Heilmeier Questions
Group Project

Duen Horng (Polo) Chau
Assistant Professor
Associate Director, MS Analytics
Georgia Tech

Partly based on materials by
Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos
Forming Teams

• You’re welcome to look for teammates now. Deadline: **Friday, Feb 10** (on course schedule)

• **4-6 people** in each team

• Polo suggests teaming with students in the **same section**, but OK to mix if really needed. See “Teaming” section on project description: http://poloclub.gatech.edu/cse6242/2017spring/project.html
Example Projects

• Two example projects
 • **Firebird**: Predicting Fire Risk in Atlanta
 • **PASSAGE**: Safe Path Recommendation
 • Q&A after presentations
Challenges in Larger Teams

• Can we form a 7-person team?
 • I highly recommend not to. Only with my permission.
 • Larger groups are harder to run.
 • Higher coordination, motivation and intellectual costs

https://www.cmu.edu/teaching/designteach/design/instructionalstrategies/groupprojects/challenges.html
Tips for Working Successfully in a Group

https://www.cs.cmu.edu/~pausch/Randy/tipoForGroups.html

1. Meet people properly
2. Find things you have in common
3. Make meeting conditions good
4. Let everyone talk
5. Check your egos at the door
6. Praise each other
7. Put it in writing
8. Be open and honest
9. Avoid conflict at all costs
10. Phrase alternatives as questions
Requirements

3 core requirements

1. **Large** dataset
2. **Non-trivial** analysis/algorithms/computation
3. An **interactive user interface** that interact with the algorithms

Grading & Schedule

- Proposal (writeup + in-class presentation)
- Progress report (mostly as a “checkpoint”)
- Final report (writeup + poster presentation)
How to Come Up with Project Ideas?

Polo’s recommendations

• Work on something that you are excited about (e.g., NetProbe for eBay fraud detection)

• Is it interesting? e.g., computationally? visualization-wise?

• Is it impactful? (e.g., save lives? fight crime? shorten commute? save resources?)

• Browse the list of datasets on course homepage
1. **What** are you trying to do?
 Articulate your objectives using absolutely no jargon.

2. **How** is it done today; what are the limits of current practice?

3. **What's new** in your approach; **why** it will be successful?

4. **Who** cares?

5. If you're successful, **what difference and impact** will it make?
 How do you measure them (e.g., via user studies, experiments, groundtruth data, etc.)?

6. **What are the risks and payoffs?**

7. **How much** will it cost?

8. **How long** will it take?

9. **What are the midterm and final "exams" to check for success?**
PASSAGE: A Travel Safety Assistant With Safe Path Recommendations For Pedestrians

Matthew Garvey
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
mgarvey6@gatech.edu

Meghna Natraj
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
mnatraj@gatech.edu

Nilaksh Das
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
nilakshdas@gatech.edu

Bhanu Verma
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
bhanuverma@gatech.edu

Jiaxing Su
College of Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA
jiaxingsu@gatech.edu

Abstract
Atlanta has consistently ranked as one of the most dangerous cities in America with over 2.5 million crime events recorded within the past six years. People who commute by walking are highly susceptible to crime here. To address this problem, our group has developed a mobile application, PASSAGE, that uses crime data to find "safe paths" for pedestrians, fronting user inputs such as preferred routes.

Author information
Safe Path Assistant Pulse
ACM Human Factors in Computing Systems (CHI)
H.5.2 Information interfaces and presentation
Author’s information
Georgia Institute of Technology
Atlanta, GA 30332, USA

Figure 1: Paths recommended by PASSAGE

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
Aurigo: An Interactive Tour Planner for Personalized Itineraries

Alexandre Yahi; Antoine Chassang; Louis Raynaud; Hugo Duthil; Duen Horng (Polo) Chau
Georgia Institute of Technology
{alexandre.yahi, antoine.chassang, l.raynaud, hduthil, polo}@gatech.edu

