
Graphs / Networks
Centrality measures, algorithms, interactive applications

CSE 6242/ CX 4242

Duen Horng (Polo) Chau 
Georgia Tech

Partly based on materials by  
Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Le Song

Recap…
• Last time: Basics, how to build graph, store

graph, laws, etc.
• Today: Centrality measures, algorithms,

interactive applications for visualization and
recommendation

2

Centrality
= “Importance”

Why Node Centrality?
What can we do if we can rank all the nodes in a
graph (e.g., Facebook, LinkedIn, Twitter)?

• Find celebrities or influential people in a
social network (Twitter)

• Find “gatekeepers” who connect communities
(headhunters love to find them on LinkedIn)

• What else?

4

More generally
Helps graph analysis, visualization, understanding, e.g.,

• Let us rank nodes, group or study them by centrality
• Only show subgraph formed by the top 100 nodes,

out of the millions in the full graph
• Similar to google search results (ranked, and

they only show you 10 per page)
• Most graph analysis packages already have centrality

algorithms implemented. Use them!
Can also compute edge centrality.  
Here we focus on node centrality.

5

Degree Centrality (easiest)
Degree = number of neighbors

• For directed graphs

• In degree = No. of incoming edges

• Out degree = No. of outgoing edges

• For undirected graphs, only degree is defined.

• Algorithms?

• Sequential scan through edge list

• What about for a graph stored in SQLite?
6

1

2

3

4

Computing Degrees using SQL
Recall simplest way to store a graph in SQLite:
edges(source_id, target_id)

1. If slow, first create index for each column
2. Use group by statement to find in degrees
select count(*) from edges group by source_id;

7

High betweenness = “gatekeeper”

Betweenness of a node v
=
 
 
= how often a node serves as the “bridge” that
connects two other nodes.

Betweenness Centrality

8

Number of shortest paths between s
and t that goes through v

Number of shortest paths
between s and t

Betweenness is very well studied. http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality

http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality

(Local) Clustering Coefficient
A node’s clustering coefficient is a
measure of how close the node’s
neighbors are from forming a clique.

• 1 = neighbors form a clique
• 0 = No edges among neighbors

(Assuming undirected graph)
“Local” means it’s for a node; can also
compute a graph’s “global” coefficient

9Image source: http://en.wikipedia.org/wiki/Clustering_coefficient

http://en.wikipedia.org/wiki/Clustering_coefficient

Requires triangle counting
Real social networks have a lot of triangles

• Friends of friends are friends
Triangles are expensive to compute

(neighborhood intersections; several approx. algos)

Can we do that quickly?

Computing Clustering Coefficients...

10

Algorithm details:  
Faster Clustering Coefficient Using Vertex Covers
http://www.cc.gatech.edu/~ogreen3/_docs/2013VertexCoverClusteringCoefficients.pdf

http://www.cc.gatech.edu/~ogreen3/_docs/2013VertexCoverClusteringCoefficients.pdf

But: triangles are expensive to compute
 (3-way join; several approx. algos)

Q: Can we do that quickly?
A: Yes!

 #triangles = 1/6 Sum (λi3)

(and, because of skewness,
 we only need the top few eigenvalues!

Super Fast Triangle Counting 
[Tsourakakis ICDM 2008]

details

11

Power Law in Eigenvalues of
Adjacency Matrix

Eigen exponent = slope = -0.48
Eigenvalue

Rank of decreasing eigenvalue

12

1000x+ speed-up, >90% accuracy
13

More Centrality Measures…
• Degree

• Betweenness

• Closeness, by computing

• Shortest paths

• “Proximity” (usually via random walks) — used
successfully in a lot of applications

• Eigenvector

• …
14

PageRank (Google)

Brin, Sergey and Lawrence Page (1998).
Anatomy of a Large-Scale Hypertextual Web
Search Engine. 7th Intl World Wide Web Conf.

Larry Page Sergey Brin

Given a directed graph, find its most
interesting/central node

PageRank: Problem

A node is important,
if it is connected
with important nodes
(recursive, but OK!)

Given a directed graph, find its most
interesting/central node

Proposed solution:  
use random walk; spot most ‘popular’ node  
(-> steady state probability (ssp))

PageRank: Solution

A node has high ssp,
if it is connected
with high ssp nodes
(recursive, but OK!)

“state” = webpage

Let B be the transition matrix:  
transposed, column-normalized

(Simplified) PageRank

=

To
From B

1 2 3

4
5

B p = p

=

B p = p

(Simplified) PageRank

1 2 3

4
5

• B p = 1 * p
• thus, p is the eigenvector that corresponds

to the highest eigenvalue (=1, since the matrix
is column-normalized)

• Why does such a p exist?
–p exists if B is nxn, nonnegative, irreducible

[Perron–Frobenius theorem]

(Simplified) PageRank

• In short: imagine a particle randomly moving
along the edges

• compute its steady-state probability (ssp)

Full version of algorithm:  
with occasional random jumps

Why? To make the matrix irreducible

(Simplified) PageRank

• With probability 1-c, fly-out to  
a random node

• Then, we have
p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1 1

Full Algorithm

1 2 3

4
5

http://williamcotton.com/pagerank-explained-with-javascript

23

http://williamcotton.com/pagerank-explained-with-javascript

B p

How to compute PageRank for
huge matrix?

