CSE6242 /| CX4242: Data and Visual Analytics | Georgia Tech | Spring 2016

Homework 3 : Hadoop, Spark, Pig and Pandas
Due: Friday, April 1, 2016, 11:55 PM EST

Prepared by Gopi Krishnan Nambiar, Nilaksh Das, Pradeep Vairamani, Ajitesh Jain, Vishakha Singh, Polo Chau

Submission Instructions:

It is important that you read the following instructions carefully and also those about the deliverables

at the end of each question or you may lose points.

O Submit a single zipped file, called “HW3-{YOUR_LAST_NAME}-{YOUR_FIRST_NAME}.zip”
containing all the deliverables including source code/scripts, data files, and readme. Example:
‘HW3-Doe-John.zip’ if your name is John Doe. Only .zip is allowed (no .rar, etc.)

d You may collaborate with other students on this assignment, but you must write your own code
and give the explanations in your own words, and also mention the collaborators’ names on
T-Square’s submission page. All GT students must observe the honor code. Suspected
plagiarism and academic misconduct will be reported and directly handled by the Office of
Student Integrity (OSI). Here are some examples similar to Prof. Jacob Eisenstein’s NLP course
page (grading policy):

[OK: discuss concepts (e.g., how cross-validation works) and strategies (e.g., use hashmap

instead of array)
[Not OK: several students work on one master copy together (e.g., by dividing it up), sharing
solutions, or using solution from previous years or from the web.

O If you use any “slip days”, you must write down the number of days used in the T-square
submission page. For example, “Slip days used: 1”. Each slip day equals 24 hours. E.g., if a
submission is late for 30 hours, that counts as 2 slip days.

[At the end of this assignment, we have specified a folder structure of how to organize your files in
a single zipped file. 5 points will be deducted for not following this strictly.

O Wherever you are asked to write down an explanation for the task you perform, stay within the
word limit or you may lose points.

O In your final zip file, do not include any intermediate files you may have generated to work on the
task, unless your script is absolutely dependent on it to get the final result (which it ideally should
not be).

d After all slip days are used up, 5% deduction for every 24 hours of delay. (e.g., 5 points for a
100-point homework)

O We will not consider late submission of any missing parts of an homework assignment or project
deliverable. To make sure you have submitted everything, download your submitted files to
double check.

http://www.honor.gatech.edu/content/2/the-honor-code
http://osi.gatech.edu/
http://osi.gatech.edu/
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/Grading.md
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/Grading.md

Applying for AWS Educate Account (do this now!) & SET UP ALERTS

It is EXTREMELY IMPORTANT that you apply for an “AWS Educate” account RIGHT AWAY to get
$100 free credits, and verify that the credit has been properly applied on your account, so that you can
work on Task 3. Creating the account can take days and HW3’s computation can take hours to run, so
if you do not do this now, you may jeopardize your HW3 progress.

Go to https://aws.amazon.com/education/awseducate/
Click the Apply Now button on the right
Click the Apply for AWS Educate for Students button
Choose student, and click Next
Fill out the application
o If you do not have an AWS account ID, you will need to sign up to get one, as the form
suggests.
o To find your AWS account ID, log into the console and then going to this link
https://console.aws.amazon.com/billing/home?#/account
o Your AWS Account ID is right at the top of this screen

Also it is EXTREMELY IMPORTANT that you set up a billing alarm on AWS to notify you when your
credits are running low. Here’s how:
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/free-tier-alarms.html

Shut down EVERYTHING when you're done with the instances (don’t leave them on over spring
break!), or you may get surprising credit card bills. Highest record from previous classes went above
$2000! The good news is you can call AWS to explain the situation and they should be able to waive
the charges.

https://aws.amazon.com/education/awseducate/
https://console.aws.amazon.com/billing/home?#/account
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/free-tier-alarms.html

Setting up Development Environment for Task 1 and Task 2

Installing CDH

Download a preconfigured virtual machine (VM) image from Cloudera (CDH).
Please use 5.3.x version of CDH or higher.

You can choose any VM platform, but we recommend VirtualBox; it is free.
Instructions to setup and configure the VM can be found here.

Read these important tips to improve the VM’s speed and reduce memory consumption.

Once you launch the VM, you will have a GUI environment with cloudera user, which has
administrator (sudo) privilege. The account details are:

username: cloudera
password: cloudera

The virtual image comes pre-installed Hadoop and Spark. You will use them for this HW.

Tip: You may want to setup port forwarding to obtain SSH access of guest operating system.

