possibly in real time, which is useful
for things like monitoring and reporting. Although the vi-
sualizations users can create in Splunk do not represent the
full breadth of all possible visualizations, they still capture
a useful set of standard and commonly used ones.

3.2 Splunk Query Details
The Splunk query language is modeled after the Unix grep

command and pipe operator. Below is an example query
that provides a count of errors by detailed status code:

search error | stats count by status | lookup

statuscodes status OUTPUT statusdesc

In this example, there are three stages; search, stats, and

12

Term Definition

event a raw, timestamped item of data indexed by Splunk, similar to a tuple or row in databases
field a key corresponding to a value in an event, similar to the concept of a column name
value part of an event corresponding to a certain field, similar to a particular column entry in a particular row
query a small program written in the Splunk query language, consisting of pipelined stages
stage a portion of a query syntactically between pipes and conceptually a single action or operation
command the part of a stage that indicates what action or operation to perform on the data
operation an abstract category made of similar actions or commands, for example, filter or aggregate are operations
argument the parts of a stage that indicate what fields, values, or option values to use with a command
use case an extension of the concept operation to account for how an argument is used in an operation
template a query string with arguments removed, like a skeleton or scaffolding

Table 1: Terminology describing Splunk data.

Use case Example Label

filter events containing value search value FILTER VALUE
filter events on values of field search field =200 FILTER ON FIELD
queries sorted by field sort field SORT BY
field projected table field PROJECT
field renamed as field rename foo as field RENAME
field passed to top top field TOP
field aggregated stats count field AGGREGATE
grouped by field stats count foo by field GROUP BY
field used as function domain eval field=(foo+bar)/1024 DOMAIN
arg used in arithmetic transformation eval foo=arg*100 ARITHMETIC
arg used in conditional eval foo=case(bar>bat, bar,arg) CONDITIONAL
field used in other transformation eval foo=tonumber(field) FIELD IN TRANSFORMATION
value used in other transformation eval foo=replace(bar,value) VALUE IN TRANSFORMATION
value passed to option head limit=value OPTION

Table 2: Use cases, examples, and the labels for each in Figure 4. For each argument, the frequency with
which it appeared in each use case was tallied up and applied in the LSA calculation described.

lookup are the commands in each stage, count by and OUT-

PUT are functions and option flags passed to these com-
mands, and“error”, “status”, “statuscodes”, and“statusdesc”
are arguments. In particular, “status” and “statusdesc” are
fields.

To see how this query operates, consider the following toy
data set:

0.0	 -‐ error	 404	

0.5	 -‐ OK	 200	

0.7	 -‐ error	 500	

1.5	 -‐ OK	 200	

The first stage filters out all events not containing the
word “error”. After this stage, the data looks like:

0.0	 -‐ error	 404	

0.7	 -‐ error	 500	

The second stage aggregates events by applying the count

function over events grouped according to the “status” field,
to produce the number of events in each “status” group.

count	 status	

1	 404	

1	 500	

The final stage performs a join on the “status” field be-
tween the data and an outside table that contains descrip-
tions of each of the codes in the “status” field, and puts the
corresponding descriptions into the “statusdesc” field.

count	 status	 statusdesc	

1	 404	 Not	 Found	

1	 500	 Internal	 Server	 Error	

We collected 50,000 such queries from users of a cloud
installation of Splunk. The data set consists of a list of
query strings along with an anonymized unique identifier
for the issuing user and the time of issuance. Table 3 sum-
marizes some basic information about this query set. To

13

Total users 602
Total queries 50,000
Unique queries 7,012
Parseable unique queries 5,813

Table 3: Characteristics of the set of queries ana-
lyzed. These metrics give some measures of the size
of the data set. Note that the approximately 17%
of the data set that is not parseable are queries that
contain infrequently used commands or queries that
are malformed. We plan to extend the parser to
support these infrequently used commands in the
near future.

parse these queries, we custom-wrote an open source parser
for this query language so that it could be separately avail-
able from the closed-source Splunk system. This parser is
capable of parsing 63 most common commands of 128 seen
in our dataset, thus parsing a large proportion of gathered
queries.

