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Homework 4 : Scalable PageRank via Virtual Memory (MMap), Random Forest, Weka 
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Prepared by Kiran Sudhir, Varun Bezzam, Yuyu Zhang, Akanksha Bindal, 
Vishal Bhatnagar, Vivek Iyer, Polo Chau 

 
Submission Instructions and Important Notes: 
It is important that you read the following instructions carefully and also those about the deliverables at the end                   
of each question or you may lose points. 
❏ Always check to make sure you are using the most up-to-date assignment PDF (e.g., re-download it from                 

the course homepage if unsure). 
❏ Submit a single zipped file, called “HW4-{YOUR_LAST_NAME}-{YOUR_FIRST_NAME}.zip”, containing all         

the deliverables including source code/scripts, data files, and readme. Example: ‘HW4-Doe-John.zip’ if your             
name is John Doe. Only .zip is allowed (no other format will be accepted) 

❏ You may collaborate with other students on this assignment, but you must write your own code and give the                   
explanations in your own words, and also mention the collaborators’ names on T-Square’s submission              
page. All GT students must observe the honor code. Suspected plagiarism and academic misconduct              
will be reported to and directly handled by the Office of Student Integrity (OSI). Here are some examples                  
similar to Prof. Jacob Eisenstein’s NLP course page (grading policy): 
❏ OK: discuss concepts and strategies (e.g., how cross-validation works, use hashmap instead of array) 
❏ Not OK: several students work on one master copy together (e.g., by dividing it up), sharing solutions, or                  

using solution from previous years or from the web. 
❏ If you use any “slip days”, you must write down the number of days used in the T-square submission page.                    

For example, “Slip days used: 1”. Each slip day equals 24 hours. E.g., if a submission is late for 30 hours,                     
that counts as 2 slip days. 

❏ At the end of this assignment, we have specified a folder structure about how to organize your files in a                    
single zipped file. 5 points will be deducted for not following this strictly. 

❏ We will use auto-grading scripts to grade some of your deliverables (there are hundreds of students), so it is                   
extremely important that you strictly follow our requirements. Marks may be deducted if our grading scripts                
cannot execute on your deliverables. 

❏ Wherever you are asked to write down an explanation for the task you perform, stay within the word limit or                    
you may lose points. 

❏ In your final zip file, please do not include any intermediate files you may have generated to work on the                    
task, unless your script is absolutely dependent on it to get the final result (which it ideally should not be). 

❏ After all slip days are used, 5% deduction for every 24 hours of delay. (e.g., 5 pts for 100-point homework) 
❏ We will not consider late submission of any missing parts of a homework assignment or project deliverable.                 

To make sure you have submitted everything, download your submitted files to double check. 
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Download the HW4 Skeleton before you begin. 
 

Q1 [30 pts] Scalable single-PC PageRank on 70M edge graph 

 
In this question, you will learn how to use your computer’s virtual memory to implement the 
PageRank algorithm that will scale to graph datasets with as many as billions of edges using a single 
computer (e.g., your laptop). As discussed in class, a standard way to work with larger datasets has 
been to use computer clusters (e.g., Spark, Hadoop) which may involve steep learning curves, may be 
costly (e.g., pay for hardware and personnel), and importantly may be “overkill” for smaller datasets 
(e.g., a few tens or hundreds of GBs). The virtual memory based approach offers an attractive, simple 
solution to allow practitioners and researchers to more easily work with such data (visit the 
NSF-funded MMap project’s homepage to learn more about the research). 
 
The main idea is to place the dataset in your computer’s (unlimited) virtual memory, as it is often too 
big to fit in the RAM. When running algorithms on the dataset (e.g., PageRank), the operating system 
will automatically decide when to load the necessary data (subset of whole dataset) into RAM.  
 
This technical approach to put data into your machine’s virtual memory space is called “memory 
mapping”, which allows the dataset to be treated as if it is an in-memory dataset. In your (PageRank) 
program, you do not need to know whether the data that you need is stored on the hard disk, or kept in 
RAM.  Note that memory-mapping a file does NOT cause the whole file to be read into memory. 
Instead, data is loaded and kept in memory only when needed (determined by strategies like least 
recently used paging and anticipatory paging). 
 
