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ABSTRACT
Pattern mining techniques generally enumerate lots of unin-
teresting and redundant patterns. To obtain less redundant
collections, techniques exist that give condensed represen-
tations of these collections. However, the proposed tech-
niques often rely on complete enumeration of the pattern
space, which can be prohibitive in terms of time and mem-
ory. Sampling can be used to filter the output space of
patterns without explicit enumeration. We propose a frame-
work for random sampling of maximal itemsets from trans-
actional databases. The presented framework can use any
monotonically decreasing measure as interestingness criteria
for this purpose. Moreover, we use an approximation mea-
sure to guide the search for maximal sets to different parts
of the output space. We show in our experiments that the
method can rapidly generate small collections of patterns
with good quality. The sampling framework has been im-
plemented in the interactive visual data mining tool called
MIME1, as such enabling users to quickly sample a collection
of patterns and analyze the results.
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1. INTRODUCTION
During the last decade an increase in data being generated

and stored has taken place. An important reason for this
trend is the relatively low cost of storing large amounts of
data. The collected data contains a lot of useful information,
which is evident because it is drawn from the real world.
Therefore, extracting knowledge from the stored data has
shown to be very important and interesting. The major
problem, however, is that the really interesting and useful
information is typically hidden in the vast volume of data.

Pattern mining techniques are able to extract potentially
interesting knowledge from data by considering frequently

1MIME is available at http://adrem.ua.ac.be/mime
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occurring events as interesting. Many techniques are in-
vented based on this idea in combination with the principle
of monotonicity [2, 21, 14]. The core functionality of these
methods is to give a complete set of patterns that fulfill a
given quality constraint. However, the problems with these
approaches are that a lot of redundancy is found, and, more
importantly, many of the mined patterns are actually not in-
teresting. In fact, the enduser inherently owns the subjective
criteria to distinguish between truly interesting information,
indeed, every user has it’s own background knowledge of the
data at hand.

Methods to reduce the amount of patterns and redun-
dancy resulted in smaller collections of patterns, e.g. closed
sets [19], maximal sets [5], non-derivable itemsets [8], etc.
Unfortunately they could only partially alleviate the prob-
lem of pattern explosion and redundancy. A second down-
side of these approaches is that they generally rely on the
enumeration of large parts of the pattern space. Only in
later stages the less interesting patterns are pruned from
the result. One has to realize, however, that enumerating
the pattern space can actually in itself already be infeasible.
To decrease redundancy in pattern collections even more,
pattern set mining algorithms became increasingly impor-
tant [1, 20, 17]. The goal of pattern set mining techniques
is to find a small collection of patterns that are interesting
together, rather than on their own. For instance, together
they describe 90% of the original dataset.

On the other hand the iterative and interactive nature
of data mining was already known from the start. One rea-
son, thereto, is that typically pattern mining techniques deal
with user-defined thresholds that are hard to set, making it
into an iterative process to find a suitable parameter setting.
Another reason is that interestingness is in essence subjec-
tive to a specific user. What is interesting for one person
is by definition not always interesting for another person.
Therefore, trying to define objective measures that capture
the users’ interest is perhaps impossible. In fact, in an ideal
setting a user is interactively taking part in the pattern
exploration process, combining her proper knowledge with
objective functions that can be computed in an instant.

We differentiate the following building block for explora-
tory data analysis: interactivity, instant results and adapt-
ability. First of all, exploration can only be done using a
good computer-human interaction in a graphical interface.
Secondly, instant results are necessary to allow a user to
get immediate feedback on each request. This way she can
continue the exploration task, without losing her focus. At
last, we believe that results should be easily interpretable
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and adaptable, giving the user control over the final pat-
tern collection. Using good visualisation techniques a user
should be able to understand the results better, faster and
more easily [15].

