## **Time Series**

Mining and Forecasting

**Duen Horng (Polo) Chau** Georgia Tech

### **Outline**



- Motivation
- Similarity search distance functions
- Linear Forecasting
- Non-linear forecasting
- Conclusions

### **Problem definition**

• Given: one or more sequences

$$x_1, x_2, \dots, x_t, \dots$$
  
 $(y_1, y_2, \dots, y_t, \dots)$   
 $(\dots)$ 

#### Find

- similar sequences; forecasts
- patterns; clusters; outliers

## **Motivation - Applications**

- Financial, sales, economic series
- Medical
  - ECGs +; blood pressure etc monitoring
  - reactions to new drugs
  - elderly care

## Motivation - Applications (cont'd)

- 'Smart house'
  - sensors monitor temperature, humidity, air quality
- video surveillance

## Motivation - Applications (cont'd)

- Weather, environment/anti-pollution
  - volcano monitoring
  - air/water pollutant monitoring



## Motivation - Applications (cont'd)

- Computer systems
  - 'Active Disks' (buffering, prefetching)
  - web servers (ditto)
  - network traffic monitoring

**—** ...

### Stream Data: Disk accesses



time

### Problem #1:

Goal: given a signal (e.g.., #packets over time)

Find: patterns, periodicities, and/or compress



lynx caught per year (packets per day; temperature per day)

year

### **Problem#2: Forecast**

Given  $x_t, x_{t-1}, \ldots$ , forecast  $x_{t+1}$ 



## Problem#2': Similarity search

E.g.., Find a 3-tick pattern, similar to the last one



### Problem #3:

- Given: A set of **correlated** time sequences
- Forecast 'Sent(t)'



## Important observations

Patterns, rules, forecasting and similarity indexing are closely related:

- To do forecasting, we need
  - to find patterns/rules
  - to find similar settings in the past
- to find outliers, we need to have forecasts
  - (outlier = too far away from our forecast)

### **Outline**

- Motivation
- Similarity Search and Indexing
  - Linear Forecasting
  - Non-linear forecasting
  - Conclusions

### **Outline**

Motivation



Similarity search and distance functions

- Euclidean
- Time-warping

•

## Importance of distance functions

### Subtle, but absolutely necessary:

- A 'must' for similarity indexing (-> forecasting)
- A 'must' for clustering

### Two major families

- Euclidean and Lp norms
- Time warping and variations

## Euclidean and Lp



$$D(\vec{x}, \vec{y}) = \sum_{i=1}^{n} (x_i - y_i)^2$$

$$L_p(\vec{x}, \vec{y}) = \sum_{i=1}^n |x_i - y_i|^p$$

- • $L_1$ : city-block = Manhattan
- $\bullet L_2 = Euclidean$
- $\bullet L_{\infty}$

### **Observation #1**



Time sequence -> n-d vector



### **Observation #2**

# Euclidean distance is closely related to

- cosine similarity
- dot product
- 'cross-correlation' function



- allow accelerations decelerations
  - (with or w/o penalty)
- THEN compute the (Euclidean) distance (+ penalty)
- related to the string-editing distance



'stutters':



Q: how to compute it?

A: dynamic programming

D(i, j) = cost to match

prefix of length *i* of first sequence *x* with prefix of length *j* of second sequence *y* 

Thus, with no penalty for stutter, for sequences

$$x_1, x_2, ..., x_{i,i}$$
  $y_1, y_2, ..., y_j$ 

$$D(i,j) = ||x[i] - y[j]|| + \min \begin{cases} D(i-1,j-1) & \text{no stutter} \\ D(i,j-1) & \text{x-stutter} \\ D(i-1,j) & \text{y-stutter} \end{cases}$$

VERY SIMILAR to the string-editing distance

$$D(i,j) = ||x[i] - y[j]|| + \min \begin{cases} D(i-1,j-1) & \text{no stutter} \\ D(i,j-1) & \text{x-stutter} \\ D(i-1,j) & \text{y-stutter} \end{cases}$$

- Complexity: O(M\*N) quadratic on the length of the strings
- Many variations (penalty for stutters; limit on the number/percentage of stutters; ...)
- popular in voice processing [Rabiner + Juang]

### Other Distance functions

- piece-wise linear/flat approx.; compare pieces [Keogh+01] [Faloutsos+97]
- 'cepstrum' (for voice [Rabiner+Juang])
  - do DFT; take log of amplitude; do DFT again!
- Allow for small gaps [Agrawal+95]
- See tutorial by [Gunopulos + Das, SIGMOD01]

### Other Distance functions

• In [Keogh+, KDD'04]: parameter-free, MDL based

### **Conclusions**

### Prevailing distances:

- Euclidean and
- time-warping

### **Outline**

- Motivation
- Similarity search and distance functions
- Linear Forecasting
  - Non-linear forecasting
  - Conclusions

## Linear Forecasting

## **Forecasting**

"Prediction is very difficult, especially about the future."