Loading Data into HDFS

Now, let’s load our dataset into the HDFS (Hadoop Distributed File System), which is an abstract file
system that stores files on clusters. Your Hadoop or Spark code will directly access files on HDFS.
Paths on the HDFS look similar to those on the UNIX system, but you can’t explore them directly
using standard UNIX commands. Instead, you need to use hadoop fs commands. For example

hadoop fs -1ls /

Download the following two graph files: graph1.tsv' (~5MB) and graph2.tsv? (~873MB). Use the
following commands to setup a directory on the HDFS to store the two graph datasets. Please do not
change the directory structure below (/user/cse6242/) since we will grade your homework using
the scripts which assume the following directory structure.

sudo su hdfs

hadoop fs -mkdir /user/cse6242/

hadoop fs -chown cloudera /user/cse6242/
exit

su cloudera

' This graph is originally from the Enron email network data set. There are 321 thousand edges and 77 thousand
nodes.
2 This graph is from the Portuguese Wikipedia link data set. There are 53 million edges and 1 million nodes.

http://www.cloudera.com/content/www/en-us/downloads/quickstart_vms/5-4.html
https://www.virtualbox.org/
http://poloclub.gatech.edu/cse6242/2016spring/hw3/VMSetup.pdf
http://poloclub.gatech.edu/cse6242/2016spring/hw3/TipsToImproveVMPerformance.pdf
http://poloclub.gatech.edu/cse6242/2016spring/hw3/graph1.tsv
http://poloclub.gatech.edu/cse6242/2016spring/hw3/graph2.tsv

hadoop fs -put graphl.tsv /user/cse6242/graphl.tsv

hadoop fs -put graph2.tsv /user/cse6242/graph2.tsv

Now both files - graph1.tsv and graph2.tsv are on the HDFS at /user/cse6242/graph1.tsv and
/user/cse6242/graph2.tsv

Setting up Development Environments

We found that compiling and running Hadoop/Scala code can be quite complicated. So, we have
prepared some skeleton code, compilation scripts, and execution scripts for you that you can
download here. You should use this package to submit your homework.

This packaged zip file has preset directory structures. As you will zip all the necessary files with the
same directory structure in the end, you may not want to modify the structure. (See the end of this
document for details.) In the directories of both Task7 and Task2, you will find pom.xml, run1.sh,
run2.sh and the src directory.

Here’s

the src directory contains a main Java/Scala file that you will primarily work on. We have
provided some code to help you get started. Feel free to edit it and add your files in the
directory, but the main class should be Task1 and Task2 accordingly. Your code will be
evaluated using the provided runi.sh and run2.sh file (details below).

pom.xml contains the necessary dependencies and compile configurations for each task.
To compile, you can simply call Maven in the corresponding directory (Task1 or Task2
where pom.xml exists) by this command:

mvn package

It will generate a single JAR file in the target directory (i.e. target/task2-1.0.jar). Again, we
have provided you some necessary configurations to simplify your work for this homework,
but you can edit them as long as our run script works and the code can be compiled using
mvn package command.

runi.sh, run2.sh are the script files that run your code over graphi.tsv (runi.sh) or
graph2.tsv (run2.sh) and download the output to a local directory. The output files are
named based on its task number and graph number (e.g. task1outputi.tsv). You can use
these run scripts to test your code. Note that these scripts will be used in grading.

what the above scripts do (you can open them in a text editor to see what is going on):

Run your JAR on Hadoop/Scala specifying the input file on HDFS (the first argument) and
output directory on HDFS (the second argument)

Merge outputs from output directory and download to local file system.

Remove the output directory on HDFS.

http://poloclub.gatech.edu/cse6242/2016spring/hw3/hw3-skeleton.zip

[25pts] Task 1: Analyzing a Large Graph with Hadoop/Java

a) [15 pts] Writing your first simple Hadoop program

Please first go over the Hadoop word count tutorial to get familiar with Hadoop and some Java basics.
You will be able to complete this task with only some knowledge about Java®.

Goal

Your task is to write a MapReduce program in Java to calculate the maximum of the weights of all
outgoing edges for each node in the graph.

You should have already loaded two graph files into HDFS. Each file stores a list of edges as
tab-separated-values. Each line represents a single edge consisting of three columns: (source node
ID, target node ID, edge weight), each of which is separated by a tab (\t). Node IDs are positive
integers, and weights are also positive integers. Edges are ordered randomly.

src tgt weight
51 117 1
51 194 1
51 299 3
151 230 51
151 194 79
130 51 10

Your code should accept two arguments upon running. The first argument (args[0]) will be a path for
the input graph file on HDFS, and the second argument (args[1]) will be a path for output directory.
The default output mechanism of Hadoop will create multiple files on the output directory such as
part-00000, part-00001, which will be merged and downloaded to a local directory by the supplied run
script. Please use the run scripts for your convenience.