You will use the Python modules mmap and struct  to map a large graph dataset into your 
computer’s virtual memory. The mmap()  function does the “memory mapping”, establishing a 
mapping between a program’s (virtual) memory address space and a file stored on your hard drive -- 
we call this file a “memory-mapped” file. Since memory-mapped files are viewed as a sequence of 
bytes (i.e., a binary file), your program needs to know how to convert bytes to and from numbers (e.g., 
integers). struct  supports such conversions via “packing” and “unpacking”, using format specifiers 
that represent the desired endianness and data type to convert to/from. 

Q1.1 Set up Pypy  
 
Install PyPy, which is a Just-In-Time compilation runtime for python, which supports fast packing and 
unpacking. (As mentioned in class, C++ and Java are generally faster than Python. However, several 
projects aim to boost Python speed. PyPy is one of them.) 
 

Ubuntu sudo apt-get install pypy 
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MacOS Install Homebrew  
Run brew install pypy 

Windows Download the package and then install it. 

 
Run the following code in the Q1 directory to learn more about the helper utility that we have provided 
to you for this question. 
 

$ pypy q1_utils.py --help 

 

Q1.2 Warm Up (10 pts) 
 

Get started with memory mapping concepts using the code-based tutorial in warmup.py . 
You should study the code and modify parts of it as instructed in the file. You can run the tutorial code                     
as-is (without any modifications) to test how it works (run “python warmup.py ” on the terminal to do                 
this). The warmup code is setup to pack the integers from 0 to 63 into a binary file, and unpack it back                      
into a memory map object. You will need to modify this code to do the same thing for all odd integers                     
in the range of 1 to 42. The lines that need to be updated are clearly marked. Note: You must not                     
modify any other parts of the code. When you are done, you can run the following command to test                   
whether it works as expected: 
 

$ python q1_utils.py test_warmup out_warmup.bin 

 

It prints True if the binary file created after running warmup.py contains the expected output. 

Q1.3 Implementing and running PageRank (20 pts) 
 
You will implement the PageRank algorithm, using the power iteration method, and run it on the 
LiveJournal dataset (an online community with millions of users to maintain journals and blogs). You 
may want to revisit the MMap lecture slides (slide 9, 10) to refresh your memory about the PageRank 
algorithm and the data structures and files that you may need to memory-map. (For more details, read 
the MMap paper.) You will perform three steps (subtasks) as described below. 

Step 1: Download the LiveJournal graph dataset (an edge list file) 
The LiveJournal graph contains almost 70 million edges. It is available on the SNAP website. We are 
hosting the graph on our course homepage, to avoid high traffic bombarding their site.  
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Step 2: Convert the graph’s edge list to binary files (you only need to do this once) 
Since memory mapping works with binary files, you will convert the graph’s edge list into its binary 
format by running the following command at the terminal/command prompt: 
 

$  python  q1_utils.py  convert  <path-to-edgelist.txt> 

 
Example:  Consider the following toy-graph.txt , which contains 7 edges: 
 
0  1 
1  0 
1  2 
2  1 
3  4 
4  5 
5  2 
 
To convert the graph to its binary format, you will type: 
 

$  python  q1_utils.py  convert  toy-graph/toy-graph.txt 
 

This generates 3 files: 
 
toy-graph/ 

 

toy-graph.bin:  binary file containing edges (source, target) in little-endian “int” C type 
toy-graph.idx:  binary file containing (node, degree) in little-endian “long long” C type 
toy-graph.json:  metadata about the conversion process (required to run pagerank) 

 
In toy-graph.bin  we have, 
 
0000  0000  0100  0000    #  0  1   (in little-endian “int” C type) 
0100  0000  0000  0000    #  1  0  
0100  0000  0200  0000    #  1  2 
0200  0000  0100  0000    #  2  1 
0300  0000  0400  0000    #  3  4 
0400  0000  0500  0000    #  4  5 
0500  0000  0200  0000    #  5  2  
ffff  ffff  ffff  ffff 
... 