The focus of our work is obtaining small collections of
maximal patterns with low frequency that describe the
data without much overlap and without explicit enumera-
tion of the pattern space. Maximal patterns can for example
be used in recommendation systems, where long patterns
describe trends. For instance, a list of movies that many
people like, can be used as recommendations for other users
that share a large overlap of movies with the former list. In
this paper we develop a sampling method that samples max-
imal itemsets based on monotone measures and reports near
instant results. Moreover, we implemented our methods in
MIME, a visual framework for data analysis developed by
Goethals et al. [13]. The integration of the sampling method
in a graphical framework enables users to easily explore, an-
alyze and adapt the patterns that are reported by our sam-
pling method. Therefore a user can quickly try out different
settings and explore the data in search of her pattern collec-
tion of interest.

The following section gives an overview of the related
work. In section 3 our sampling method is described and sec-
tion 4 describes the framework in combination with MIME.
Section 5 reports the experimental results of our method on
various datasets. The last section concludes this work and
discusses future work.

2. RELATED WORK
Numerous methods have been proposed to mine interest-

ing patterns from transactional databases [1, 2, 5, 8, 21].
Some methods try to enumerate all itemsets satisfying a
frequency threshold, while others try to obtain a more con-
densed representation, e.g. maximal itemsets. One problem
with these methods is generally the overwhelming number of
patterns obtained, making analysis in fact harder. Another
problem is that often these techniques have to enumerate all
subsets of the output patterns, making them prohibitive in
practice. Not many techniques exist to sample the output
space of frequent patterns without the enumeration step.

In work by Zhu et al. [22], the authors introduce the con-
cept of Pattern Fusion to obtain a small collection of maxi-
mal frequent itemsets. This new mining strategy finds maxi-
mal itemsets by agglomerating small core patterns into large
patterns, as such taking larger jumps in the lattice tree com-
pared to typical sequential algorithms, e.g. Apriori [2] and
Eclat [21]. The main idea behind this approach is that large
maximal itemsets contain a lot of core patterns with similar
characteristics. As a consequence randomly sampling from
a pool of core patterns then merging them, results into large
maximal itemsets.

Also for itemsets, Boley et al. [6] developed a general sam-
pling framework for generating small collections of patterns
from a user-defined distribution. In this work a user con-
structs a distribution over the complete pattern space by
defining singleton preference weights and a multiplicative
or additive evaluation scheme. Weights are then used in
a Metropolis-Hastings sampling framework with linear time
and space requirements. Their method does not materialize
the complete pattern space.

The rest of this overview on sampling patterns deals with
graph databases. Two methods for randomly sampling max-

imal subgraphs where proposed by Chaoji et al. [9] and
Hasan and Zaki [3].

Chaoji et al. [9] use the same technique as our approach
to sample maximal subgraphs. They utilize a two-step ap-
proach for finding orthogonal maximal frequent subgraphs.
In a first step, a random walk is used to randomly sample
maximal graphs. The second step then prunes the output
to a smaller set of orthogonal patterns. In their work the
random walk only traverses the lattice tree downwards. I.e.
for a given graph, a random node can only be extended and
nodes are never deleted from the current graph. The pro-
posed method does not guarantee uniformity of the output
collection of patterns in step 1, rather a biased traversal is
used to simulate uniformity. In contrast, our work presents
a framework for sampling maximal patterns using an evalu-
ation and an approximation measure. The latter is used to
guide the search to different parts of the lattice.

Hasan and Zaki [3] restrict themselves to uniformly sam-
pling k-maximal subgraphs for a given threshold. They use
Metropolis-Hastings and construct a probability matrix that
enforces uniformity. Therefore, in each step all neighboring
nodes (i.e. subgraphs) have to be checked for maximality.
If the neighboring node is maximal, the probability of going
to that state is proportional to the inverse of its degree.

Hasan and Zaki [4] proposed a method for sampling fre-
quent subgraphs. A random walk over the partially ordered
graph of frequent patterns is used to sample according to
a prior interestingness distribution. Their work is similar
to ours, in the sense that they also use a branch-and-bound
technique to walk over the patterns. The differences are two-
fold: the output space is different and the underlying ran-
dom walk is also different. Hasan and Zaki use Metropolis-
Hastings as chain simulation method to sample according to
the desired distribution. In our method a simple random
walk over the remaining subsets is used.

