CSE 6242 / CX 4242

Time Series

Mining and Forecasting

Duen Horng (Polo) Chau
Georgia Tech

Slides based on Prof. Christos Faloutsos’s materials

Outline

B Motivation
» Similarity search — distance functions
* Linear Forecasting
* Non-linear forecasting
* Conclusions

Problem definition

* Given: one or more sequences

Xy Xy vevy Xy on
Dp Yo oo s Voo oo2)
 Find

— similar sequences; forecasts
— patterns; clusters; outliers

Motivation - Applications

Financial, sales, economic series

Medical

— ECGs +; blood pressure etc monitoring
—reactions to new drugs

— elderly care

Motivation - Applications (cont’d)

e ‘Smart house’

— sensors monitor temperature, humidity, air
quality

e video surveillance

Motivation - Applications (cont’d)

* Weather, environment/anti-pollution
— volcano monitoring

— air/water pollutant monitoring

Sunspot Data
300

250

200 -

150

100 -

50 -

Motivation - Applications (cont’d)

 Computer systems
— ‘Active Disks’ (buffering, prefetching)
—web servers (ditto)

—network traffic monitoring

Stream Data: Disk accesses

Disk traffic
20000000

15000000

#bytes

10000000

5000000 l | ‘ H ‘
0 _Ml MM

time

Problem #1:

Goal: given a signal (e.g.., #packets over time)
Find: patterns, periodicities, and/or compress

: P \ | /\ lynx caught per year
count : /\ | PN L (packets per day;

n f / /\ / i }\ /\ /\ / temperature per day)

O:// k—‘ vf \J JL \f/ kf, Iy M

Problem#2: Forecast

Givenx, x, ;, ..., forecast x,,

Number of packets sent

N W A Ut N I

ccccc<ccgg
N
| v

Time Tick

Problem#2’: Similarity search

E.g.., Find a 3-tick pattern, similar to the last one

L

// \v// \ 29

Time Tick

Problem #3:

* Given: A set of correlated time sequences
e Forecast ‘Sent(t)’

920

A /‘\'\ ® sent

68
& lost
// \ /// \‘\‘ repeated
4

Number of packets
) S
w n
éq

Time Tick

Important observations

Patterns, rules, forecasting and similarity
indexing are closely related:

* To do forecasting, we need
— to find patterns/rules
— to find similar settings in the past

* to find outliers, we need to have forecasts
— (outlier = too far away from our forecast)

Outline

* Motivation
ﬂ- Similarity Search and Indexing
* Linear Forecasting
* Non-linear forecasting
* Conclusions

Outline

 Motivation

‘- Similarity search and distance functions
— Euclidean
— Time-warping

Importance of distance functions

Subtle, but absolutely necessary:

* A ‘must’ for similarity indexing (->
forecasting)

* A ‘must’ for clustering

Two major families
— Euclidean and Lp norms
— Time warping and variations

Euclidean and Lp

P N~ 1 — \ — V. 2
- " DG Zl(xl)

— L&) =I5 -1

oL,: city-block = Manhattan
L, = Euclidean

Observation #1

* Time sequence -> n-d

o vector
\._////.f Day—n

Observation #2

. . . Day-n
Euclidean distance 1s N

closely related to

.. i
— cosine similarity (g X

— dot product Day-1

— ‘cross-correlation’ A
function

Time Warping

e allow accelerations - decelerations
— (with or w/o penalty)

 THEN compute the (Euclidean) distance (+
penalty)

* related to the string-editing distance

‘stutters’:

Time Warping

4 \\
N //}?\ o/
A/
X
7Y
,, /¥

Time warping

Q: how to compute 1t?
A: dynamic programming
D(i, j) = cost to match

prefix of length i of first sequence x with prefix
of length j of second sequence y

Time warping

Thus, with no penalty for stutter, for sequences

Xpp Xy eees X . Vi Vo o

D(i, j) =||x[i1- y[/]| + min;

D({i-1,j-1) no stutter
D@, j-1) x-stutter

D(@-1,7) y-stutter

Time warping
VERY SIMILAR to the string-editing distance

‘D(i-1,j-1) 1o stutter
D(i, j) = |x[i]- y[j]|+ min] D(, j - 1) x-stutter
D(@-1,7) y-stutter

Time warping

e Complexity: O(M*N) - quadratic on the
length of the strings

 Many variations (penalty for stutters; limat
on the number/percentage of stutters; ...)

