
http://poloclub.gatech.edu/cse6242 
CSE6242 / CX4242: Data & Visual Analytics 

Text Analytics (Text Mining)
Concepts, Algorithms, LSI/SVD

Duen Horng (Polo) Chau  
Assistant Professor 
Associate Director, MS Analytics 
Georgia Tech

Partly based on materials by  
Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Parishit Ram (GT PhD
alum; SkyTree), Alex Gray

http://poloclub.gatech.edu/cse6242

Text is everywhere
We use documents as primary information artifact in our lives

Our access to documents has grown tremendously thanks to the Internet

• WWW: webpages, Twitter, Facebook, Wikipedia, Blogs, ...

• Digital libraries: Google books, ACM, IEEE, ...

• Lyrics, closed caption... (youtube)

• Police case reports

• legislation (law)

• reviews (products, rotten tomatoes)

• medical reports (EHR - electronic health records)

• job descriptions
2

Big (Research) Questions
... in understanding and gathering information from text and
document collections

• establish authorship, authenticity; plagiarism detection

• classification of genres for narratives (e.g., books, articles)

• tone classification; sentiment analysis (online reviews,
twitter, social media)

• code: syntax analysis (e.g., find common bugs from
students’ answers)

3

Popular NLP libraries
• Stanford NLP

• OpenNLP

• NLTK (python)

4

tokenization, sentence segmentation,
part-of-speech tagging, named entity
extraction, chunking, parsing

Outline
• Preprocessing (e.g., stemming, remove stop

words)

• Document representation (most common: bag-of-
words model)

• Word importance (e.g., word count, TF-IDF)

• Latent Semantic Indexing (find “concepts” among
documents and words), which helps with retrieval

To learn more: Prof. Jacob Eisenstein’s  
CS 4650/7650 Natural Language Processing

5

Stemming
Reduce words to their stems (or base forms)

Words: compute, computing, computer, ...
Stem: comput

Several classes of algorithms to do this:

• Stripping suffixes, lookup-based, etc.

6

http://en.wikipedia.org/wiki/Stemming
Stop words: http://en.wikipedia.org/wiki/Stop_words

http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Stop_words

Bags-of-words model
Represent each document as a bag of words,
ignoring words’ ordering. Why? For simplicity.

• Unstructured text -> a vector of numbers
• e.g., docs: “I like visualization”, “I like data”.

• “I”: 1,
• “like”: 2,
• “data”: 3,
• “visualization”: 4

• “I like visualization” -> [1, 1, 0, 1]
• “I like data” -> [1, 1, 1, 0]

7

TF-IDF  
(a word’s importance score in a document, among N documents)

When to use it? Everywhere you use “word count”, you
may use TF-IDF.

TF: term frequency  
= #appearance a document 
 (high, if terms appear many times in this document)

IDF: inverse document frequency  
= log(N / #document containing that term) 
 (penalize “common” words appearing in almost any documents)

Final score = TF * IDF 
(higher score -> more important)

8Example: http://en.wikipedia.org/wiki/Tf–idf#Example_of_tf.E2.80.93idf

http://en.wikipedia.org/wiki/Tf%E2%80%93idf#Example_of_tf.E2.80.93idf

Vector Space Model
Each document -> vector

Each query -> vector

Search for documents -> find “similar” vectors

• Main idea:

document

...data...

aaron zoodata

V (= vocabulary size)

‘indexing’

Vector Space Model and Clustering

Outline - detailed

• main idea
• cluster search
• cluster generation
• evaluation

Cluster generation
• Problem:

– given N points in V dimensions,
–group them

Cluster generation
• Problem:

– given N points in V dimensions,
–group them

Cluster generation
We need
• Q1: document-to-document similarity
• Q2: document-to-cluster similarity

Cluster generation
Q1: document-to-document similarity
(recall: ‘bag of words’ representation)
• D1: {‘data’, ‘retrieval’, ‘system’}
• D2: {‘lung’, ‘pulmonary’, ‘system’}
• distance/similarity functions?