The graphical pattern mining framework MIME [13] has
been used as a base for implementing and testing our sam-
pling technique. MIME is equipped with an intuitive user-
interface and many interestingness measures to analyze the
mined patterns. Moreover, it lets users quickly run various
data mining algorithms using different parameter settings.

3. RANDOM MAXIMAL ITEMSETS

3.1 Preliminaries
We denote by D a dataset containing transactions tj .

Each transaction tj is a subset over a finite set of items
I = {i1, . . . , in}. Individual items are also called singletons
and will be used interchangeably in the rest of the paper. An
itemset X is also a subset over the set of items I. The cover
of an itemset is the set of transactions that contain the item-
set, i.e. cov(X) = {tj |X ⊆ tj}. The support of an itemset
is defined as the size of its cover, i.e. the number of trans-
actions that contain the itemset. A quality function q is an
monotonically decreasing function that gives the interesting-
ness of an itemset in the corresponding dataset q : X → R
(e.g. support). p is a monotonic function that is used as
approximation for the quality function.
σ is a minimum quality threshold such that iff q(X) >= σ

then X is interesting. The negative border are the itemsets
that are not interesting wrt σ and q, but whose subsets are
all interesting. The positive border, is the set of itemsets
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Figure 1: Singleton frequency vs singleton occur-
rences in maximal sets for mammals datasets with
minimum support of 10%

that are interesting, but whose supersets are not. The posi-
tive border is also called the set of maximal itemsets.

3.2 Uniform Sampling
In this section we give an overview of two algorithms for

uniform sampling of maximal sets.
A first, and näıve, way is to first generate the complete

set of maximal sets, then performing sampling on the result.
This way each maximal set has an equal, uniform probability
of being drawn. The downside of this method, however,
is that generating all maximal itemsets is both time and
memory consuming. I.e. we have to enumerate almost the
complete set of frequent patterns to obtain the collection of
maximal frequent patterns. Furthermore, we have to rely on
subset checking or other techniques [7] to quickly check if a
potential maximal set has a superset in the result already.

A second approach is proposed by Al Hasan and Zaki on
graphs [3] and can be adopted to itemsets. For this method
we use Metropolis-Hastings to simulate a random walk over
the complete pattern space. In each step, the current node
represents the current itemset. The connected nodes (i.e.
possible transition states) are the subsets with length that is
one smaller and the supersets with length that is one larger
than the current set. To obtain uniform samples we have
to create a doubly stochastic probability matrix P which is
used to propose new transitions. An easy way to do so is
using the following probabilities [3]:

P (u, v) =


1
Z

if u, v non max
1/dv
Z

if u non-max, v max
1/du
Z

if u max v non-max

0 otherwise,

(1)

with dx the degree of x and, Z a normalization factor over all
neighboring nodes. Note that using these weights, we always
have to check each neighboring superset for maximality.

Sampling according to the described MH-chain results in
a uniform sample of maximal patterns. The chain, however,
has to be restarted from a random state for each sample and
has to be run for a large number of iterations until a sample
is returned. Generally, MCMC methods take a long number
of iterations before converging to the stationary distribution,
this is called the mixing time. When a chain converges fast
to the desired distribution, the chain is called rapidly mixing,
otherwise it is slowly mixing.

Algorithm 1 Random Sampling

Require: set of singletons I, approximation function p
quality function q, quality threshold σ

Returns: random maximal itemset R

1: R← {}
2: C ← {cj ∈ I : q(cj) ≥ σ}
3: while |C| > 0 do
4: M ← (ci, p(R ∪ ci)) for all ci ∈ C
5: x← sample from M
6: R← {R ∪ x}
7: C ← {cj ∈ C : q(R ∪ cj) ≥ σ}
8: return R

3.3 Random Sampling
Randomly generating maximal sets can be done in a faster

and easier way [9]. The only downside is that uniformity of
the method is not guaranteed.