It is important to note that we do not have access to any
information about the data sets over which the queries were
issued because these data sets are proprietary and thus un-
available. Having access only to query logs is a common
occurrence for data analysis, and algorithms that can work
under these circumstances are therefore important to de-
velop. Further, by manually inspecting the queries and us-
ing them to partially reconstruct some data sets using the
fields and values mentioned in the queries, we are fairly cer-
tain that these queries were issued over multiple different
(albeit similar) sources of data, thus suggesting the results
presented here will generalize across different datasets.

4. CHARACTERIZING DATA ANALYSES
At a high level, the recommendation problem is: given a

data set to explore, what visualizations and other such in-
formation should the tool suggest to the user? This problem
can be viewed abstractly as one of finding the right mapping
from points in the space of all possible data sets to points
in the space of all possible exploratory data analysis visual-
izations; however, this formulation is a difficult multi-class
multi-label classification problem. Moreover, we currently
lack the data to solve this problem as stated above since we
don’t have access to full user data sets, nor the “correct”
labels, which are in this case, complete and user-approved
exploratory data analysis visualizations. However, the user
query data from Splunk still allows us to explore one key
idea regarding the solution of this problem, which is that
users are likely to explore and analyze semantically similar
data sets in similar ways. This suggests that a reasonable
strategy for making exploratory data analysis visualization
recommendations for a given data set is to recommend the
same things that users found useful for other, semantically
similar data sets. We discuss one way of measuring semantic
similarity between data sets and the operations applied to
them.

4.1 Latent Semantic Analysis
We borrow a technique from natural language processing

called latent semantic analysis (LSA) [10]. To use LSA, we
start with a matrix of frequencies called the term-document

number of times wi
appears in dj, reweighted

d1 d2 d3 d4 d5 d6 d7

w1
w2
w3
w4
w5
w6

SVD

T

w-space d-space

singular value
matrix

Figure 2: LSA starts with a frequency matrix for
which each entry Mij represents a count of the num-
ber of times word i appears in document j. Af-
ter some optional re-weighting, SVD is applied to
this matrix to obtain an approximation of the origi-
nal frequency matrix that expresses relationships of
similarity between the words and documents. This
similarity between elements is measured by the dis-
tance between their corresponding points in the
lower-dimensional space.

matrix M . In this matrix, Mij is the number of times term
i appeared in document j. It is often useful to re-weight
the terms of this matrix using factors like tf-idf [10]. We
then find low-rank approximation to this matrix using sin-
gular value decomposition (SVD). This yields three matrices
UΣV T , which can be used to compute points correspond-
ing to the terms and documents projected onto a lower-
dimensional space. A schematic of this process is shown
in Figure 2. The reason this is useful is that whereas the
original matrix lists only the number of times each term ac-
tually appeared in each document, LSA provides access to
all terms that are relevant to each document by capturing
how similar terms and documents are to one another.

We apply LSA by replacing the term-document matrix
with an argument-use case matrix, so that Mij now con-
tains the number of times argument i was used in use case
j, where argument and use case are used in the sense de-
fined in Section 3. We consider only the arguments that
are used by more than three users and in more than three
different query templates. We primarily consider only argu-
ments that are fields (i.e., that represent column names), for
reasons that will be clear later. To generate the frequency
of arguments in use cases, we first parse each query and ex-
tract out all arguments. Then, guided by a classification
of Splunk commands into more generic operation categories
(e.g., the search, regex, and where commands are classi-
fied as filters) we manually inspect each query and develop
a set of rules for deciding which use case a given argument
occurrence falls into. We then encoded these rules to pro-
cess the queries and count the the frequency of arguments
in use cases. These steps, summarized in Figure 3, yield the
desired frequency matrix. The idea is that applying LSA
to these frequencies will capture how similar arguments and
use cases are to one another.