Cluster generation
A1: # of words in common
A2: normalized by the vocabulary sizes
A3: etc

About the same performance - prevailing one:
cosine similarity

cosine similarity:
similarity(D1, D2) = cos(θ) =

sum(v1,i * v2,i) / [len(v1) * len(v2)]

Cluster generation

θ

D1

D2

Cluster generation
cosine similarity - observations:
• related to the Euclidean distance
• weights vi,j : according to tf/idf

θ

D1

D2

Cluster generation
tf (‘term frequency’)

high, if the term appears very often in this document.

idf (‘inverse document frequency’)
penalizes ‘common’ words, that appear in almost every

document

Cluster generation
We need
• Q1: document-to-document similarity
• Q2: document-to-cluster similarity

?

Cluster generation
• A1: min distance (‘single-link’)
• A2: max distance (‘all-link’)
• A3: avg distance (gives same cluster ranking

as A4, but different values)
• A4: distance to centroid

?

Cluster generation
• A1: min distance (‘single-link’)

–leads to elongated clusters
• A2: max distance (‘all-link’)

–many, small, tight clusters
• A3: avg distance

–in between the above
• A4: distance to centroid

–fast to compute

Cluster generation
We have
• document-to-document similarity
• document-to-cluster similarity

Q: How to group documents into ‘natural’
clusters

Cluster generation

A: *many-many* algorithms - in two groups
[VanRijsbergen]:

• theoretically sound (O(N^2))
–independent of the insertion order

• iterative (O(N), O(N log(N))

Cluster generation - ‘sound’
methods

• Approach#1: dendrograms - create a hierarchy
(bottom up or top-down) - choose a cut-off
(how?) and cut

cat tiger horse cow
0.1
0.3

0.8

Cluster generation - ‘sound’
methods

• Approach#2: min. some statistical criterion
(eg., sum of squares from cluster centers)
–like ‘k-means’
–but how to decide ‘k’?

Cluster generation

one way to estimate # of clusters k: the ‘cover
coefficient’ [Can+] ~ SVD

LSI - Detailed outline
• LSI

–problem definition
–main idea
–experiments

Information Filtering + LSI
• [Foltz+,’92] Goal:

– users specify interests (= keywords)
–system alerts them, on suitable news-documents

• Major contribution:  
LSI = Latent Semantic Indexing
–latent (‘hidden’) concepts

Information Filtering + LSI
Main idea
• map each document into some ‘concepts’
• map each term into some ‘concepts’

‘Concept’:~ a set of terms, with weights,  
e.g. DBMS_concept: 
“data” (0.8),  
“system” (0.5),  
“retrieval” (0.6)

Information Filtering + LSI
Pictorially: term-document matrix (BEFORE)

Information Filtering + LSI
Pictorially: concept-document matrix and...

Information Filtering + LSI
... and concept-term matrix

Information Filtering + LSI
Q: How to search, e.g., for ‘system’?

Information Filtering + LSI
A: find the corresponding concept(s); and the

corresponding documents

Information Filtering + LSI
A: find the corresponding concept(s); and the

corresponding documents

Information Filtering + LSI
Thus it works like an (automatically

constructed) thesaurus.

We may retrieve documents that DON’T have
the term ‘system’, but they contain almost
everything else (‘data’, ‘retrieval’)

LSI - Discussion
• Great idea,

–to derive ‘concepts’ from documents
–to build a ‘statistical thesaurus’ automatically
–to reduce dimensionality (down to few “concepts”)

• How exactly SVD works? (Details, next)

Singular Value Decomposition (SVD)
Motivation

Problem #1
Text - LSI uses SVD find “concepts”

Problem #2
Compression / dimensionality reduction

SVD - Motivation
Problem #1: text - LSI: find “concepts”

SVD - Motivation
Customer-product, for recommendation system:

brea
d

let
tu

ce
be

ef

vegetarians

meat eaters

tom
ato

s
ch

ick
en

SVD - Motivation
Problem #2:  
Compress / reduce dimensionality

Problem - Specification
~10^6 rows; ~10^3 columns; no updates
Random access to any cell(s) 
Small error: OK

