Time Series
Non-linear Forecasting

Duen Horng (Polo) Chau
Assistant Professor
Associate Director, MS Analytics
Georgia Tech

Partly based on materials by
Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Parishit Ram (GT PhD alum; SkyTree), Alex Gray
Chaos & non-linear forecasting
Reference:

[Deepay Chakrabarti and Christos Faloutsos
Detailed Outline

- Non-linear forecasting
 - Problem
 - Idea
 - How-to
 - Experiments
 - Conclusions
Recall: Problem #1

Given a time series \(\{x_t\} \), predict its future course, that is, \(x_{t+1}, x_{t+2}, \ldots \)
Datasets

Logistic Parabola:
\[x_t = ax_{t-1}(1-x_{t-1}) + \text{noise} \]
Models population of flies [R. May/1976]

Lag-plot
ARIMA: fails
How to forecast?

- ARIMA - but: linearity assumption

Lag-plot

ARIMA: fails
How to forecast?

- ARIMA - but: linearity assumption

- ANSWER: ‘Delayed Coordinate Embedding’
 = Lag Plots [Sauer92]
 ~ nearest-neighbor search, for past incidents
General Intuition (Lag Plot)

Lag = 1, k = 4 NN
General Intuition (Lag Plot)

Lag = 1, k = 4 NN

X_t X_{t-1}

New Point
General Intuition (Lag Plot)

Lag = 1,
k = 4 NN

4-NN

New Point
General Intuition (Lag Plot)

Lag = 1,
k = 4 NN

4-NN
New Point
General Intuition (Lag Plot)

Interpolate these...

Lag = 1,
$k = 4$ NN

4-NN
New Point
General Intuition (Lag Plot)

Interpolate these...

To get the final prediction

Lag = 1, k = 4 NN
Questions:

• Q1: How to choose lag L?
• Q2: How to choose k (the # of NN)?
• Q3: How to interpolate?
• Q4: why should this work at all?
Q1: Choosing lag L

- Manually (16, in award winning system by [Sauer94])
Q2: Choosing number of neighbors \(k \)

- Manually (typically \(\sim 1-10 \))
Q3: How to interpolate?

How do we interpolate between the \(k \) nearest neighbors?

A3.1: Average

A3.2: Weighted average (weights drop with distance - how?)
Q3: How to interpolate?

A3.3: Using SVD - seems to perform best ([Sauer94] - first place in the Santa Fe forecasting competition)
Q3: How to interpolate?

A3.3: Using SVD - seems to perform best ([Sauer94] - first place in the Santa Fe forecasting competition)
Q3: How to interpolate?

A3.3: Using SVD - seems to perform best ([Sauer94] - first place in the Santa Fe forecasting competition)
Q3: How to interpolate?

A3.3: Using SVD - seems to perform best ([Sauer94] - first place in the Santa Fe forecasting competition)
Q4: Any theory behind it?

A4: YES!
Theoretical foundation

- Based on the ‘Takens theorem’ [Takens81]
- which says that long enough delay vectors can do prediction, even if there are unobserved variables in the dynamical system (= diff. equations)
Detailed Outline

• Non-linear forecasting
 – Problem
 – Idea
 – How-to
 – Experiments
 – Conclusions
Logistic Parabola

Time

Value

Timesteps

Our Prediction from here
Logistic Parabola

Comparison of prediction to correct values
Datasets

LORENZ: Models convection currents in the air
\[
dx / dt = a (y - x) \\
dy / dt = x (b - z) - y \\
dz / dt = xy - c z
\]
Comparison of prediction to correct values

LORENZ

Value

Timesteps
Datasets

- LASER: fluctuations in a Laser over time (used in Santa Fe competition)
Comparison of prediction to correct values
Conclusions

• Lag plots for non-linear forecasting (Takens’ theorem)
• suitable for ‘chaotic’ signals
References

References

Overall conclusions

• Similarity search: Euclidean/time-warping; feature extraction and SAMs
• Linear Forecasting: AR (Box-Jenkins) methodology;
• Non-linear forecasting: lag-plots (Takens)
Must-Read Material

• Chungmin Melvin Chen and Nick Roussopoulos, *Adaptive Selectivity Estimation Using Query Feedbacks*, SIGMOD 1994
Time Series Visualization + Applications
How to build time series visualization?

Easy way: use existing tools, libraries

- **Google Public Data Explorer** (Gapminder)
 http://goo.gl/HmrH

- **Google acquired Gapminder**
 http://goo.gl/43avY
 (Hans Rosling’s **TED talk** http://goo.gl/tKV7)

- **Google Annotated Time Line**
 http://goo.gl/Upm5W

- **Timeline**, from MIT’s SIMILE project
 http://simile-widgets.org/timeline/

- **Timeplot**, also from SIMILE
 http://simile-widgets.org/timeplot/

- **Excel**, of course
How to build time series visualization?

The harder way:

• Cross filter. http://square.github.io/crossfilter/
• R (ggplot2)
• Matlab
• gnuplot
• ...

The even harder way:

• D3, for web
• JFreeChart (Java)
• ...
Time Series Visualization

Why is it useful?

When is visualization useful?

(Why not automate everything? Like using the forecasting techniques you learned last time.)
Time Series User Tasks

- When was something greatest/least?
- Is there a pattern?
- Are two series similar?
- Do any of the series match a pattern?
- Provide simpler, faster access to the series
- Does data element exist at time t?
- When does a data element exist?
- How long does a data element exist?
- How often does a data element occur?
- How fast are data elements changing?
- In what order do data elements appear?
- Do data elements exist together?

Muller & Schumann 03
citing MacEachern 95
horizontal axis is time
Water Consumption in Edmonton During Olympic Gold Medal Hockey Game

http://www.patspapers.com/blog/item/what_if_everybody_flushed_at_once_Edmonton_water_gold_medal_hockey_game/
Gantt Chart
Useful for project

How to create in Excel:
http://www.youtube.com/watch?v=sA67g6zaKOE
ThemeRiver
Stacked graph
Streamgraph

TimeSearcher

support queries

Can create rectangles that function as matching regions

Light gray is all data’s extent

Darker grayed region is data envelope that shows extreme values of queries matching criteria

Multiple boxes are “anded”

Hochheiser & Shneiderman
Proc. Discovery Science ’01

GeoTime
Infovis 2004

http://www.youtube.com/watch?v=inkF86QJBdA

http://vadl.cc.gatech.edu/documents/
55_Wright_KaplerWright_GeoTime_InfoViz_Jrnl_05_send.pdf