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What	is	Spark			?
Not	a	modified	version	of	Hadoop	

Separate,	fast,	MapReduce-like	engine	
» In-memory	data	storage	for	very	fast	iterative	queries	
»General	execution	graphs	and	powerful	optimizations	
»Up	to	40x	faster	than	Hadoop	

Compatible	with	Hadoop’s	storage	APIs	
»Can	read/write	to	any	Hadoop-supported	system,	
including	HDFS,	HBase,	SequenceFiles,	etc

http://spark.apache.org
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What	is	Spark	SQL?	  
(Formally	called	Shark)

Port	of	Apache	Hive	to	run	on	Spark	

Compatible	with	existing	Hive	data,	metastores,	
and	queries	(HiveQL,	UDFs,	etc)	

Similar	speedups	of	up	to	40x
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Project	History	[latest:	v1.1]
Spark	project	started	in	2009	at	UC	Berkeley	AMP	lab,	 
open	sourced	2010	

Became	Apache	Top-Level	Project	in	Feb	2014	

Shark/Spark	SQL	started	summer	2011	

Built	by	250+	developers	and	people	from	50	companies	

Scale	to	1000+	nodes	in	production	

In	use	at	Berkeley,	Princeton,	Klout,	Foursquare,	Conviva,	
Quantifind,	Yahoo!	Research,	…

UC	BERKELEY

http://en.wikipedia.org/wiki/Apache_Spark 4



Why	a	New	Programming	Model?

MapReduce	greatly	simplified	big	data	analysis

But	as	soon	as	it	got	popular,	users	wanted	more:
»More	complex,	multi-stage	applications	(e.g. 
iterative	graph	algorithms	and	machine	learning)
»More	interactive	ad-hoc	queries
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Why	a	New	Programming	Model?

MapReduce	greatly	simplified	big	data	analysis

But	as	soon	as	it	got	popular,	users	wanted	more:
»More	complex,	multi-stage	applications	(e.g. 
iterative	graph	algorithms	and	machine	learning)
»More	interactive	ad-hoc	queries

Require	faster	data	sharing	across	parallel	jobs

5



Is	MapReduce	dead?
Up for debate… as of 10/7/2014

http://www.reddit.com/r/compsci/comments/296aqr/on_the_death_of_mapreduce_at_google/ 

http://www.datacenterknowledge.com/archives/
2014/06/25/google-dumps-mapreduce-favor-new-
hyper-scale-analytics-system/ 
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Spark	Programming	Model

Key	idea:	resilient	distributed	datasets	(RDDs)	
»Distributed	collections	of	objects	that	can	be	cached	in	
memory	across	cluster	nodes	
»Manipulated	through	various	parallel	operators	
»Automatically	rebuilt	on	failure	

Interface	
»Clean	language-integrated	API	in	Scala	
»Can	be	used	interactively	from	Scala,	Python	console	
»Supported	languages:	Java,	Scala,	Python,	R
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http://www.scala-lang.org/old/faq/4                 

Functional programming in D3: http://sleptons.blogspot.com/2015/01/functional-programming-d3js-good-example.html 

Scala vs Java 8: http://kukuruku.co/hub/scala/java-8-vs-scala-the-difference-in-approaches-and-mutual-innovations 
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Example:	Log	Mining
Load	error	messages	from	a	log	into	memory,	then	
interactively	search	for	various	patterns
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Result:	full-text	search	of	Wikipedia	
in	<1	sec	(vs	20	sec	for	on-disk	data)
Result:	scaled	to	1	TB	data	in	5-7	sec  

(vs	170	sec	for	on-disk	data)
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Fault	Tolerance
RDDs	track	the	series	of	transformations	used	to	
build	them	(their	lineage)	to	recompute	lost	data	

E.g: messages = textFile(...).filter(_.contains(“error”)) 
                        .map(_.split(‘\t’)(2)) 
                        

HadoopRDD	
path	=	hdfs://…

FilteredRDD	
func	=	_.contains(...)

MappedRDD	
func	=	_.split(…)
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Example:	Logistic	Regression
val data = spark.textFile(...).map(readPoint).cache() 

var w = Vector.random(D) 

for (i <- 1 to ITERATIONS) { 
  val gradient = data.map(p => 
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x 
  ).reduce(_ + _) 
  w -= gradient 
} 

println("Final w: " + w)
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Example:	Logistic	Regression
val data = spark.textFile(...).map(readPoint).cache() 

var w = Vector.random(D) 

for (i <- 1 to ITERATIONS) { 
  val gradient = data.map(p => 
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x 
  ).reduce(_ + _) 
  w -= gradient 
} 

println("Final w: " + w)

Load	data	in	memory	once
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Example:	Logistic	Regression
val data = spark.textFile(...).map(readPoint).cache() 

var w = Vector.random(D) 

for (i <- 1 to ITERATIONS) { 
  val gradient = data.map(p => 
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x 
  ).reduce(_ + _) 
  w -= gradient 
} 

println("Final w: " + w)

Initial	parameter	vector
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Example:	Logistic	Regression
val data = spark.textFile(...).map(readPoint).cache() 

var w = Vector.random(D) 

for (i <- 1 to ITERATIONS) { 
  val gradient = data.map(p => 
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x 
  ).reduce(_ + _) 
  w -= gradient 
} 

println("Final w: " + w)

Repeated	MapReduce	steps  
to	do	gradient	descent
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Logistic	Regression	Performance

R
un

ni
ng

	T
im

e	
(s
)