* popular in voice processing [Rabiner +
Juang]

Other Distance functions

* piece-wise linear/flat approx.; compare
pieces [Keogh+01] [Faloutsos+97]

e ‘cepstrum’ (for voice [Rabiner+Juang])
— do DFT,; take log of amplitude; do DFT again!

* Allow for small gaps [Agrawal+93]

See tutorial by [Gunopulos + Das,
SIGMODO1]

Other Distance functions

* In [Keogh+, KDD’04]: parameter-free, MDL
based

Conclusions

Prevailing distances:
— Euclidean and
— time-warping

Outline

* Motivation

» Similarity search and distance functions
My Linear Forecasting

* Non-linear forecasting

* Conclusions

Linear Forecasting

Forecasting

“Prediction 1s very difficult, especially
about the future.”
- Nils Bohr

Danish physicist and Nobel Prize laureate

Outline

 Motivation

* Linear Forecasting
‘ — Auto-regression: Least Squares; RLS
— Co-evolving time sequences
— Examples
— Conclusions

Reference

[Y1+00] Byoung-Kee Yi et al.: Online Data Mining
for Co-Evolving Time Sequences, ICDE 2000.
(Describes MUSCLES and Recursive Least

Squares)

Problem#2: Forecast

- Example: givex, ,, x,,, ..., forecast x,

Number of packets sent

N W A Ut N I

ccccc<cc%g
N

| v

| ‘<\,\\

Time Tick

Forecasting: Preprocessing

MANUALLY:

remove trends spot periodicities
7 days

Problem#2: Forecast

* Solution: try to express
Xy
as a linear function of the past: x, ;, x, ,, ...,
(up to a window of w)

Formally:

A

! /N
A\ 929
\v s

Ty X A1Ti—1+ ...+ QyTi_qy + NOLSE

DI NN-JOND

1 3 5 7 9 11
Time Tick

(Problem: Back-cast; interpolate)

* Solution - interpolate: try to express

Xy

as a linear function of the past AND the future:

Xew Xpg20 o xt+wfuture; Xepo «o- xt—wpast
(up to windows ot w,, ., wg...)
« EXACTLY the same algo’s 9 ??
(| A N—
g A\ Ny
!

1 3 5 7 9 11
Time Tick

Linear Regression: idea

: 85 1
patient | weight height Body height 80 - °
75 T
27 43 70 - ¢
2 43 54 65 - . ®
54 72 60 - o o
55 o
50 -
45 °
N[» ol —*
15 25 35 45
Body weight

* express what we don’t know (= “dependent variable”)
e as a linear function of what we know (= “independent variable(s)”)

Linear Regression: idea

85 1

Body height

patient | weight height 80
75 T

27 43 70

2 43 54 65 -
54 72 60 -

55
50 A

@ 45
29
N o o 40

15 25 35 45

Body weight

* express what we don’t know (= “dependent variable”)
e as a linear function of what we know (= “independent variable(s)”)

Linear Regression: idea

85 1

Body height

patient | weight height 80
75 T

27 43 70

2 43 54 65 -
54 72 60 -

55
50 A

@ 45
29
N o o 40

15 25 35 45

Body weight

* express what we don’t know (= “dependent variable”)
e as a linear function of what we know (= “independent variable(s)”)