SVD - Motivation

SVD - Motivation

SVD - Definition
(reminder: matrix multiplication)

x

3 x 2 2 x 1

=

SVD - Definition
(reminder: matrix multiplication)

x

3 x 2 2 x 1

=

3 x 1

SVD - Definition
(reminder: matrix multiplication)

x

3 x 2 2 x 1

=

3 x 1

SVD - Definition
(reminder: matrix multiplication)

x

3 x 2 2 x 1

=

3 x 1

SVD - Definition
(reminder: matrix multiplication)

x =

SVD Definition (in picture)
A[n x m] = U[n x r] Λ [r x r] (V[m x r])T

= x xn

m r

r
rn

m
r

n documents 
m terms

n documents 
r concepts

Diagonal matrix  
Diagonal entries: 
concept strengths

m terms 
r concepts

SVD Definition (in words)
A[n x m] = U[n x r] Λ [r x r] (V[m x r])T

A: n x m matrix  
 e.g., n documents, m terms
U: n x r matrix  
 e.g., n documents, r concepts
Λ: r x r diagonal matrix  
 r : rank of the matrix; strength of each ‘concept’
V: m x r matrix
 e.g., m terms, r concepts

SVD - Properties
THEOREM [Press+92]:  

always possible to decompose matrix A into  
A = U Λ VT

U, Λ, V: unique, most of the time
U, V: column orthonormal
 i.e., columns are unit vectors, and orthogonal to each other

UT U = I
VT V = I

 Λ: diagonal matrix with non-negative diagonal entires,
sorted in decreasing order

(I: identity matrix)

SVD - Example
A = U Λ VT - example:

data
inf.

retrieval
brain lung

=
CS

MD

x x

SVD - Example
• A = U Λ VT - example:

data
inf.

retrieval
brain lung

=
CS

MD

x x

CS-concept
MD-concept

SVD - Example
• A = U Λ VT - example:

data
inf.

retrieval
brain lung

=
CS

MD

x x

CS-concept
MD-concept

document-to-concept
similarity matrix

SVD - Example
• A = U Λ VT - example:

data
inf.

retrieval
brain lung

=
CS

MD

x x

‘strength’ of CS-concept

SVD - Example
• A = U Λ VT - example:

data
inf.

retrieval
brain lung

=
CS

MD

x x

term-to-concept
similarity matrix

CS-concept

SVD - Example
• A = U Λ VT - example:

data
inf.

retrieval
brain lung

=
CS

MD

x x

term-to-concept
similarity matrix

CS-concept

SVD - Interpretation #1
‘documents’, ‘terms’ and ‘concepts’:

U: document-to-concept similarity matrix
V: term-to-concept similarity matrix
Λ: diagonal elements: concept “strengths”

SVD - Interpretation #1
‘documents’, ‘terms’ and ‘concepts’:
Q: if A is the document-to-term matrix,  

what is the similarity matrix AT A ?
A:

Q: A AT ?
A:

SVD - Interpretation #1
‘documents’, ‘terms’ and ‘concepts’:
Q: if A is the document-to-term matrix,  

what is the similarity matrix AT A ?
A: term-to-term ([m x m]) similarity matrix

Q: A AT ?
A: document-to-document ([n x n]) similarity

matrix

• V are the eigenvectors of the covariance matrix ATA

• U are the eigenvectors of the Gram (inner-product)
matrix AAT

SVD properties

Thus, SVD is closely related to PCA, and can be numerically more stable.  
For more info, see:
http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca
Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002.
Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.

http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca

SVD - Interpretation #2
Best axis to project on

 (‘best’ = min sum of squares of projection errors) 

min RMS errorv1

First
Singular
Vector

Beautiful visualization explaining PCA:  
http://setosa.io/ev/principal-component-analysis/

SVD - Interpretation #2

• A = U Λ VT - example:

= x x

variance (‘spread’) on the v1 axis

v1

SVD - Interpretation #2

• A = U Λ VT - example:
–U Λ gives the coordinates of the points in the

projection axis

= x x

SVD - Interpretation #2
• More details
• Q: how exactly is dim. reduction done?