The format of the output should be as follows. Each line represents a node ID and the maximum of
the weights of its outgoing edges’ weights. The ID and the maximum weight must be separated by a
tab (\). Lines do not need be sorted. The following example result is computed based on the toy
graph above. Please exclude nodes that do not have outgoing edges.

51 3
151 79
130 10

% Some of you may ask “Why should | learn Java?” A main reason is that most (fast) production code is written in
C++ or Java. For enterprise software, Java is extremely common used.

https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0

Test your program on graph1.tsv and graph2.tsv. Explain your MapReduce procedure(s). Using the
above example, trace the input and output of your map and reduce functions, i.e., given the above
graph as the input, describe and explain the input and output of your map and reduce function(s).
Write down your answers in description.pdf. You are welcome to explain your answers using a
combination of text and images.

b) [10 pts] Designing a MapReduce algorithm (and thinking in MapReduce)

Design a MapReduce algorithm that accomplishes the following task: for each node i in a directed
graph G, find that node’s out neighbors’ out neighbors. Node v is an out neighbor of node u if there
is a directed edge pointing from node u to node v. In other words, your task is find every “2-hop-away”
neighbor of every node i in the graph G; such a neighbor is connected by at least one directed path of
length 2 that originates from node i.

NOTE: You only need to submit pseudo code, a brief explanation of your algorithm and trace of input
and output of your map and reduce functions for the graph given below. No coding is required.

Consider the following toy graph:
O

Input of your algorithm:

src tgt
4 3
1 2
2 3
4 2
2 1
3 2

Output of your algorithm should be:
4 1

3
2
1
3

DSw o

Here, the output pair (u, v) indicates v is an out neighbor of an out neighbor of u. Also u and v are

6

distinct nodes, i.e., your output should not contain pairs such as (1,1), (2,2) and (3,3). However, your
output can contain duplicate pairs. For example, pair (1, 3) may occur more than once in your
algorithm’s output.

Here we explain the example results further:

Output Path Detailed description

4 1 4->2->1 1 is an out neighbor of 2; 2 is an out neighbor of 4
1 3 1->2->3 3 is an out neighbor of 2; 2 is an out neighbor of 1
4 2 4->3->2

3 1 3->2->1

4 3 4->2->3

Explain your algorithm; using the above toy graph, trace the input and output of your map and
reduce functions, i.e., given the above graph as the input, describe and explain the input and output of
your map and reduce function(s). Write down your answers in description.pdf. You are welcome to
explain your answers using a combination of text and images.

Deliverables
1. [5 pts] Your Maven project directory including Task1.java. Please see detailed submission
guide at the end of this document. You should implement your own MapReduce procedure
and should not import external graph processing library.

2. [2 pts] task1outputi.tsv: the output file of processing graph1 by run1.sh.
3. [3 pts] task1output2.tsv: the output file of processing graph2 by run2.sh.

4. [15 pts] description.pdf: Answer for parts a and b. Your answers should be written in 12pt
font with at least 1” margin on all sides. Your pdf must not exceed 2 pages.

[25pts] Task 2: Analyzing a Large Graph with Spark/Scala

Please go over this Spark word count tutorial to get more background about Spark/Scala.

Goal

Your task is to cascade the edge weights in graph1.tsv and graph2.tsv to node weights, and finally
determine the accumulated node weights using Spark, in Scala. Assume that 80% of the edge weight
comes from the source node and 20% from the target node. When loading the edges, parse the edge
weights using the folnt method and before cascading, filter out (ignore) all edges whose edge weights
equal 1. That is, only consider edges whose edge weights do not equal 1.

http://blog.cloudera.com/blog/2014/04/how-to-run-a-simple-apache-spark-app-in-cdh-5/

Consider the following example:

Input:

src tgt weight

1 2 40

2 3 100

1 3 60

3 4 1

Output:

1 80.0 =0.8"40 + 0.8*60
2 88.0 =0.2*40 + 0.8*100
3 32.0 =0.2*100 + 0.2*60

Notice here that the edge from 3 to 4 is ignored since its weight is 1.

Your Scala program should handle the same two arguments as in Task 1 for input and output from the
console, and should generate the same formatted output file on the supplied output directory
(tab-separated-file). Please note that the default Spark saveastextfile method uses saving format that
is a different from Hadoop’s, so you need to format the result before saving to file (Tip: use map and
mkString). The result doesn’t need to be sorted.