ffff  ffff  ffff  ffff 
ffff  ffff  ffff  ffff 
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In toy-graph.idx  we have, 
 
0000  0000  0000  0000  0100  0000  0000  0000    #  0  1  (in little-endian “long long” C type ) 
0100  0000  0000  0000  0200  0000  0000  0000    #  1  2 
... 

ffff  ffff  ffff  ffff  ffff  ffff  ffff  ffff 
 
Note: there are extra values of -1 (ffff  ffff  or  ffff  ffff  ffff  ffff ) added at the end of 
the binary file as padding to ensure that the code will not break in case you try to read a value greater 
than the file size. You can ignore these values as they will not affect your code. 

Step 3: Implement and run the PageRank algorithm on LiveJournal graph’s binary files 
 
Follow the instructions in pagerank.py  to implement the PageRank algorithm. 
You will only need to write/modify a few lines of code.  
 
Run the following command to execute your PageRank implementation: 
  

$  pypy  q1_utils .py  pagerank  <path  to  JSON  file  for  LiveJournal> 

 
This will output the 10 nodes with the highest PageRank scores. 
 
For example: $  pypy  q1_utils .py  pagerank  toy-graph/toy-graph.json 
 

node_id  score 
1        0.4106875 
2        0.2542078125 
0        0.1995421875 
5        0.0643125 
4        0.04625 
3        0.025 
 

(Note that only 6 nodes are printed here since the toy graph only has 6 nodes.) 

Step 4: Experiment with different number of iterations.  
 
Find the output for the top 10 nodes for the LiveJournal graph for n=10, 25, 50 iterations (try the 
--iterations  n  argument in the command above; the default number of iterations is 10). A file in 
the format pagerank_nodes_n.txt  for “n” number of iterations. For example:  
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$  pypy  q1_utils .py  pagerank  toy-graph/toy-graph.json  --iterations  25 

 
You may notice that while the top nodes’ ordering starts to stabilize as you run more iterations, the 
nodes’ PageRank scores may still change. The speed at which the PageRank scores converge 
depends on the PageRank vector’s initial values. The closer the initial values are to the actual 
pagerank scores, the faster the convergence. 

Deliverables 
 

1. warmup.py [6pt]: your modified implementation. 
2. out_warmup.bin [3pt]: the binary file, automatically generated by your modified warmup.py. 
3. out_warmup_bytes.txt [1pt]: the text file with the number of bytes, automatically generated 

by your modified warmup.py. 
4. pagerank.py [14pt]: your modified implementation. 
5. pagerank_nodes_n.txt [6pt]: the 3 files (as given below) containing the top 10 node IDs and 

their pageranks for n iterations, automatically generated by q1_utils.py. 
○ pagerank_nodes_10.txt [2pt]  for n=10 
○ pagerank_nodes_25.txt [2pt]  for n=25 
○ pagerank_nodes_50.txt [2pt]  for n=50 

 
 

Q2 [50 pts] Random Forest Classifier 
 
Note: You must use Python 2.7 for this question. 
 
You will implement a random forest classifier in Python. The performance of the classifier will be                
evaluated via the out-of-bag (OOB) error estimate, using the provided dataset. 
Note: You must not use existing machine learning or random forest libraries like scikit-learn.  
 
You will use the UCI Credit Approval Dataset where each record is a credit card application. All                 
attribute names and values have been changed to meaningless symbols to maintain confidentiality.             
The dataset has been cleaned to remove missing attributes. The data is stored in a comma-separated                
file (csv) in your Q2 folder as hw4-data.csv. Each line describes an instance using 16 columns: the                 
first 15 columns represent the attributes of the application, and the last column is the ground truth label                  
for credit card approval (0 means “denied”, 1 means “approved”). Note: The last column should not                
be treated as an attribute. 
 