= x x

SVD - Interpretation #2
• More details
• Q: how exactly is dim. reduction done?
• A: set the smallest singular values to zero:

= x x

SVD - Interpretation #2

~ x x

SVD - Interpretation #2

~ x x

SVD - Interpretation #2

~ x x

SVD - Interpretation #2

~

SVD - Interpretation #2
Exactly equivalent:
“spectral decomposition” of the matrix:

= x x

SVD - Interpretation #2
Exactly equivalent:
‘spectral decomposition’ of the matrix:

= x xu1 u2

λ1

λ2

v1

v2

15-826 Copyright: C. Faloutsos (2012) 48

SVD - Interpretation #2
Exactly equivalent:
‘spectral decomposition’ of the matrix:

= u1λ1 vT
1 u2λ2 vT

2+ +...n

m

15-826 Copyright: C. Faloutsos (2012) 49

SVD - Interpretation #2
Exactly equivalent:
‘spectral decomposition’ of the matrix:

= u1λ1 vT
1 u2λ2 vT

2+ +...n

m

n x 1 1 x m

r terms

15-826 Copyright: C. Faloutsos (2012) 50

SVD - Interpretation #2
approximation / dim. reduction:
by keeping the first few terms (Q: how

many?)

= u1λ1 vT
1 u2λ2 vT

2+ +...n

m

assume: λ1 >= λ2 >= ...

15-826 Copyright: C. Faloutsos (2012) 51

SVD - Interpretation #2
A (heuristic - [Fukunaga]): keep 80-90% of

‘energy’ (= sum of squares of λi ’s)

= u1λ1 vT
1 u2λ2 vT

2+ +...n

m

assume: λ1 >= λ2 >= ...

15-826 Copyright: C. Faloutsos (2012) 52

Pictorially: matrix form of SVD

–Best rank-k approximation in L2

Am

n

Σ
m

n

U

VT≈

15-826 Copyright: C. Faloutsos (2012) 53

Pictorially: Spectral form of SVD

–Best rank-k approximation in L2

Am

n

≈ +

σ1u1°v1 σ2u2°v2

SVD - Interpretation #3
• finds non-zero ‘blobs’ in a data matrix

= x x

SVD - Interpretation #3
• finds non-zero ‘blobs’ in a data matrix

= x x

SVD - Interpretation #3
• finds non-zero ‘blobs’ in a data matrix =
• ‘communities’ (bi-partite cores, here)

Row 1

Row 4

Col 1

Col 3

Col 4Row 5

Row 7

SVD algorithm

• Numerical Recipes in C (free)

SVD - Interpretation #3
• Drill: find the SVD, ‘by inspection’!
• Q: rank = ??

= x x?? ??

??

SVD - Interpretation #3
• A: rank = 2 (2 linearly independent rows/

cols)

= x x??

??
??

??

SVD - Interpretation #3
• A: rank = 2 (2 linearly independent rows/

cols)

= x x

orthogonal??

SVD - Interpretation #3
• column vectors: are orthogonal - but not

unit vectors:

= x x

1/sqrt(3) 0
1/sqrt(3) 0
1/sqrt(3) 0

0 1/sqrt(2)
0 1/sqrt(2)

SVD - Interpretation #3
• and the singular values are:

= x x

1/sqrt(3) 0
1/sqrt(3) 0
1/sqrt(3) 0

0 1/sqrt(2)
0 1/sqrt(2)

SVD - Interpretation #3
• Q: How to check we are correct?