ABSTRACT
Planning personalized tour itineraries is a complex and challenging task for both humans and computers. Doing it manually is time-consuming; approaching it as an optimization problem is computationally NP hard. We present Aurigo, a tour planning system combining a recommendation algorithm with interactive visualization to create personalized itineraries. This hybrid approach enables Aurigo to take into account both quantitative and qualitative preferences of the user. We conducted a within-subject study with 10 participants, which demonstrated that Aurigo helped them find points of interest quickly. Most participants chose Aurigo over Google Maps as their preferred tools to create personalized itineraries. Aurigo may be integrated into review websites or social networks, to leverage their databases of reviews and ratings and provide better itinerary recommendations.

Author Keywords
User Interfaces; Visualization; Recommendation; Tour itinerary planning

ACM Classification Keywords
(e.g. HCI): User interfaces
ISPARK: Interactive Visual Analytics for Fire Incidents and Station Placement

Subhajit Das, Andrea McCarter, Joe Minieri, Nandita Damaraju, Sriram Padmanabhan, Duen Horng (Polo) Chau
Georgia Tech
Atlanta, GA, USA
{das, andream, jminieri, nandita, sriramp, polo}@gatech.edu

ABSTRACT

In support of helping to reduce the response time of firefighters, and thus deaths, injuries, and property loss due to fires, we introduce ISPARK. The ISPARK system determines where fire stations should be located, analyzes the primary causes of fires, the existing infrastructure, and response times, by using visualizations which show the GIS mapping of fire stations on a dashboard. Incidents and response times are shown as additional layers, with clustering of fire incidents to determine predicted fire station locations, forecasting of fire incidents using regression, causal, infrastructure, and personnel analysis, creating an interactive, multi-faceted method for locating fire stations. A comparison of urban and rural fire incident response times is another dimension of this study. We demonstrate ISPARK’s usage and benefits using a publicly available dataset describing 300,000 fire incidents in the states of Massachusetts and Maine. ISPARK is generalizable to other geographic areas and contexts.

Figure 1: Screenshot of ISPARK showing actual (pink) and predicted (green) fire station locations in Maine determined by our approach, using coordinates with actual driving distances from fire stations to actual fire incidents. Fire incidents are shown as small yellow dots. ISPARK reduces the average response time.
Firebird: Predicting Fire Risk and Prioritizing Fire Inspections in Atlanta

Michael Madaio
Carnegie Mellon University
Pittsburgh, PA, USA
mmadaio@cs.cmu.edu

Shang-Tse Chen
Georgia Tech
Atlanta, GA, USA
schen351@gatech.edu

Oliver L. Haimson
University of California, Irvine
Irvine, CA, USA
ohaimson@uci.edu

Wenwen Zhang
Georgia Tech
Atlanta, GA, USA
wzhang300@gatech.edu

Matthew Hinds-Aldrich
Atlanta Fire Rescue Dept.
Atlanta, GA, USA
mhinds-aldrich@atlantaga.gov

Xiang Cheng
Emory University
Atlanta, GA, USA
xcheng7@emory.edu

Duen Horng Chau
Georgia Tech
Atlanta, GA, USA
polo@gatech.edu

Bistra Dilkina
Georgia Tech
Atlanta, GA, USA
bdilkina@cc.gatech.edu

ABSTRACT

The Atlanta Fire Rescue Department (AFRD), like many municipal fire departments, actively works to reduce fire risk by inspecting commercial properties for potential hazards and fire code violations. However, AFRD’s fire inspection practices relied on tradition and intuition, with no existing data-driven process for prioritizing fire inspections or identifying new properties requiring inspection. In collaboration with AFRD, we developed the Firebird framework to help municipal fire departments identify and prioritize commercial property fire inspections, using machine learning, geocoding, and information visualization. Firebird computes fire risk scores for over 5,000 buildings in the city,