Based on your approach, you may find some of the following functions helpful:
map, reduce, reduceByKey, union, cogroup, filter, join, flatMap, groupByKey, intersection

You can refer to the full list of RDD “21=RBD? fnctions here.
Deliverables
1. [10 pts] Your Maven project directory including Task2.scala. Please see the detailed
submission guide at the end of this document. You may not use any external graph
processing libraries.
2. [2 pts] task2outputi.tsv: the output file of processing graph1 by run1.sh.

3. [3 pts] task2output2.tsv: the output file of processing graph2 by run2.sh.

4. [10 pts] description.txt: describe your approach and refer to line numbers in your code to
explain how you’re performing each step in not more than 150 words.

https://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaRDD
https://wordcounter.net/

[35pts] Task 3: Analyzing Large Amount of Data with Pig on AWS

You will try out PIG (http://pig.apache.org) for processing n-gram data on Amazon Web Services
(AWS). This is a fairly simple task, and in practice you may be able to tackle this using commodity
computers (e.g., consumer-grade laptops or desktops). However, we would like you to use this
exercise to learn and solve it using distributed computing on Amazon EC2, and gain experience (very
helpful for your future career in research or industry), so you are prepared to tackle more complex
problems.

The services you will primarily be using are Amazon S3 storage, Amazon Elastic Cloud Computing
(EC2) virtual servers in the cloud, and Amazon Elastic MapReduce (EMR) managed Hadoop
framework.

This task will ideally use up only a very small fraction of your $100 credit. AWS allows you to use up to
20 instances in total (that means 1 master instance and up to 19 core instances) without filling out a
“limit request form”. For this assignment, you should not exceed this quota of 20 instances. You
can learn about these instance types, their specs, and pricing at
https://aws.amazon.com/ec2/instance-types/

https://aws.amazon.com/ec2/pricing/

(In the future, for larger jobs, you may want to use AWS’s pricing calculator:
http://calculator.s3.amazonaws.com/index.html)

Please read the AWS Setup Guidelines provided to set up your AWS account. In this task, you will
use subsets of the Google books n-grams dataset (full dataset is here), on which you will perform
some analysis. An ‘n-gram’ is a phrase with n words; the full n-gram dataset lists n-grams present
in the books on books.google.com along with some statistics.

You will perform your analysis on two custom datasets, extracted from the Google books bigrams
(2-grams), that we have prepared for you: a large one (s3://cse6242-bigram-big) and a smaller one
(s3:/lcse6242-bigrams-small).

NOTE: Both these datasets are in the US-Standard (US-East) region. Using machines in other
regions for computation would incur data transfer charges.

The files in these two S3 buckets are stored in a tab (\t) separated format. Each line in a file has the
following format:

n-gram TAB year TAB occurrences TAB books NEWLINE

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/
http://calculator.s3.amazonaws.com/index.html
http://poloclub.gatech.edu/cse6242/2016spring/hw3/AWSSetupGuidelines.pdf
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

An example for 2-grams (or bigram) would be:

I am 1936 342 90
I am 1945 211 10
very cool 1923 500 10
very cool 1980 3210 1000
very cool 2012 9994 3020

This tells us that, in 1936, the bigram ‘| am’ appeared 342 times in 90 different books. In 1945, ‘| am’
appeared 211 times in 10 different books. And so on.

Goal

For each unique bigram, compute its average number of appearances per book. For the above
example, the results will be:

I am (342 + 211) / (90 + 10) = 5.53
very cool (500 + 3210 + 9994) / (10 + 1000 + 3020) = 3.40049628

Output the 10 bigrams having the highest average number of appearances per book along with
their corresponding averages, in tab-separated format, sorted in descending order. If multiple
bigrams have the same average, order them alphabetically. For the example above, the output will
be:

I am 5.53
very cool 3.40049628

You will solve this problem by writing a PIG script on Amazon EC2 and save the output.

You can use the interactive PIG shell provided by EMR to perform this task from the command line
(grunt). In this case, you can copy the commands you used for this task into a single file to have the
PIG script and the output from the command line into a separate file. Please see this for how to use
PIG shell. Also, you can upload the script and create a task on your cluster.

To load the data from the s3://cse6242-bigrams-small bucket into a PIG table, you can use the
following command:

grunt> bigrams = LOAD ‘s3://cse6242-bigrams-small/*’ AS (bigram:chararray, year:int, count:int,

books:int);
(HINT: You might want to change the data type for year, count or books)

10

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-pig.html

Notes:
e Copying the above commands directly from the PDF and pasting on console/script file may
lead to script failures due to the stray characters and spaces from the PDF file
e Your script will fail if your output directory already exists. For instance, if you run a job with the
output folder as s3://cse6242-output, the next job you run with the same output folder
(s3:/lcse6242-output) will fail. Hence, please use a different folder for the output for every run

While working with the interactive shell (or otherwise), you should first test on a small subset of the
data instead of the whole data (the whole data is over hundreds of GB). Once you believe your PIG
commands are working as desired, you can use them on the complete data and ...wait... since it will
take some time.