We randomly generate maximal itemsets by performing a
simple random walk over all singleton items {i1, . . . , in}. We
walk over the space of frequent patterns by starting at the
empty set and gruadually appending new singletons. Ini-
tially each item is given a probability proportional to it’s
approximation score p(ij), favoring highly ranked items in
the result. Then, for each iteration of the walk we prune
the items that result in non-interesting itemsets according
to q. The remaining items (also called extensions) are eval-
uated with respect to the current set and the approximation
measure p, i.e. we evaluate p(X ∪ ik) for all remaining ik.
This process continues until no more items can be added
such that the set remains interesting. If no new items can
be added a maximal itemset has been found.

The basic intuition behind this sampling approach is that
higher valued items occur more frequently in the set of inter-
esting maximal sets. This is under the assumption that the
approximation function simulates the original quality func-
tion. Figure 1 shows an example for the mammals dataset
when using frequency as quality and approximation mea-
sure. The minimum support threshold used is 10%. The
blue line shows the relative support of singletons wrt the
cumulative support of all singletons. The red line gives the
number of occurrences of an item in the set of maximal fre-
quent itemsets. The relation between both curves is not ex-
act, but we clearly see that high support items occur more
often in the set of maximal patterns than low support items.

The sampling procedure is outlined in Algorithm 1. Lines
1 and 2 are the initialization part where singletons that do
not meet the quality threshold are discarded. In line 4 and 5
we perform biased sampling using p as bias for all remaining
extensions. Lines 6 and 7 make sure that all non interesting
supersets are discarded from the set of new samples. This
simple random walk over the pattern space can be repeated
any number of times.

3.4 Downgrading
Our method tries to sample small collections of maximal

patterns that describe different parts of the data. As such,
we want to find patterns that have a small overlap in the
data described by them. An easy way to do so is using
a weighting (or discounting) scheme in the sampling pro-
cedure: by giving less weight to patterns that are already
covered by previously found patterns, we force the method
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to come up with different results [16]. Essentially, we con-
struct a distribution over a set of events that dynamically
changes over time.

In our method we build a probability map based on pos-
sible extensions for the current set. To guide the pattern
search process, we can downgrade the probabilities of the
extensions (i.e. singletons) that have already been reported
in previous sets, using weighting schemes. One downgrading
scheme is proposed together with two others that have been
adopted from Lavrač et al. [16]:

- multiplicative weights [16] decrease exponentially
by the number of times a singleton has already been
covered. Given a parameter 0 ≤ γ ≤ 1, we bias single-
ton weights using the formula w(ij , k) = γk, where k
is the number of times a singleton ij occurs already in
the result.

- additive weights [16] can be implemented using the
weight assignment w(ij , k) = 1

k+1
. Using the additive

weighting scheme the decrease is less drastical, but also
less effective in settings where we want to sample only
a small collection of patterns.

- adaptive weights is an adaptive scheme favoring sin-
gletons that have not been sampled for a long time.
The formula is as follows: w(ij , k) =

(
1− k

tot

)
, where

tot is the total number of patterns discounted so far.

Downgrading should be implemented with a precaution
however. We still have to guarantee maximality of the pat-
terns being found. As an example suppose multiplicative
weights are used with γ = 0. In this case any item that
has been found in just one sample will be given a weight
of 0. Using the constructed probability map the 0-weighted
items would never be sampled. After a while, only 0-weight
elements will be left in the set of possible extensions. An
effective way to deal with this problem is to start sampling
uniformly in cases where only 0-weighted extensions are left.
Indeed, now there is no real favoring of one the items that is
left. One could come up with several other methods to deal
with this problem aswell.