Use the power iteration method
http://en.wikipedia.org/wiki/Power_iteration

Can initialize this vector to any non-zero vector, e.g., all “1”s

1 2 3

4
5
p’

+ 1/n

p = c B p + (1-c)/n 1

= c (1-c)

http://en.wikipedia.org/wiki/Power_iteration

PageRank for graphs (generally)
You can compute PageRank for any graphs
Should be in your algorithm “toolbox”

• Better than simple centrality measure  
(e.g., degree)

• Fast to compute for large graphs (O(E))
But can be “misled” (Google Bomb)

• How?

25

Personalized PageRank
Make one small variation of PageRank

• Intuition: not all pages are equal, some more
relevant to a person’s specific needs

• How?

26

• With probability 1-c, fly-out to a random
node some preferred nodes

• Then, we have
p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1 1

“Personalizing” PageRank

Why learn Personalized PageRank?

Can be used for recommendation, e.g.,
• If I like this webpage, what would I also be

interested?
• If I like this product, what other products I also like?

(in a user-product bipartite graph)
• Also helps with visualizing large graphs

• Instead of visualizing every single nodes, visualize
the most important ones

Again, very flexible. Can be run on any graph.

28

Building an interactive application

Will show you an example application (Apolo) that uses a
“diffusion-based” algorithm to perform recommendation on a
large graph

• Personalized PageRank  
(= Random Walk with Restart)

• Belief Propagation  
(powerful inference algorithm, for fraud detection, image
segmentation, error-correcting codes, etc.)

• “Spreading activation” or “degree of interest” in Human-
Computer Interaction (HCI)

• Guilt-by-association techniques

29

Why diffusion-based algorithms are widely used?
• Intuitive to interpret  

uses “network effect”, homophily, etc.
• Easy to implement 

Math is relatively simple
• Fast  

run time linear to #edges, or better
• Probabilistic meaning

30

Building an interactive application

Human-In-The-Loop Graph Mining

Apolo:  
Machine Learning + Visualization 
CHI 2011

31

Apolo: Making Sense of Large Network Data by Combining Rich User Interaction and Machine Learning

Finding More Relevant Nodes

HCI
Paper

Data Mining 
Paper

Citation network

32

Finding More Relevant Nodes

HCI
Paper

Data Mining 
Paper

Citation network

32

Finding More Relevant Nodes

Apolo uses guilt-by-association 
(Belief Propagation, similar to personalized PageRank)

HCI
Paper

Data Mining 
Paper

Citation network

32

Demo: Mapping the Sensemaking Literature

33

Nodes: 80k papers from Google Scholar (node size: #citation)
Edges: 150k citations

Key Ideas (Recap)
Specify exemplars
Find other relevant nodes (BP)

35

Apolo’s Contributions

Apolo User

It was like having a  
partnership with the machine.

Human + Machine

Personalized Landscape  

1

2
36

Apolo 2009

37

Apolo 2010

38

Apolo 2011 22,000 lines of code. Java 1.6. Swing. 
Uses SQLite3 to store graph on disk

39

User Study
Used citation network
Task: Find related papers for 2 sections in
a survey paper on user interface
• Model-based generation of UI
• Rapid prototyping tools

40

Between subjects design
Participants: grad student or research staff

41

41

41

Higher is better.
Apolo wins.

* Statistically significant, by two-tailed t test, p <0.05

Judges’ Scores

0

8

16

Model-
based

*Prototyping *Average

Apolo Scholar

Score

42

Apolo: Recap
A mixed-initiative approach for exploring
and creating personalized landscape for
large network data

Apolo = ML + Visualization + Interaction

43

Practitioners’ guide to building
(interactive) applications

Think about scalability early
• e.g., picking a scalable algorithm early on

When building interactive applications, use iterative
design approach (as in Apolo)

• Why? It’s hard to get it right the first time
• Create prototype, evaluate, modify prototype,

evaluate, ...
• Quick evaluation helps you identify important

fixes early (can save you a lot of time)
44

How to do iterative design?
What kinds of prototypes?

• Paper prototype, lo-fi prototype, high-fi prototype
What kinds of evaluation? Important to involve REAL users as early as possible

• Recruit your friends to try your tools
• Lab study (controlled, as in Apolo)
• Longitudinal study (usage over months)
• Deploy it and see the world’s reaction!

• To learn more:
• CS 6750 Human-Computer Interaction
• CS 6455 User Interface Design and Evaluation

45

Practitioners’ guide to building
(interactive) applications

Polonium:  
Web-Scale Malware Detection 
SDM 2011

Polonium: Tera-Scale Graph Mining and Inference for Malware Detection

Signature-based detection
1.Collect malware
2.Generate signatures
3.Distribute to users
4.Scan computers for matches

What about “zero-day” malware?
No samples à No signatures à No detection
How to detect them early?

