

Randomly Sampling Maximal Itemsets

Sandy Moens and Bart Goethals

Frequent Itemset Mining

- Finding interesting patterns by e.g. support
- Problems:
 - Much redundancy
 - Many, many patterns

Pattern Set Mining

- Less redundancy
- Less patterns
- But: large enumeration space!

Pattern Set Mining

- Less redundancy
- Less patterns
- But: large enumeration space!

Step 1: Enumerate

Pattern Set Mining

- Less redundancy
- Less patterns
- But: large enumeration space!

Output Space Sampling

• No explicit enumeration

Output Space Sampling

• No explicit enumeration

Random Maximal Itemset Sampling

- Long patterns with low support
 - E.g. microarray data, recommendation
- Simple random walk over extensions
 - Quality measure q
 - Approximation measure *p*

Spreading the Search

- Uniform Metropolis-Hastings
 - E.g. Hasan and Zaki, *Musk: Uniform sampling of k-maximal patterns* (SDM'09)
- Weight approximation score
 - Additive
 - Multiplicative
 - Adaptive

DEMO TIME

Universiteit Antwerpen

16