3.5 Completeness
Our sampling method can use any function as quality and

approximation function, with the only restriction that the
function has to be monotonic. This monotonic property
allows to prune non interesting itemsets during each iter-
ation [2], without losing guarantee that the random walk
generates a maximal pattern. In fact, our method can mine
any of the existing maximal itemset for the given quality
threshold. This is easy to see, in the end a maximal itemset
is build up by a number of subsets. During the random walk
a chain of subsets is sampled, each with probability P (X ′i),
where X ′i represents a subset of size i. Now if a maximal set
can be generated by a set of distinct random walks Rmax,
then the probability of sampling a maximal itemset of length
n is given by:

P (Xmax) =

∑
r∈Rmax

P (r)

Z

=

∑
r∈Rmax

P (X′1)P (X′2)...P (X′n)

Z

=

∑
r∈Rmax

P (e1)P (e2|e1)...P (en|e1...en−1)

Z
,

Figure 2: Interface of MIME

with Z a normalization factor over all maximal sets Smax.
The first equality gives the probability of sampling a max-
imal set as the sum of probabilities of random walks that
lead to this set. The second equality elaborates on individ-
ual chains and gives it’s probability as the product of the
intermediate steps. The last equation links probabilities of
intermediate sets to the previously sampled subsets.

Since we know the probability of sampling a maximal
itemset, we can give an estimate for the number of samples
necessary to sample each distinct maximal itemsets using the
generalized version of the Coupon Collector’s problem [10]:

E(Cm) =

m−1∑
q=0

(−1)(m−1−q)
∑
|J|=q

1

1− PJ
with m = |Smax|

PJ =
∑

X∈Smax

P (X).

We would like to conclude this section with a small re-
mark. To be completely correct, the approximation function
does not have to be monotone. Rather it is possible to use
non-monotonic approximation measures, however it is then
impossible to see the influence in the final sample.

4. PATTERN EXPLORATION
The goal of our sampling method is to quickly gener-

ate small collections of maximal patterns that can easily
be explored. Exploration is typically done in a visual frame-
work with easy user interaction. Therefore, we implemented
our framework into MIME, a user friendly pattern mining
and visualization tool developed by Goethals et al. [13].
The main philosophy of MIME is to give users pattern ex-
ploration capabilities by providing a snappy interface with
quick response times. Thereto, different caching and thread-
ing techniques are used.

In MIME a user is presented with the database in verti-
cal/item format as shown in Figure 2. This is indeed the
most intuitive way of looking at the database, since gener-
ally the user knows what an item represent. Furthermore, a
user is able create patterns by clicking and using drag-and-
drop operations. Alternatively she can use a lot of internal
pattern mining algorithms to create an initial collection of
patterns. Then she can evaluate patterns and/or pattern
collections using a variety of interestingness measures [11].
Plugging our sampling method into MIME results in syn-
ergic behavior on both sides: (1) since the tool demands
quick response times, the addition of this sampling frame-
work provides good means to quickly obtain a small collec-
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Figure 3: Sampling interface in MIME

tions of maximal patterns. (2) using the interactive interface
of MIME we can easily try out different settings for the ran-
dom maximal sampler and, more importantly, evaluate them
immediately.

Figure 3 shows the graphical interface for sampling ran-
dom maximal itemsets in MIME. Here a user is able to set
all necessary information for sampling and also a minimum
support size of the patterns. This is usefull when searching
for long maximal itemsets with a size at least k. During the
sampling process itemsets that are found pop-up one by one
and the process can be stopped at any given time.

5. EXPERIMENTAL EVALUATION

5.1 Datasets
For our experiments, we used three datasets of different

sizes. The main characteristics of the datasets are shown in
Table 1.

The first dataset is mammals and is provided by T. Mitchell
Jones2 [18]. This dataset contains information on the habi-
tat of animals in Europe. Each transaction corresponds to
a 50 by 50 kilometers region and each item represents a
mammal that lives somewhere in Europe. An item that is
contained in a transaction corresponds to a mammal living
in the specified region.

The other two datasets are publicly available from the
FIMI repository3. The pumsb dataset provides census in-
formation about population and housing. The accidents
dataset [12] contains anonymized information of traffic acci-
dents on the Belgian roads.