Linear Regression: idea

85 1

Body height

patient | weight height 80
75 T

27 43 70

2 43 54 65 -
54 72 60 -

55 A
50 A

@ 45
29
N o o 40

15 25 35 45

Body weight

* express what we don’t know (= “dependent variable”)
e as a linear function of what we know (= “independent variable(s)”)

Linear Auto Regression:

Time Packets
Sent(t)
1 43
2 54
72

Linear Auto Regression:

Time | Packets Packets ¢ s o
Sent (t-1) Sent(1) lag_pIOt
1 - 43 - °
2 B #packets sent - o °
o at time t | °
I [
N @A/ 22 °
#packets sent at time t-1
elagw=1

® Dependent variable = # of packets sent (S [t])
* Independent variable = # of packets sent (S[t-1])

Linear Auto Regression:

Time Packets Packets

Sent (t-1) Sent(t) lag-plot

| - 43 1
2 B0t #pe}ckets sent |
e at time t

N @A/ ??

#packets sent at time t-1
elagw =1

® Dependent variable = # of packets sent (S [t])
* Independent variable = # of packets sent (S[t-1])

Linear Auto Regression:

Time Packets Packets

Sent (t-1) Sent(t) lag-plot

1 - 43 |
2 43 e 4 #packets sent -
e at time t |

N @A/ ??

#packets sent at time t-1
elagw =1

® Dependent variable = # of packets sent (S [t])
* Independent variable = # of packets sent (S[t-1])

Linear Auto Regression:

Time Packets Packets

Sent (t-1) Sent(t) lag-plot

1 - 43 |
2 43 e 4 #packets sent -
e at time t |

N @A/ ??

#packets sent at time t-1
elagw =1

® Dependent variable = # of packets sent (S [t])
* Independent variable = # of packets sent (S[t-1])

Outline

 Motivation

* Linear Forecasting
‘ — Auto-regression: Least Squares; RLS
— Co-evolving time sequences
— Examples
— Conclusions

More detalils:

* QI: Can 1t work with window w > 1?
« Al: YES!

Xt A

More detalils:

* QI: Can 1t work with window w > 1?
 Al: YES! (we’ll fit a hyper-plane, then!)

] ﬁ
/' Xt-l

>

X2

More detalils:

* QI: Can 1t work with window w > 1?
 Al: YES! (we’ll fit a hyper-plane, then!)

Xt A

More detalils:

* QI: Can 1t work with window w > 1?
 Al: YES! The problem becomes:

XN sewl X Ay w11 = YN x1]
e OVER-CONSTRAINED

— a 1s the vector of the regression coefficients

— X has the N values of the w indep. variables
— y has the N values of the dependent variable

. X[N ww] X Aw <11 YN x1]

More detalils:

Ind-varl Ind-var-w
| /
time X s X5 Xy,

X1y Xongeees Xo,

Xy X s s Xy

w

/‘\
AN
7
7
M
B

. X[N ww] X Aw <11 YN x1]

More detalils:

Ind-varl Ind-var-w
| /
time X s X5 Xy,

X1y Xongeees Xo,

Xy X s s Xy

w

\
%

_yN -

More details

« Q2: How to estimate a,, a,, ... a, = a?

* A2: with Least Squares fit
a=(X"'xX)'x(X'xy)

* (Moore-Penrose pseudo-inverse)

e a 1s the vector that minimizes the RMSE
fromy

More details

 Straightforward solution:

oty
4444
]’ ‘" ‘o
007
7%

a=(X"xX)'xX'xy)

a : Regression Coeff. Vector XN
X : Sample Matrix

* Observations:
— Sample matrix X grows over time
— needs matrix inversion
— O(Nxw?) computation
— O(Nxw) storage

Even more details

* Q3: Can we estimate a incrementally?

* A3: Yes, with the brilliant, classic method of

“Recursive Least Squares” (RLS) (see, e.g.,
[Y1+00], for details).

 We can do the matrix inversion, WITHOUT
inversion! (How 1s that possible?!)

Even more details

* Q3: Can we estimate a incrementally?