4.2 Results
The results of applying LSA to our problem after re-

expression, as described above, are depicted visually in Fig-
ure 4. There are a number of interesting observations. Some

14

1. Parse queries.
search source=eqs7day-M1.csv !
 | eval description=!

!case(depth<=70, "Shallow", !
! !depth>70 AND depth<=300, "Mid", !
! !depth>300, "Deep”)!

!
2. Extract arguments meeting criteria.
 return [source, description, depth]!

3. Tally usage frequencies.
 if filtered_as_field(“source”):
 usages[“source”].filtered_as_field += 1!

!

Figure 3: Analyzing queries is challenging because
they are essentially small programs. This figure
shows the steps we used to compute frequencies
from the query data for use with LSA. We first
parsed the query to extract arguments. In the fig-
ure, arguments are italicized. Those that are fields
are also underlined. The rest of the query that is
part of the command is in bold. We select argu-
ments that are used by at least three users and in
at least three query templates. We then tally the
number of times each argument appears in each of
the use cases listed in Table 2.

apparently semantically similar arguments are placed close
to one another; for example, uid, user_id, and user get
placed close together. Some arguments that are used in sim-
ilar ways are placed close to one another; for example, 60

and 1024, which are both used to convert values, are close
together. Use cases that get used with similar arguments
are placed close to one another; for example, TOP and AG-
GREGATE are placed close together (note that top is ba-
sically a sorted aggregation), and PROJECT and FILTER
ON FIELD are placed closed together. Some arguments are
somewhat ambiguous; for example, the types of login and
level are hard to guess, and also, many of these arguments
could mean different things in different data sets. Many
arguments for which a connection is not immediately appar-
ent get placed close together. This could be because they
really are all used similarly, or because we have chosen to
project onto a two dimensional space for the purpose of vi-
sualization, where a higher dimension would have made this
distinction. Lastly, some use cases are placed farther away
from the main cluster of points. This is generally because
such use cases occur more frequently than the others, and
also intuitively means that such use cases are distinguished
because they represent an important dimension. Often with
LSA the two most frequent and distinct use cases will be
place on opposite axes from one another.

While some of these observations could be made from ex-
amining the raw frequencies, or from reasoning about the
nature of the operations performed, the value of LSA is in
uncovering similarity that is not explicitly captured in the
raw frequencies. The hypothesis put forth in this section
is that the intuition underlying the application of LSA to
terms and documents carries over to this domain, and the
initial results presented here provide evidence that qualita-

tively supports this. Thus, the intuition here is that the raw
frequencies describing which contexts an argument appears
in represents a set of constraints that reflect the similarity
of meaning among arguments, and the underlying structure
of meaning is revealed by LSA. This suggests that we can
learn more from LSA than we could from simply examining
raw frequencies and operation types.

To better illustrate and provide context to these results,
we highlight a subset of arguments for which we can partially
reconstruct plausible example data sets. Two such example
data sets, which together include 15 of the arguments that
we analyzed, are shown in Table 4. These two data sets are
similar in that they both fall under the domain of IT data
sets. However, they are still distinct data sets from distinct
sources. The idea is that we can leverage the similarities
between these data sets to apply operations that make sense
even if the data is from a new source we that haven’t seen
yet.

4.3 Discussion
In order for LSA to work, we needed to make several ad-

justments to the raw frequencies we computed. In particu-
lar, because skew in frequencies or skew in document length
(in our case, frequency of use case occurrence) causes unde-
sirable behavior, we had to correct this skew. The undesir-
able behavior is that most points are“crushed down to zero,”
that is, almost all of the points in the lower-dimensional
space get crushed down to a small space around the ori-
gin, with a few points placed far apart down opposite axes.
To avoid this, we even out the distribution of frequencies by
applying common techniques, including removing arguments
that occur too little or too often, re-expressing frequencies
using logarithms, and re-weighting frequencies using tf-idf.
Such re-expression to find a scaling of the data that produces
an even distribution – with points level and symmetrical –
is a reoccurring point of emphasis in Tukey’s original expo-
sition on exploratory data analysis [15]. Tukey emphasizes
the need for re-expression to make it easier to comprehend,
especially through visualization:

“A basic problem about any body of data is to
make it more easily handleable by minds. The
grasping is with the eye and the better job is
through a more symmetric appearance.”