D |D| |I| σ (%) Max Sets
mammals 2.183 121 10 198.231
pumsb 49.046 2.113 55 92.221

accidents 340.183 468 5 551.073

Table 1: Characteristics of datasets

5.2 Evaluation Metrics
We evaluate our sampled pattern collections using the fol-

lowing metrics:

2The mammals dataset can be obtained at
http://www.european-mammals.org/
3The FIMI repository can be found at
http://fimi.ua.ac.be/data/

- Size: the size is the number of singletons contained by
a pattern. It is important for our sampling method, be-
cause we mainly want to obtain long patterns. Shorter
patterns are more general, but also provide less in-
teresting information when viewed from a correlation
perspective.

- Jaccard: the Jaccard index is a similarity measure de-
fined as the size of the intersection of two sets relative
to the size of the union: i.e. Jaccard(X,Y ) = X∩Y

X∪Y .
For our evaluation, we use the average pairwise Jac-
card dissimilarity (1 − Jaccard), between all pairs of
patterns in the sampled collection. This gives an intu-
ition on the overlap between two patterns in the col-
lection of samples.

- Duplicates: the number of duplicates is interesting in
a randomized sampling method, since obviously this is
something we want to minimize.

- Approximation Error: this set evaluation measure
was proposed by Zhu et al. [22] and evaluates a pattern
collection as a whole. It measures the average edit dis-
tance of a set of patterns to a set of cluster centers. In
our setting, the set of clusters is the sampled collection
of patterns and the set of patterns is the complete set
of maximal itemsets for the same support threshold.
Then, for each maximal set we assign it to the closest
center (i.e. an itemset from the sample set) using the
edit distance Edit(X,Y ) = |X ∪ Y | − |X ∩ Y |. This
results in a clustering of the maximal sets with respect
to our sampled collection. Given a sample collection
P of size m, the approximation error is now defined
as 4(CSmax

P ) =
∑m

i=1 ri/m, with ri the maximal edit
distance between a member of the cluster and it’s cen-
ter. Lower approximation errors result in descriptive
capabilities of the sampled collection wrt the total set
of maximal itemsets.

- Total Area: another set evaluation measure is the
total area covered by the collection. This entails the
real coverage by the patterns in the data and not the
cumulated sum of the areas of individual areas. Higher
total area results in higher descriptive capabilities of
the pattern collection wrt the original data.

5.3 Experimental Results
We test our approach to a regular top-k mining algorithm

for finding maximal itemsets. We know that sequential algo-
rithms walk over the pattern space such that similar itemsets
are found close to each other. Using our sampling method,
we find maximal itemsets that are spread over the complete
set of maximal sets. All our methods have been implemented
in Java and are available as standalone or in MIME 4.

5.3.1 Pattern Set Quality
We empirically tested sampling by instantiating our frame-

work with different approximation measures and weighting
schemes. As quality measure we used the support mea-
sure. For approximation measures we used a mixture of
the frequency measure, the inverse frequency measure and
an equality measure (i.e. all items are given equal weights).

4Implementations are available at:
http://adrem.ua.ac.be/implementations
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The weighting schemes used throughout the experiments are
described in Section 3.4. Uniform sampling is simulated
using the näıve approach as described in Section 3.2. At
last, we also used consequtive chunks of maximal sets found
by the Eclat algorithm with maximal itemsets pruning. As
such, we try to simulate running Eclat with very short time
budgets for finding maximal patterns.

For each of the methods we did 10-fold cross-validation,
where collections of 10 and 20 itemsets are sampled from
the pumsb dataset with a support threshold of 50%. To
objectively measure the quality of the collections found, we
compute the metrics defined in 5.2. Results of the experi-
ments are shown in Table 2.

From Table 2 we can immediately see that chunking is
not suitable for obtaining small sample collections to de-
scribe the data, i.e. the total area is very low compared
to all other methods. Also, the Jaccard distance is very
high, meaning that a lot patterns share a large overlap in
the number of items. Uniform sampling is already better in
terms of Jaccard distance and the approximation error, but
lacks the descriptiveness of the original data. For all of the
randomized methods the average Jaccard distance between
any pair of samples is much lower than the chunking method
and the total areas are generally much better than chunking
and uniform sampling.