* A3: Yes, with the brilliant, classic method of
“Recursive Least Squares” (RLS)
(see, e.g., [Y1+00], for details).

 We can do the matrix inversion, WITHOUT
inversion! (How 1s that possible?!)

 A: our matrix has special form: (X! X)

SKIP

More details

At the N+1 time tick:

SKIP

More details

(““‘gain matrix’)

1
x Xy)
v+, can be computed recursively from G,

T
N

X

(

e LetG,

N >, N X

SKIP)

EVEN more details:

GN+1 = GN _[C]_l X[GN ><‘X:N+1T]><’X:N+1 ><C;N

\

1 X w row vector

T
c=[l+x,,,xGyxxy,, |

Let’s elaborate
(VERY IMPORTANT, VERY VALUABLE!)

SKIP)

EVEN more details:

T —
ad = [XN+1 ><)(N+1] 1X[XN+1T XyN+1]

SKIP)

EVEN more details:

ad = [XN+1T ><)(N+1]_1 X[XN+1T XyN+1]

[wx 1] [(N+1) x w] [N+ x 1]

[w x (N+1)] [w x (N+1)]

SKIP)

EVEN more details:

T
=[XN+1 ><)(N+1 X[XN+1TXyN+1]

[(N+1) x W]

[wx (N+1)]

SKIP)

EVEN more details:

T -1 r
a=[Xy, xXy I xX[Xy, Xyy,l
1 x w row vector

/

14

GN+1 = GN _[C]_l X[GN ><‘X:N+1T]><’X:N+1 ><C;N

‘gain

matrix’ G
N+1

[XN+1T ><)(N+1]_1

T
c=[1+x,,,xGyxxy,, |

SKIP)

EVEN more details:

GN+1 = GN _[C]_l X[GN ><‘X:N+1T]><’X:N+1 ><C;N

T
c=[l+x,,xGyxxy,,]

SKIP)

EVEN more details:

Ix1

Ixw

WXW wx1 WXW

WXW WXW
| T
GN+1 =GN_[C] ><[C;NX‘XNH]XXNHXGN

SCALAR! T
C =[1+xN+1 ><C;NX‘X’.NH]

SKIP)

Altogether:

ad = [XN+1T ><)(N+1]_1 X[XN+1T XyN+1]

GN | = [XN+1T XXN+1]_1

+

GN+1 = GN _[C]_l X[GN ><‘X:N+1T]><’X:N+1 ><C;N

T
c=[l+x,,xGyxxy,,]

SKIP)

Altogether:

G,=01

where
[: w x w 1dentity matrix
0: a large positive number

Comparison:

« Straightforward Least * Recursive LS

Squares — Need much smaller,

— Needs huge matrix fixed size matrix
(growing in size) O(w>xw)
O(Nxw) — Fast, incremental

— Costly matrix operation computation
O(Nxw?) O(1 xw?)

— no matrix inversion

N=10% w=1-100

Pictorially:

Given:

Dependent Variable

Independent Variable

Dependent Variable

Pictorially:

* — new point

Independent Variable

Pictorially:
RLS: quickly compute new best fit

* — new point

Dependent Variable

Independent Variable

Even more details

* Q4: can we ‘forget’ the older samples?
* A4: Yes - RLS can easily handle that [Y1+00]:

Adaptability - ‘forgetting’

(D]

e

.g,a
<

> 2
~
5 2
=S
O I+
%?
A X

Independent Variable
eg., #packets sent

Adaptability - ‘forgetting’

Dependent Variable
eg., #bytes sent

Trend change

* %, o o ° (R)LS
JWwith no forgetting

Independent Variable
eg. #packets sent

Adaptability - ‘forgetting’

Trend change
2L °
S
s .
> * (R)LS
5 0 with no forgetting
s .
Qﬁ) °,0 o
a,
gl :
(R)LS
with forgetting
Independent Variable

* RLS: can *trivially* handle ‘forgetting’