= x x

1/sqrt(3) 0
1/sqrt(3) 0
1/sqrt(3) 0

0 1/sqrt(2)
0 1/sqrt(2)

SVD - Interpretation #3
• A: SVD properties:

–matrix product should give back matrix A
–matrix U should be column-orthonormal, i.e.,

columns should be unit vectors, orthogonal to
each other

–ditto for matrix V
–matrix Λ should be diagonal, with non-negative

values

SVD - Complexity
O(n*m*m) or O(n*n*m) (whichever is less)

Faster version, if just want singular values
 or if we want first k singular vectors
 or if the matrix is sparse [Berry]

No need to write your own! 
Available in most linear algebra packages
(LINPACK, matlab, Splus/R,
mathematica ...)

References
• Berry, Michael: http://www.cs.utk.edu/~lsi/
• Fukunaga, K. (1990). Introduction to Statistical

Pattern Recognition, Academic Press.
• Press, W. H., S. A. Teukolsky, et al. (1992).

Numerical Recipes in C, Cambridge University
Press.

Case study - LSI
Q1: How to do queries with LSI?
Q2: multi-lingual IR (english query, on

spanish text?)

Case study - LSI
Q1: How to do queries with LSI?
Problem: Eg., find documents with ‘data’

data
inf.

retrieval
brain lung

=
CS

MD

x x

Case study - LSI
Q1: How to do queries with LSI?
A: map query vectors into ‘concept space’ – how?

data
inf.

retrieval
brain lung

=
CS

MD

x x

Case study - LSI
Q1: How to do queries with LSI?
A: map query vectors into ‘concept space’ – how?

data
inf.

retrieval
brain lung

q=

term1

term2

v1

q

v2

Case study - LSI
Q1: How to do queries with LSI?
A: map query vectors into ‘concept space’ – how?

data
inf.

retrieval
brain lung

q=

term1

term2

v1

q

v2

A: inner product
(cosine similarity)
with each ‘concept’ vector vi

Case study - LSI
Q1: How to do queries with LSI?
A: map query vectors into ‘concept space’ – how?

data
inf.

retrieval
brain lung

q=

term1

term2

v1

q

v2

A: inner product
(cosine similarity)
with each ‘concept’ vector vi

q o v1

Case study - LSI
compactly, we have:
 q V= qconcept

Eg:
datainf.

retrieval
brain lung

q=

term-to-concept
 similarities

=

CS-concept

Case study - LSI
Drill: how would the document (‘information’,

‘retrieval’) be handled by LSI?

Case study - LSI
Drill: how would the document (‘information’,

‘retrieval’) be handled by LSI? A: SAME:
dconcept = d V
Eg: datainf.

retrieval
brain lung

d=

term-to-concept
 similarities

=

CS-concept

Case study - LSI
Observation: document (‘information’,

‘retrieval’) will be retrieved by query (‘data’),
although it does not contain ‘data’!!

datainf.
retrieval

brain lung

d=

CS-concept

q=

Case study - LSI
Q1: How to do queries with LSI?
Q2: multi-lingual IR (english query, on

spanish text?)

Case study - LSI
• Problem:

–given many documents, translated to both
languages (eg., English and Spanish)

–answer queries across languages

Case study - LSI
• Solution: ~ LSI

data
inf.

retrieval
brain lung

CS

MD

datos
informacion

Switch Gear to  
Text Visualization

107

Word/Tag Cloud (still popular?)

http://www.wordle.net
108

http://www.wordle.net

Word Counts (words as bubbles)

http://www.infocaptor.com/bubble-my-page
109

http://www.infocaptor.com/bubble-my-page

Word Tree

http://www.jasondavies.com/wordtree/
110

http://www.jasondavies.com/wordtree/

Phrase Net

http://www-958.ibm.com/software/data/cognos/manyeyes/page/Phrase_Net.html 111

Visualize pairs of words satisfying a pattern  
(“X [space] Y”)

http://www-958.ibm.com/software/data/cognos/manyeyes/page/Phrase_Net.html

Termite: Topic Model VisualizationAnaly

http://vis.stanford.edu/papers/termite

Termite: Topic Model VisualizationAnaly

http://vis.stanford.edu/papers/termite

Using “Seriation”

