Data Integration

Duen Horng (Polo) Chau
Assistant Professor
Associate Director, MS Analytics
Georgia Tech

Partly based on materials by
Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos
What is **Data Integration**?
Combining data from **multiple sources** to provide the user with a **unified view**.

Why is it **Important**?
Think about the apps, websites, and services that you use every day.
Businesses derive value through data integration.
Apple Siri

Getting Answers

“How is the Nikkei doing?”

“When is daylight saving time?”

“What’s the latest in San Francisco?”

See what people are saying on social media about a place or event.

“Do I need an umbrella today?”

“What was that an earthquake?”
More Examples?

• **Social media** (data from users, businesses)
 • Facebook: your posts, advertisements, review
• **Search engine**: Google, Bing, Yahoo, etc.
• **Smart assistants**: Siri, Cortana, Alexa
• **Price comparison**: Kayak
• Uber, Lyft: drivers, traffic data, customers
• google maps: users, restaurants, traffic....
How to do data integration?
“Low” Effort Approaches

1. Use database’s “Join”! (e.g., SQLite)
When does this approach work?
(Or, when does it NOT work?)

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>id</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Smith</td>
<td>111</td>
<td>$40k</td>
</tr>
<tr>
<td>222</td>
<td>Johnson</td>
<td>222</td>
<td>$60k</td>
</tr>
<tr>
<td>333</td>
<td>Lee</td>
<td>333</td>
<td>$50k</td>
</tr>
</tbody>
</table>

2. Open Refine
http://openrefine.org (Video #3 “Reconcile and Match Data”)

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Smith</td>
<td>$40k</td>
</tr>
<tr>
<td>222</td>
<td>Johnson</td>
<td>$60k</td>
</tr>
<tr>
<td>333</td>
<td>Lee</td>
<td>$50k</td>
</tr>
</tbody>
</table>
IDs are really important, and can simplify data integration!

But who creates the IDs?
Crowd-sourcing Approaches: Freebase

Freebase intro video: https://youtu.be/TJfrNo3Z-DU

Learn more about Freebase at https://en.wikipedia.org/wiki/Freebase
Freebase
(a graph of entities)

“…a large collaborative knowledge base consisting of metadata composed mainly by its community members…”

Wikipedia.
So what?
What can you do with the Freebase knowledge graph?

Hint: Google acquired it in 2010.
The Knowledge Graph

Learn more about one of the key breakthroughs behind the future of search.

Learn more about Google Knowledge Graph at https://goo.gl/mkCKMg
Freebase replaced by Google Knowledge Graph API

Example:
What does Google know about Taylor Swift?