To help you evaluate the correctness of your output, we have uploaded the output for the small
dataset on T-Square (hyperlink).

Deliverables:

e pig.txt: The PIG script for the task (using the larger data set).
e output-big.txt: Output (tab-separated) for the larger data set.

Note: Please follow formatting requirements for Task 3, as we would be using an autograder

[15pts] Task 4: Explore and Analyze data with Pandas

You will use Python and Pandas to explore and analyze the movielens data’ set. Save the results of
4a, 4b and 4c in movies.ixt. If you are not familiar with Pandas, you can follow this basic tutorial -
pandas-seaborn.

a) [4 pts] Import data and compute basic statistics.

Download task4data.zip. The data that you download has a readme.txt file which has details about
how the data is stored. Using pandas, load the data as dataframes and find the number of unique
movies and number of unique users in the dataset.

Output format:

Number_of _unique_movies
Number_of unique_users

* This is a subset of data taken from http://arouplens.org/datasets/movielens/

11

https://files.t-square.gatech.edu/access/content/group/gtc-0a45-e96f-5c9b-a4ad-57440aaf0df6/HW3/Part3%20output-small%20solution
http://pandas.pydata.org/
http://nbviewer.jupyter.org/github/rvuduc/cse6040-ipynbs/blob/master/08--pandas-seaborn.ipynb
http://poloclub.gatech.edu/cse6242/2016spring/hw3/task4data.zip
http://grouplens.org/datasets/movielens/

b) [3 pts] Get top 5 movies with largest number of ratings.

Using pandas, find the top 5 movies with the most number of ratings. Sort the output from most
ratings to least ratings.

Output format:
Movie _name<tab>Number_of ratings
c) [3 pts] Average User Age by Movie

Find the top 5 movies with the lowest average age of the people that rated the movies. Consider only
the movies that have got atleast 100 ratings.

Output format:
Movie _name<tab>Number _of ratings<tab>avg age
d) [5 pts] Seaborn visualization

Draw a scatterplot with marginal histograms to visualize how the average rating varies with age. Save
this plot as scatterhist.png.

A sample plot is shown below (please note that it is just an example and may not be related to what
you want to create. Also, it may be improved in a number of ways).

42
pearsonr = 0.42; p = 0.00068
40

38

36

rating

34

32

30

28

age

12

http://web.stanford.edu/~mwaskom/software/seaborn/tutorial/distributions.html#scatterplots

e) [Bonus 5 pts] Augment the scatterplot with density estimates

Please note that you will be awarded points for this section only if the graph has both the density
estimates and the scatterplot on the same graph. Save this plot as scatterbonus.png.

A sample plot is shown below (again, it is just an example).

»y -

pearsonr = 0.42; p = 0.00068

|
x

: .|

35

rating

30

-20 0 20 40 60 80 100

Deliverables:

movies.py: The pandas script.

movies.txt: The output of the script

scatterhist.png: The plot for 4d.

[Bonus] scatterbonus.png: The plot for 4e

data: The folder which contains u.data, u.item, u.user and the readme.txt

Note 1: Do not include task4data.zip in the folder.
Note 2: Always use relative paths while loading the data as dataframes.

13

Submission Guideline

Submit the deliverables as a single zip file named HW3-Lastname-Firstname.zip. Please specify
the name(s) of any students you have collaborated with on this assignment, using the text box on
the T-Square submission page.

The directory structure of the zip file should be exactly as below (the unzipped file should look like
this):
HW3-Smith-John/

Taskl/
src/main/java/edu/gatech/cse6242/Taskl.java
description.pdf
pom.xml
runl.sh
run?.sh
taskloutputl.tsv
taskloutput2.tsv
(do not attach target directory)

Task2/
src/main/scala/edu/gatech/cse6242/Task2.scala
description.txt
pom.xml
runl.sh
run2.sh
task2outputl.tsv
taskZ2output2.tsv
(do not attach target directory)

Task3/
pig.txt
output-big.txt

Task4/

movies.py
movies.txt
scatterhist.png
scatterbonus.png [Bonus]
data/

readme. txt

u.data

u.item

u.user
(do not attach task4data.zip)

Please adhere to the naming convention specified above.

14