You will perform binary classification on the dataset to determine if a credit card application is safe to                  
approve or not. 
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Essential Reading 

Decision Trees 

To complete this question, you need to develop a good understanding of how decision trees work. You                 
can refer to the lecture slides from class. Specifically, you need to know how to construct decision                 
trees using Entropy and Information Gain to select the splitting attribute and split point for the selected                 
attribute. These slides from CMU provide an excellent example of how to construct a decision tree                
using Entropy and Information Gain.  

Random Forests 

To refresh your memory about random forests, see Chapter 15 in the “Elements of Statistical               
Learning” book, lecture slides. Here is a blog post that introduces random forests in a fun way, in                  
layman’s terms. 

Out-of-Bag Error Estimate 

In random forests, it is not necessary to perform explicit cross-validation or use a separate test set for                  
performance evaluation (also discussed in class). Out-of-bag (OOB) error estimate has shown to be              
reasonably accurate and unbiased. Below, we summarize the key points about OOB described in the               
original article by Breiman and Cutler. 
 
Each tree in the forest is constructed using a different bootstrap sample from the original data. Each                 
bootstrap sample is constructed by randomly sampling from the original dataset with replacement             
(usually, a bootstrap sample has the same size as the original dataset). Statistically, about one-third of                
the cases are left out of the bootstrap sample and not used in the construction of the kth tree. For each                     
record left out in the construction of the kth tree, it can be assigned a class by the kth tree. As a result,                       
each record will have a “test set” classification by the subset of trees that treat the record as an                   
out-of-bag sample. The majority vote for that record will be its predicted class. The proportion of times                 
that a predicted class is not equal to the true class of a record averaged over all records is the OOB                     
error estimate. 
 
Starter Code 
We have prepared starter code written in Python for you to use. This would help you load the data and                    
evaluate your model. The following files are provided for you: 

● util.py : utility functions that will help you build a decision tree 
● decision_tree.py : a decision tree class that you will use to build your random forest 
● random_forest.py : a random forest class and a main method to test your random forest 

What you will implement 
Below, we have summarized what you will implement to solve this question. Note that you MUST use                 
information gain to perform the splitting in the decision tree. The starter code has detailed comments                
on how to implement each function.  
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1. util.py : implement the functions to compute entropy, information gain, and perform splitting. 
2. decision_tree.py : implement the learn() method to build your decision tree using the            

utility functions above.  
3. decision_tree.py : implement the classify() method to predict the label of a test record             

using your decision tree. 
4. random_forest.py : implement the functions _bootstrapping() , fitting() ,      

voting() 

 

As you solve this question, you will need to think about multiple parameters in your design, some may                  
be more straightforward to determine, some may be not (hint: study lecture slides and essential               
reading above). For example, 

● Which attributes to use when building a tree? 
● How to determine the split point for an attribute? 
● When do you stop splitting leaf nodes?  
● How many trees should the forest contain? 

 
Note that, as mentioned in class and on lecture slides, there are other approaches to implement                
random forests. For example, instead of information gain, other popular choices include Gini index,              
random attribute selection (e.g., PERT - Perfect Random Tree Ensembles). We decided to ask              
everyone to use an information gain based approach in this question (instead of leaving it               
open-ended), to help standardize students solutions to help accelerate our grading efforts. 
 
 
Deliverables 

1. hw4-data.csv: The dataset used to develop your program. Do not modify this file. 
2. [10 pts] util.py: The source code of your utility functions.  
3. [30 pts] decision_tree.py: The source code of your decision tree implementation. 
4. [10 pts] random_forest.py: The source code of your random forest implementation with            

appropriate comments. 
 

Q3 [30 points] Using Weka 
You will use Weka, a popular machine learning software, to train classifiers for the same dataset used 
in Q2, and to compare the performance of your random forest implementation with Weka’s. 
 
Download and install Weka. Note that Weka requires Java Runtime Environment (JRE) to run. We 
suggest that you install the latest JRE, to avoid Java or runtime-related issues. 
 