https://developers.google.com/knowledge-graph/
What does Google know about Taylor Swift?
https://developers.google.com/knowledge-graph/

```
"@type": "ItemList",
"ItemListElement": [

  "@type": "EntitySearchResult",
  "result": {
    "@id": "kg:/m/0d1567",
    "name": "Taylor Swift",
    "@type": [
      "Thing",
      "Person"
    ],
    "description": "Singer-songwriter",
    "image": {
      "contentUrl": "https://t1.gstatic.com/images?q=tbn:ANd9GcQmVDAhjhWnN2OWys2ZMO3PAGAuKdEjR5kGz5k8u5rG0c_4lfbautQ",
      "url": "https://en.wikipedia.org/wiki/Taylor_Swift",
      "license": "http://creativecommons.org/licenses/by-sa/2.0"
    },
    "detailedDescription": {
      "articleBody": "Taylor Alison Swift is an American singer-songwriter and actress. R",
      "url": "http://en.wikipedia.org/wiki/Taylor_Swift",
    },
    "url": "http://taylorswift.com/"
  }
]"
Google has the Knowledge Graph.

Facebook has…
Introducing Graph Search

Find people who share your interests

Want to start a book club or find a gym buddy? Connect with friends who like the same activities—and meet new people, too.

Graph Search intro video: https://youtu.be/W3k1USQbq80
What if we don’t have the luxury of having IDs?

A common problem in academia:

Polo Chau
Duen Horng Chau
Duen Chau
D. Chau
Then you need to do…

Entity Resolution
(A hard problem in data integration)
Why is entity resolution so difficult?

Let’s understand it through shopping for an iPhone on Apple, Amazon and eBay
Buy your new iPhone X.

Get free next-business-day delivery on any in-stock iPhone ordered by 5:00 p.m.*

iPhone X
5.8-inch display*

Select

From $49.91/mo. with the iPhone Upgrade Program.¹
Or pay in full from $999.
Find deals and best selling products for Apple iPhone X Cell Phones & Smartphones

Shop by Model

- **iPhone X**
- **iPhone 8 Plus**
- **iPhone 8**
- **iPhone 7 Plus**
- **iPhone 7**

**Featured Items**

- **Apple iPhone X 64GB - GSM & CDMA Unlocked - USA Model**
  - Price: $990.00
  - Free Shipping
  - 914+ Sold

- **Apple iPhone X 256GB - GSM&CDMA Unlocked-USA**
  - Price: $1,145.00
  - Free Shipping
  - 1523+ Sold

- **Apple iPhone X - 64GB - Space Gray (Factory Unlocked) - Brand**
  - Price: $1,350.00
  - or Best Offer
  - Free Shipping
  - 256 Sold

- **24K Gold Plated Apple iPhone X 256GB - Silver Unlocked Custom**
  - Price: $1,999.00
  - or Best Offer
  - Free Shipping
  - 16 Watching

**Additional Options**

- **AT&T**
- **Sprint**
- **T-Mobile**
- **Verizon**
- **Unlocked**

**Color**

- **Black**
- **Clear**
- **Gold**
- **Gray**
- **Silver**

**Storage Capacity**

- **256GB**
- **64GB**

**Processor**

- **Dual Core**
- **Hexa Core**

**Model Number**
D-Dupe

Interactive Data Deduplication and Integration
TVCG 2008

University of Maryland
Bilgc, Licamele, Getoor, Kang, Shneiderman

https://linqspub.soe.ucsc.edu/basilic/web/Publications/2006/bilgc:vast06/
Core components: **Similarity functions**

Determine how two entities are similar.

D-Dupe’s approach:

**Attribute similarity** + **relational similarity**

\[
sim(e_i, e_j) = (1 - \alpha) \times \text{sim}_A(e_i, e_j) + \alpha \times \text{sim}_R(e_i, e_j),
\]

\[0 \leq \alpha \leq 1,
\]

**Similarity score** for a pair of entities
Attribute similarity (a weighted sum)

\[
sim_A(e_i, e_j) = \sum_{k=1}^{n} w_k \times \text{sim}_{-fun_k}(e_i \cdot a_k, e_j \cdot a_k),
\]

\[-1 \leq w_k \leq 1 \quad \text{and} \quad \sum_{k=1}^{n} |w_k| = 1,
\]
Numerous similarity functions

Excellent read: http://infolab.stanford.edu/~ullman/mmds/ch3a.pdf

- Euclidean distance
  Euclidean norm / L2 norm
- TaxiCab/Manhattan distance
- Jaccard Similarity (e.g., used with w-shingles)
  e.g., overlap of nodes’ #neighbors
  
  \[
  \text{Jaccard similarity of sets } S \text{ and } T \text{ is } \frac{|S \cap T|}{|S \cup T|}
  \]

- String edit distance
  e.g., “Polo Chau” vs “Polo Chan”

Figure 3.1: Two sets with Jaccard similarity 3/8
Distance and Similarity Measures

Different measures of distance or similarity are convenient for different types of analysis. The Wolfram Language provides built-in functions for many standard distance measures, as well as the capability to give a symbolic definition for an arbitrary measure.

Reference

Numerical Data

EuclideanDistance  SquaredEuclideanDistance  NormalizedSquaredEuclideanDistance  ManhattanDistance  ChessboardDistance  BrayCurtisDistance  CanberraDistance  CosineDistance  CorrelationDistance  BinaryDistance  TimeWarpingDistance

Boolean Data

HammingDistance  JaccardDissimilarity  MatchingDissimilarity  DiceDissimilarity  RogersTanimotoDissimilarity  RussellRaoDissimilarity  SokalSneathDissimilarity  YuleDissimilarity

String Data

EditDistance  DamerauLevenshteinDistance  HammingDistance  SmithWatermanSimilarity  NeedlemanWunschSimilarity

Images & Colors

ImageDistance  ColorDistance

Geospatial & Temporal Data

GeoDistance  DateDifference

Excellent Tutorial on Entity Resolution


by Lise Getoor and Ashwin Machanavajjhala