0

1000

2000

3000

4000

Number	of	Iterations

1 5 10 20 30

Hadoop
Spark

127	s	/	iteration

first	iteration	174	s 
further	iterations	6	s

14



Supported	Operators
map 

filter 

groupBy 

sort 

join 

leftOuterJoin 

rightOuterJoin

reduce	
count	
reduceByKey 

groupByKey 

first	
union	
cross

sample	
cogroup 

take 

partitionBy 

pipe	
save	
...
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Spark	Users
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Spark	SQL:	Hive	on	Spark
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Motivation
Hive	is	great,	but	Hadoop’s	execution	engine	
makes	even	the	smallest	queries	take	minutes	

Scala	is	good	for	programmers,	but	many	data	
users	only	know	SQL	

Can	we	extend	Hive	to	run	on	Spark?
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Hive	Architecture

Meta	
store

HDFS

		Client

Driver

SQL	
Parser

Query	
Optimizer

Physical	Plan

Execution

CLI JDBC

MapReduce

19



Spark	SQL	Architecture
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[Engle	et	al,	SIGMOD	2012]20



Efficient	In-Memory	Storage

Simply	caching	Hive	records	as	Java	objects	is	
inefficient	due	to	high	per-object	overhead	

Instead,	Spark	SQL	employs	column-oriented	
storage	using	arrays	of	primitive	types

1

Column	Storage

2 3

john mike sally

4.1 3.5 6.4

Row	Storage

1 john 4.1

2 mike 3.5

3 sally 6.4
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Efficient	In-Memory	Storage

Simply	caching	Hive	records	as	Java	objects	is	
inefficient	due	to	high	per-object	overhead	

Instead,	Spark	SQL	employs	column-oriented	
storage	using	arrays	of	primitive	types

1

Column	Storage

2 3

john mike sally

4.1 3.5 6.4

Row	Storage

1 john 4.1

2 mike 3.5

3 sally 6.4

Benefit:	similarly	compact	size	to	serialized	data, 
but	>5x	faster	to	access
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Using	Spark	SQL
CREATE TABLE mydata_cached AS SELECT … 

Run	standard	HiveQL	on	it,	including	UDFs	
»A	few	esoteric	features	are	not	yet	supported	

Can	also	call	from	Scala	to	mix	with	Spark
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Benchmark	Query	1
SELECT * FROM grep WHERE field LIKE ‘%XYZ%’;
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Benchmark	Query	2
SELECT sourceIP, AVG(pageRank), SUM(adRevenue) AS earnings  
FROM rankings AS R, userVisits AS V ON R.pageURL = V.destURL  
WHERE V.visitDate BETWEEN ‘1999-01-01’ AND ‘2000-01-01’  
GROUP BY V.sourceIP  
ORDER BY earnings DESC 
LIMIT 1;
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What’s	Next?
Recall	that	Spark’s	model	was	motivated	by	two	
emerging	uses	(interactive	and	multi-stage	apps)	

Another	emerging	use	case	that	needs	fast	data	
sharing	is	stream	processing	
»Track	and	update	state	in	memory	as	events	arrive	
» Large-scale	reporting,	click	analysis,	spam	filtering,	etc
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Streaming	Spark
Extends	Spark	to	perform	streaming	computations	

Runs	as	a	series	of	small	(~1	s)	batch	jobs,	keeping	
state	in	memory	as	fault-tolerant	RDDs	

Intermix	seamlessly	with	batch	and	ad-hoc	queries

tweetStream 
 .flatMap(_.toLower.split)	
 .map(word => (word, 1)) 
 .reduceByWindow(“5s”, _ + _)

T=1

T=2

…

map reduceByWindow

[Zaharia	et	al,	HotCloud	2012] 27



Streaming	Spark
Extends	Spark	to	perform	streaming	computations	

Runs	as	a	series	of	small	(~1	s)	batch	jobs,	keeping	
state	in	memory	as	fault-tolerant	RDDs	

Intermix	seamlessly	with	batch	and	ad-hoc	queries

tweetStream 
 .flatMap(_.toLower.split)	
 .map(word => (word, 1)) 
 .reduceByWindow(5, _ + _)

T=1

T=2

…

map reduceByWindow

[Zaharia	et	al,	HotCloud	2012]

Result:	can	process	42	million	records/second 
(4	GB/s)	on	100	nodes	at	sub-second	latency
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Spark	Streaming
Create	and	operate	on	RDDs	from	live	data	streams	at	set	intervals	

Data	is	divided	into	batches	for	processing	

Streams	may	be	combined	as	a	part	of	processing	or	analyzed	with	higher	level	transforms
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Behavior	with	Not	Enough	RAM
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SPARK	PLATFORM

32
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MLlib
Scalable	machine	learning	library	

Interoperates	with	NumPy	

Available	algorithms	in	1.0	
» Linear	Support	Vector	Machine	(SVM)	
» Logistic	Regression	
» Linear	Least	Squares	
» Decision	Trees	
» Naïve	Bayes	
» Collaborative	Filtering	with	ALS	
» K-means	
» Singular	Value	Decomposition	
» Principal	Component	Analysis	
» Gradient	Descent
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GraphX
Parallel	graph	processing	

Extends	RDD	->	Resilient	Distributed	Property	Graph	
» Directed	multigraph	with	properties	attached	to	each	vertex	and	
edge	

Limited	algorithms	
» PageRank	
» Connected	Components	
» Triangle	Counts	

Alpha	component
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Commercial	Support
Databricks	
»Not	to	be	confused	with	DataStax	
» Found	by	members	of	the	AMPLab	
»Offering	

• Certification	
• Training	
• Support	
• DataBricks	Cloud
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