This is consistent with our experience, in that without re-
expressing the frequencies, LSA yielded a difficult-to-interpret
lower-dimensional projection, as described above.

5. NEXT STEPS
We can extend LSA further, adapting an extension called

latent semantic indexing (LSI) [10]. Using LSI in the stan-
dard way, the lower-dimensional space can be queried using
a set of terms to find documents most relevant to them. Do-
ing this requires computing the centroid of the terms in the
queries, and returning those documents which are closest to
that centroid. We can extend this idea for our problem do-
main in an analogous way. Instead of using the frequency
of arguments in certain use cases as done in the analysis de-
scribed above, we can use the frequency of arguments in spe-
cific functions rather than operations. The functions would
be more specific than operations and also callable, so, for
example, in place of using AGGREGATE like we do here,
we would specify specific aggregating functions like count or

15

DOMAIN TOP

AGGREGATE

FIELD IN TRANSFORMATION

FILTER VALUE

PROJECT

OPTION

VALUE IN TRANSFORMATION

ARITHMETIC

CONDITIONAL

SORT BY

FILTER ON FIELD

RENAME

GROUP BY

code

uid

process bytes

metric

pid module

60

duration

clientip
message

user_id

severity

0

eventtype

req_time

id priority

application
env

time
desc type

method
true|false

status

src error

reason

referer

user

date

path

time_taken

name

count

1024

account

screen_name

level

userid

uri

server

queue

connection

client timeout

activity

action useragent

login

referer_domain

(a)

(d)

(c)

(b)

Figure 4: This figure depicts the frequency of arguments (white circles) used in different use cases (black
dots) projected onto a two dimensional subspace using SVD. The nearer two points, the more similar they
are. We can use this fact to read off some interesting observations about the data from the figure. For
example, this figure shows that based on how the arguments are used, the use cases PROJECT and FILTER
ON FIELD are similar (a). Likewise, AGGREGATE and TOP are similar, which makes sense as top is a
sorted aggregation (b). The numerical arguments 1024 and 0 and 60 are similar, and also are more commonly
used as an argument to ARITHMETIC than GROUPED BY (c). Also, the probably-similar arguments
uid, user_id, and user get placed close together (d). Lastly, points which get placed further out on an axes,
sketched in the figure as dotted lines, are interpreted as being an important dimension, and use cases that
are on opposite axes get used with “opposite” arguments, in a way. Thus we see that FILTER ON FIELD is
an important use case, and that it tends to get used with different arguments than ARITHMETIC does.

average. When a user uploads a data set, we will process
that dataset with LSA as well, and then determine which
functions to apply to that data set by looking up the col-
umn names of that data set using LSI and determining the
functions which are closest to them.

This approach suffers from the problem that if a column
name does not appear in the term set, it can’t be looked
up. To get around this, we can extend column names using
more context in the form of fingerprints. These are extended
descriptions of columns that would include, in addition to
the the column name, other attributes such as column type,
and indicator variables indicating which other columns are

present. The fingerprint could also include pipeline context
such as previous stages in the query. Then, we will define a
new distance function between fingerprints, and use this to
lookup the fingerprint or the centroid of fingerprints which
are closest to that with the missing column. For example,
we would look for matching column types if the queried fin-
gerprint contains a column name that has not been seen
before, or look for fingerprints with column names that are
near-matches to the column name in the queried fingerprint.
A special approach would have to be adopted for operations
that take additional arguments, such as filters. One possi-
bility is using partially bound operations for these cases.