Interestingly, sampling with inverse frequency results in
high approximation scores and, therefore, bad cluster cen-
ters. However, if we also look at the average size of the
patterns found, we see they are the lowest for inverse fre-
quency. In other words, the reason why the samples are bad
cluster centers, is because they are too small compared to
the average size of all maximal itemset. As such, the edit
distance from any maximal set to its’ cluster center will al-
ways be larger. The difference in size between frequency
and inverse frequency can actually be explained intuitively.
A set with high support has more extensions with high sup-
port. In turn these high support extensions have a higher
probability of being sampled, resulting again in high sup-
port intermediate sets. This is in contrast to when the set
already has a low support, then the extensions are also low
on support, and, moreover, the lowest support extensions
have highest probability of being sampled.

We analyze the weighting schemes again using Table 2,
and we compare to the none weighted case for the same
approximation measure. Generally speaking, the weight-
ing schemes mildly influence the quality of the patterns for
such small collections. Although no clear winner can be ap-
pointed, the additive scheme performs slightly better than
the rest: the total area is always the highest and Jaccard
the lowest for all measures.

In another experiment concerning the length of maximal
itemsets, we sampled 100 times the number of maximal item-
sets found in the mammals dataset when setting support to
437 (20%). The distribution of the maximal sets found wrt
their length is given in Figure 4. The purple line gives the
length distribution of the actual set of maximal patterns.
This plot shows similar results for the sizes compared to Ta-
ble 2. Inverse frequency favors sampling of short patterns,
while frequency favors sampling of long patterns. The equal
measure is somewhere in the middle, which makes sense be-
cause in each iteration high and low support items share the
same sampling probability.
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Figure 4: Distribution of length of maximal patterns

5.3.2 Timing Results
In the first timing experiment we sample small collections

of patterns with low thresholds for the different datasets.
We use frequency as quality/approximation measure dur-
ing this experiment and set no weighting scheme, because
weighting schemes do almost not influence the computation
times. For the different tests we report the time needed to
sample the collection of desired size as well as the number
of non duplicate sets. The results are shown in Table 3.

Obviously, the time needed to sample X sets increases lin-
early by the number of sets to sample. Furthermore, we see
that most of the experiments run in less than a few seconds,
unless the threshold is set rather low (e.g. 1% for pumsb
and accidents). On the other hand, from the experiments
we see that sampling just 10 sets, takes less than a second.
In an interactive setting this is very reasonable, since in fact
we do not want to mine hundreds or thousands of patterns,
rather we like to obtain small collections that we can ana-
lyze easily and fast. E.g. in MIME, if a user is not satisfied
with the collection she can gradually ask for more patterns.

D σ(%) Samples Non-Dup Time (s)

mammals

10 10,0 0,007
10 (0.5%) 100 93,6 0,073

1000 776,1 0,721
10 9,9 0,006

21 (1%) 100 96,6 0,055
1000 864,5 0,551

pumsb

10 10,0 0,46
490 (1%) 100 99,1 3,933

1000 946,8 40,207
10 10,0 0,067

26.975 (55%) 100 95,6 0,265
1000 816,1 2,545

accidents

10 10,0 0,624
3.401 (1%) 100 100,0 4,905

1000 999,5 48,133
10 10,0 0,226

68.036 (20%) 100 96,1 1,187
1000 818,3 12,235

Table 3: Time results for sampling method using fre-
quency as quality and approximation measure, and
without weighting

In a second experiment we measure the time needed for
our sampling method to obtain the complete set of maximal
patterns. We would like to remind the reader that this is in
fact not the main use of our sampling approach.