Typical Malware Detection Method

47

Reputation-Based Detection
Computes reputation score for each application

e.g., MSWord.exe

Poor reputation = Malware

48

49

Patented
I led initial design and development

Serving 120 million users
Answered trillions of queries

TextPolonium

49

Patented
I led initial design and development

Serving 120 million users
Answered trillions of queries

Propagation of leverage of network influence unearths malware

TextPolonium

Polonium works with 60 Terabyte Data

50 million machines
anonymously reported their
executable files

900 million unique files 
(Identified by their
cryptographic hash values)

Goal: label malware and good files

50

Why A Hard Problem?

Existing Research Polonium

Small dataset Huge dataset (60 terabytes)

Detects specific malware  
(e.g., worm, trojans)

Detects all types 
(needs a general method)

Many false alarms (>10%) Strict (<1%)

51

Polonium: Problem Definition

Given
Undirected machine-file bipartite graph

37 billion edges , 1 billion nodes (machines, files)
Some file labels from Symantec (good or bad)

Find
Labels for all unknown files

52

Symantec has a ground truth database of
known-good and known-bad files

Where to Get Good and Bad Labels?

e.g., set known-good file’s prior to 0.9
53

How to Gauge Machine Reputation?

Computed using Symantec’s
proprietary formula;  
a value between 0 and 1

Derived from anonymous
aspects of machine’s usage
and behavior

54

55

How to propagate known
information to the unknown?

Key Idea: Guilt-by-Association
GOOD files likely appear on GOOD machines
BAD files likely appear on BAD machines
Also known as Homophily

Machine

Good Bad

File
Good 0.9 0.1

Bad 0.1 0.9

56

Adapts Belief Propagation (BP)
A powerful inference algorithm

Used in image processing, computer vision,  
error-correcting codes, etc. 

57

How to propagate known
information to the unknown?

A B C

2 31 4

Propagating Reputation

0.9 0.1

0.6 0.45 0.35

0.5 0.5

Machines

Files

Example

Machine

Good Bad

File
Good 0.9 0.1

Bad 0.1 0.9

58

A B C

2 31 4

Propagating Reputation

0.9 0.1

0.6 0.45 0.35

0.5 0.5

Machines

Files

Example

Machine

Good Bad

File
Good 0.9 0.1

Bad 0.1 0.9

58

A B C

2 31 4

Propagating Reputation

0.9 0.1

0.6 0.45 0.35

0.5 0.5

Machines

Files

Example

Machine

Good Bad

File
Good 0.9 0.1

Bad 0.1 0.9

2 31 4
0.92 0.060.58 0.38

58

A B C

2 31 4

Propagating Reputation

0.9 0.1

0.6 0.45 0.35

0.5 0.5

Machines

Files

Example

Machine

Good Bad

File
Good 0.9 0.1

Bad 0.1 0.9

2 31 4
0.92 0.060.58 0.38

58

A B C

2 31 4

Propagating Reputation

0.9 0.1

0.6 0.45 0.35

0.5 0.5

Machines

Files

Example

Machine

Good Bad

File
Good 0.9 0.1

Bad 0.1 0.9

A B C
0.87 0.10.81

2 31 4
0.92 0.060.58 0.38

58

Two Equations in Belief Propagation 

59

Details

Computing Node Belief (Reputation) 

60

Details

Computing Node Belief (Reputation) 

Belief Prior belief Neighbors’ opinions

60

Details

Computing Node Belief (Reputation) 

Belief Prior belief Neighbors’ opinions

A B C

2 31 4
0.5

60

Details

Creating Message for Neighbor 

61

Details

Creating Message for Neighbor 

Edge potential BeliefOpinion for neighbor

Good Bad
Good 0.9 0.1
Bad 0.1 0.9

61

Details

Creating Message for Neighbor 

Edge potential BeliefOpinion for neighbor

Good Bad
Good 0.9 0.1
Bad 0.1 0.9

A B C

2 31 4

61

Details

Evaluation
Using millions of ground truth files,10-fold cross validation

85% True Positive Rate  
 1% False Alarms

Ideal

True Positive Rate
% of bad correctly labeled

False Positive Rate (False Alarms)
% of good labeled as bad 62

Evaluation
Using millions of ground truth files,10-fold cross validation

85% True Positive Rate  
 1% False Alarms

Ideal

True Positive Rate
% of bad correctly labeled

False Positive Rate (False Alarms)
% of good labeled as bad

Boosted existing methods by 
10 absolute % point

62

Multi-Iteration Results

63

1234567

True Positive Rate
% of bad correctly labeled

False Positive Rate (False Alarm)
% of good labeled as bad

Scalability  
Running Time Per Iteration

Linux
16-core Opteron  
256GB RAM

3 hours,  
37 billion edges

64

Scalability  
How Did I Scale Up BP?

65

Details

1.Early termination (after 6 iterations) à Faster

2.Keep edges on disk à Saves 200GB of RAM

3.Computes half of the messages à Twice as fast

Number of machines

Scale-up

Further Scale Up Belief Propagation
Use Hadoop if graph doesn’t fit in memory [ICDE’11]
Speed scales up linearly with number of machines

Yahoo! M45 cluster
480 machines
1.5 PB storage
3.5TB machine

66