Hypothesized data set: Web access logs

sourcetype _tm method stat useragent uri
access_* 0 GET 200 Pingdom /login
access_* 1 GET 404 NewRelic /apple-touch-
access_* 2 GET 200 Pingdom /favicon.ico

Hypothesized data set: Mobile metrics

module metric device user
http memory ios foo
mysql cpu ios bar
docs_api memory android bat

Table 4: Two hypothesized data sets partially re-
constructed using queries. These are meant as an
illustration of how the arguments analyzed relate to
the underlying data set.

In addition to extending LSA, there are additional build-
ing blocks that we plan as future work to facilitate building
such a recommendation system:
• a characterization of the types of operations users perform

on system data, to prioritize actions to support for a given
domain,

• an identification of common analysis patterns, which sug-
gest what to prioritize so that the common cases for sys-
tem data analysis can be made fast and intuitive,

• a set of methodologies for analyzing the data analysis pro-
cess,

• studies examining the behavior of data analysts in various
domains, using a variety of tools.

In addition, we plan to evaluate specific recommendation ap-
proaches, including algorithms to rank various actions and
visualizations that effectively encapsulate the transforma-
tions being recommended. This effort will require substan-
tial quantitative and qualitative analysis of queries as well
as the data sets to which the queries referred. To this end,
we plan to characterize a variety of data sets and evalu-
ate the recommendation system prototype’s effectiveness in
suggesting useful analysis actions for these.

6. RECOMMENDING VISUALIZATIONS
The analysis presented here are important steps toward

creating more intelligent data analysis tools. An effective
tool to assist in data exploration via intelligent suggestions
requires mechanisms for recommending visualizations, in ad-
dition to an intuitive interface to allow the user to provide
feedback on suggestions, indicate changes to make, explore
data in more detail, or take control over the creation of vi-
sualizations. This tool should support modern versions of
the techniques articulated by Tukey in his original text on
the topic [15], such as histograms, scatter plots, and run
charts, which have now become standard practice, in addi-
tion to newer types of visualizations. As a sketch of how
such a tool might work: the user uploads their data, and
initially receives a set of visualizations to browse, ranked in
some fashion. Ideally, the tool would be able to identify and
prioritize visualizations which conveyed some unexpected in-
formation, possibly by using recent techniques for anomaly
detection with explanations [16]. The user could choose to
inspect certain visualizations further, or provide feedback
to the tool about what he or she would like to see. For
example, the user might indicate a desire to see more visu-
alizations for a certain subset of the data, or certain type

of visualizations for different subsets of the data. The tool
should also have some means for inferring which visualiza-
tions were most valued by the user to use that information
when making future suggestions.

Ranking would be preferable over suggesting all type-
compatible visualizations. For example, even if we consider
only suggesting two-dimensional scatter plots for a simple
data set consisting of n numerical columns, there are n2 −n
possible visualizations. With each additional data type, vi-
sualization type or data transformation that we consider, of
which there are at least dozens, if not hundreds, the space of
possible suggestions increases by an additional O(nk) term,
where k is the dimensionality of the possible visualizations.
Thus, for realistic data sets, all possible type-compatible vi-
sualizations would number in the tens or hundreds of thou-
sands and would overwhelm the user.

Instead, suggestions should be selected to achieve both
breadth and relevance. Breadth of suggestions is important
for covering as many different types of questions as possible
and giving the user wide set of options for moving forward
with the exploration, which will depend in part on their
goals. For example, the tool should not just suggest scatter
plots at first, or only suggest time series charts. One way to
achieve breadth using LSI is to recommend operations that
provide good coverage of the space; i.e. that are spread far
apart.

Relevance is important in two senses, first in that the
suggestions must be compatible with the type of the data.
For example, categorical values that happen to be integers
should not be treated as numerical values and averaged.
Second, the suggestions should make semantic sense for the
data. For example, with server performance data, while it is
type-compatible to visualize 10th percentile response time
over time, users with such data are much more likely to de-
rive value from viewing the 95th or 99th percentile response
time over time. One way to achieve relevance using LSI is
to recommend operations that are near by fingerprints from
semantically similar data sets.