How to use Weka:  

● Load data into Weka Explorer : Weka supports file formats such as arff, csv, xls. 
● Preprocessing: you can view your data, select attributes, and apply filters. 
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● Classify: under Classify -> Classifier you can select the different classifiers that Weka offers. 
You can adjust the input parameters of many models by clicking on the text to the right of the 
Choose button in the Classifier section. 

A. Experiments (10 pts) 
Run the following experiments. After each experiment, report your parameters, running time, 
confusion matrix, and prediction accuracy. An example is provided below, under the 
“Deliverables” section. For the Test options, choose 10-fold cross validation. You need to 
preprocess the data before using classifiers (see the note below). 
 

1. [2 pts] Random Forest. Under Classify -> Classifier -> trees, select RandomForest. 
2. [2 pts] Logistic Regression. Under Classify -> Classifier, select Logistic. 
3. [2 pts] Multi-layer Perceptron. Under Classify -> Classifier, select MultilayerPerceptron. 
4. [2 pts] SVM. Under Classify -> Classifier, select SGD. Right-click the classifier, and click on 

“Show properties...” to set parameters. Choose Hinge loss as the loss function, so that you can 
use linear SVM with SGD optimization. 

5. [2 pts] Your choice -- choose any classifier you like from the numerous classifiers Weka 
provides. You can use package manager to install the ones you need. 

 
Note: You may not be able to create the confusion matrix initially (it may be grayed out). The reason is 
that all your features/columns are Numeric. Convert the last column (your label) to Nominal using 
filters to resolve this issue. 
 
B. Parameter Tuning and Discussions (20 pts) 

1. For each classifier you used above, try to modify at least one default parameter and see how 
the performance changes. Report your observations for each classifier, the parameter(s) 
that you modified and any difference(s) observed (e.g., running time, confusion matrix, 
and prediction accuracy). Briefly explain why your change of parameter can improve or 
worsen the prediction accuracy. Use no more than 50 words for each classifier. An example is 
provided below, under the “Deliverables” section. 

a. [2 pts] Random Forest parameter tuning and report. 
b. [2 pts] Logistic Regression parameter tuning and report. 
c. [2 pts] Multi-layer Perceptron parameter tuning and report. 
d. [2 pts] SVM parameter tuning and report. 
e. [2 pts] Your choice classifier parameter tuning and report. 

2. [5 pts] Compare the Random Forest result from A1 to your implementation in Q2 and discuss 
possible reasons for the difference in performance, using no more than 50 words. 

3. [5 pts] Among the 5 approaches you used in B.1, select the one that you think is the best 
performing, and justify your selection. Your justification may consider the approach’s running 
time, accuracy, confusion matrix, etc., or a combination of them. Use no more than 100 words. 

Deliverables 
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report.txt - A text file containing the Weka result and your discussion for all questions above. For 
example: 
 
Section A 
1. 

J48 -C 0.25 -M 2 
Time taken to build model: 3.73 seconds 
Overall accuracy: 86.0675 % 
Confusion Matrix: 
     a     b   <-- classified as 
 33273  2079 |     a = no 
  4401  6757 |     b = yes 

2. 
… 
 
Section B  
1a. 

I modified ___. 
Runtime increased by  ___. 
It was because ___. 
… 

 
1b. 

… 
 
2. 

The ___ of my implementation was ___, compared to weka’s ___. It was because ___. 
 
3. 

In terms of ___, the best performing approach was ___, because ___. 
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Submission Guidelines 
Submit the deliverables as a single zip file named hw4-LastName-FirstName.zip (should start with 
lowercase hw4). Write down the name(s) of any students you have collaborated with on this 
assignment, using the text box on the T-Square submission page. 
 
The zip file’s directory structure must exactly be (when unzipped): 
 
hw4-LastName-FirstName/ 

Q1/ 

warmup.py 

out_warmup.bin 

out_warmup_bytes.txt 

pagerank.py 

pagerank_nodes_10.txt 

pagerank_nodes_25.txt 

pagerank_nodes_50.txt 

 

Q2/ 
hw4-data.csv 
util.py 

decision_tree.py 

random_forest.py 
 

Q3/ 
report.txt 

 
You must follow the naming convention specified above. 
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