D σ (%) Samples Method Weighting Scheme Size Jaccard Ap. Err. Duplicates Total Area

pumsb 50

10

chunking - 14,67 0,73 1,54 0,0 494.323
uniform - 12,83 0,28 1,38 0,0 1.164.491

samplingfreq

- 13,77 0,26 1,39 0,0 1.424.332
additive 13,00 0,20 1,50 0,0 1.507.440

multiplicative 14,77 0,29 1,27 0,0 1.386.859
adaptive 13,54 0,22 1,47 0,1 1.470.019

samplinginvfreq

- 10,55 0,19 1,86 0,2 1.278.312
additive 10,40 0,14 2,06 0,1 1.375.827

multiplicative 11,40 0,21 1,86 0,0 1.269.745
adaptive 10,92 0,18 1,87 0,2 1.314.444

samplingequal

- 12,91 0,22 1,53 0,0 1.410.602
additive 11,02 0,16 1,87 0,1 1.469.940

multiplicative 13,28 0,24 1,55 0,0 1.426.970
adaptive 11,66 0,18 1,70 00 1.405.476

20

chunking - 12,45 0,65 1,63 0,0 495.525
uniform - 12,94 0,28 1,21 0,0 1.335.700

samplingfreq

- 13,41 0,25 1,32 0,1 1.712.057
additive 11,68 0,18 1,52 0,0 1.776.483

multiplicative 13,22 0,25 1,30 0,1 1.683.907
adaptive 12,85 0,21 1,30 0,1 1.728.926

samplinginvfreq

- 11,11 0,20 1,65 0,2 1.595.981
additive 10,02 0,15 1,79 0,1 1.766.286

multiplicative 10,47 0,19 1,81 0,3 1.597.760
adaptive 10,68 0,18 1,63 0,4 1.654.833

samplingequal

- 13,22 0,25 1,34 0,2 1.670.994
additive 11,22 0,17 1,55 0,1 1.790.034

multiplicative 13,33 0,24 1,31 0,2 1.703.623
adaptive 12,09 0,19 1,42 0,1 1.727.109

Table 2: Overview of metrics computed on sampled collections from the pumsb dataset
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Figure 5: Detailed view of time results for finding
distinct maximal sets using sampling

Figure 5 and 6 present time results for finding distinct pat-
terns using different approximation measures. The dataset
used for this experiment is the pumsb dataset with a support
threshold of 55%. For Figure 5, we first mined the dataset
for maximal itemsets using our proper Eclat implementa-
tion using bitsets. We used the optimizations described by
Borgelt [7] to prune the output set for maximal itemsets.
Then we sampled itemsets for 10 times the amount of time
Eclat needs to mine all maximal sets. The results show
that Eclat is much faster in this experiment, which is not
suprising because the sampling methods have to create mul-
tiple distribution maps for each sample. In contrast, Eclat
only has to make intersections of lists of transaction identi-
fiers. Moreover, we only report the non-duplicate patterns
in this timing experiment. We can also see that for the first
5K samples the sampling methods take approximately the
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Figure 6: Time results for finding distinct maximal
sets using sampling with a time budget of 1 hour

same time. Later in the sampling process the discounting
measures actually experience more difficulty in finding non-
duplicate sets. The bigger picture is shown in Figure 6. For
this chart we let the different methods run for 1 hour before
stopping execution. Going to higher numbers of distinct
patterns we observe an exponential increase in the running
time. Indeed, more duplicates are found and our sampling
technique has difficulties walking in non-traversed regions of
the pattern space.

6. CONCLUSION
We studied the problem of randomly sampling maximal

itemsets without explicit enumeration of the complete pat-
tern space. For this purpose we employed a simple random
walk that only allows additions of singletons to the current
set untill a maximal set is found. The proposed frame-



work uses two types of monotone interestingness functions:
a quality function that prunes the search space for maxi-
mal itemsets and an approximation measure that guides the
search to patterns with different characteristics. Empirical
studies have shown that our method can generate a small
collection of maximal patterns fast, while preserving good
quality. This method has been integrated into MIME, a
framework for visual pattern mining and data exploration.

A more thorough study on the effect of approximation
measures is still to be done. At last we still have to explore
other quality and approximation measures that can be used
in our sampling framework.
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