7. CONCLUSION
In this paper, we motivated the need for intuitive, intel-

ligent data exploration tools that reduce the overhead of
manual visualization decisions, and instead enable the user
to spend more time learning from the data. One possible
reason that this vision has not been fully realized is that it
is hard to extract the right features from exploratory data
analysis examples. To progress towards this vision, it is
important to understand the process of data analysis on a
deep level. We contribute towards this understanding with
a study of data analysis queries from Splunk. We were able
to make progress because Splunk programs are concise in-
stances of people analyzing data. The results of this analysis
provide some indication that our goal is practical. In partic-
ular, we demonstrate promising evidence that what a data
set is, semantically, influences what analysis operations are
performed, in Section 4. These results suggest that we can
recommend similar types of visualizations for similar types
of data sets. In other words, we can suggest analysis oper-
ations based on measuring the semantic similarity between
a given data set and data sets for which “good” analyses
are known. In Section 6, we outline ideas for what it would
mean to suggest “good” visual analyses and what a tool that
did this might look like.

17

8. REFERENCES
[1] Tableau software. www.tableausoftware.com.

[2] Abraham Bernstein, Foster Provost, and Shawndra
Hill. Toward intelligent assistance for a data mining
process: An ontology-based approach for cost-sensitive
classification. Knowledge and Data Engineering, IEEE
Transactions on, 17(4):503–518, 2005.

[3] Ledion Bitincka, Archana Ganapathi, Stephen Sorkin,
and Steve Zhang. Optimizing data analysis with a
semi-structured time series database. In SLAML, 2010.

[4] Stephen M Casner. Task-analytic approach to the
automated design of graphic presentations. ACM
Transactions on Graphics (TOG), 10(2):111–151,
1991.

[5] Dietmar Jannach, Markus Zanker, Alexander
Felfernig, and Gerhard Friedrich. Recommender
Systems: An Introduction. Cambridge University
Press, 2011.

[6] Sean Kandel, Andreas Paepcke, Joseph Hellerstein,
and Jeffrey Heer. Wrangler: Interactive visual
specification of data transformation scripts. In ACM
Human Factors in Computing Systems (CHI), 2011.

[7] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph
Hellerstein, and Jeffrey Heer. Profiler: Integrated
statistical analysis and visualization for data quality
assessment. In Advanced Visual Interfaces (AVI),
2012.

[8] Alicia Key, Bill Howe, Daniel Perry, and Cecilia
Aragon. Vizdeck: self-organizing dashboards for visual
analytics. In ACM International Conference on
Management of Data (SIGMOD), 2012.

[9] Jock Mackinlay. Automating the design of graphical
presentations of relational information. ACM
Transactions on Graphics (TOG), 5(2):110–141, 1986.

[10] Christopher Manning, Prabhakar Raghavan, and
Hinrich Schutze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[11] Steven F Roth, John Kolojejchick, Joe Mattis, and
Jade Goldstein. Interactive graphic design using
automatic presentation knowledge. In Proceedings of
the SIGCHI conference on Human factors in
computing systems, pages 112–117. ACM, 1994.

[12] Michael Schiff et al. Designing graphic presentations
from first principles. University of California,
Berkeley, 1998.

[13] Robert St. Amant and Paul R Cohen. Intelligent
support for exploratory data analysis. Journal of
Computational and Graphical Statistics, 7(4):545–558,
1998.

[14] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris:
A system for query, analysis, and visualization of
multidimensional relational databases. Visualization
and Computer Graphics, IEEE Transactions on,
8(1):52–65, 2002.

[15] John Tukey. Exploratory data analysis.
Addison-Wesley, 1977.

[16] Kiri Wagstaff, Nina Lanza, David Thompson, Thomas
Dietterich, and Martha Gilmore. Guiding scientific
discovery with explanations using DEMUD. In
Conference on Artificial Intelligence (AAAI), 2013.

18