- Nils Bohr

Danish physicist and Nobel Prize laureate

### **Outline**

- Motivation
- •
- Linear Forecasting



- Auto-regression: Least Squares; RLS
- Co-evolving time sequences
- Examples
- Conclusions

### Reference

[Yi+00] Byoung-Kee Yi et al.: Online Data Mining for Co-Evolving Time Sequences, ICDE 2000.(Describes MUSCLES and Recursive Least Squares)

### **Problem#2: Forecast**

• Example: give  $x_{t-1}$ ,  $x_{t-2}$ , ..., forecast  $x_t$ 



## Forecasting: Preprocessing

MANUALLY:

remove trends

time

spot periodicities



### **Problem#2: Forecast**

Solution: try to express

```
x_t as a linear function of the past: x_{t-1}, x_{t-2}, ..., (up to a window of w)

Formally:
```

$$x_t \approx a_1 x_{t-1} + \ldots + a_w x_{t-w} + noise$$



# (Problem: Back-cast; interpolate)

Solution - interpolate: try to express

 $\mathcal{X}_t$ 

as a linear function of the past AND the future:

$$X_{t+1}, X_{t+2}, \dots X_{t+wfuture}, X_{t-1}, \dots X_{t-wpast}$$

(up to windows of  $w_{past}$ ,  $w_{future}$ )

• EXACTLY the same algo's



| patient | weight | height |
|---------|--------|--------|
| 1       | 27     | 43     |
| 2       | 43     | 54     |
| 3       | 54     | 72     |
|         |        |        |
| • • •   |        | •••    |
| N       | 25)    | ??     |





- express what we **don't know** (= "dependent variable")
- as a linear function of what we **know** (= "independent variable(s)")

| patient | weight | height |
|---------|--------|--------|
| 1       | 27     | 43     |
| 2       | 43     | 54     |
| 3       | 54     | 72     |
|         |        |        |
|         |        | •••    |
| N       | 25)    | ??     |





- express what we **don't know** (= "dependent variable")
- as a linear function of what we **know** (= "independent variable(s)")

| patient | weight | height |
|---------|--------|--------|
| 1       | 27     | 43     |
| 2       | 43     | 54     |
| 3       | 54     | 72     |
|         |        |        |
| •••     |        | •••    |
| N       | 25)    | ??     |





- express what we **don't know** (= "dependent variable")
- as a linear function of what we **know** (= "independent variable(s)")

| patient | weight      | height |
|---------|-------------|--------|
| 1       | 27          | 43     |
| 2       | 43          | 54     |
| 3       | 54          | 72     |
|         |             |        |
|         |             | •••    |
| N       | <b>25</b> ) | ??     |





- express what we **don't know** (= "dependent variable")
- as a linear function of what we **know** (= "independent variable(s)")

| Time | Packets<br>Sent(t) |
|------|--------------------|
| 1    | 43                 |
| 2    | 54                 |
| 3    | 72                 |
|      |                    |
|      | •••                |
| N    | ??                 |

| Time  | Packets<br>Sent (t-1) | Packets<br>Sent(t) |
|-------|-----------------------|--------------------|
| 1     | -                     | 43                 |
| 2     | 43                    | 54                 |
| 3     | 54                    | 72                 |
|       |                       |                    |
| • • • |                       | •••                |
| N     | 25                    | ??                 |



#packets sent at time t-1

- lag w = 1
- Dependent variable = # of packets sent (S[t])
- <u>Independent</u> variable = # of packets sent (S[t-1])

| Time | Packets<br>Sent (t-1) | Packets<br>Sent(t) |
|------|-----------------------|--------------------|
| 1    | -                     | 43                 |
| 2    | 43                    | 54                 |
| 3    | 54                    | 72                 |
|      | •••                   |                    |
|      |                       |                    |
| N    | (25)                  | ??                 |



#packets sent at time t-1

- lag w = 1
- Dependent variable = # of packets sent (S[t])
- <u>Independent</u> variable = # of packets sent (S[t-1])

| Time | Packets<br>Sent (t-1) | Packets<br>Sent(t) |
|------|-----------------------|--------------------|
| 1    | -                     | 43                 |
| 2    | 43                    | 54                 |
| 3    | 54                    | 72                 |
|      | •••                   |                    |
|      |                       |                    |
| N    | (25)                  | ??                 |



#packets sent at time t-1

- lag w = 1
- Dependent variable = # of packets sent (S[t])
- <u>Independent</u> variable = # of packets sent (S[t-1])

| Time | Packets<br>Sent (t-1) | Packets<br>Sent(t) |
|------|-----------------------|--------------------|
| 1    | -                     | 43                 |
| 2    | 43                    | 54                 |
| 3    | 54                    | 72                 |
| •••  |                       |                    |
| N    | 25                    | ??                 |



#packets sent at time t-1

- lag w = 1
- Dependent variable = # of packets sent (S[t])
- <u>Independent</u> variable = # of packets sent (S[t-1])

### **Outline**

- Motivation
- •
- Linear Forecasting



- Auto-regression: Least Squares; RLS
- Co-evolving time sequences
- Examples
- Conclusions

- Q1: Can it work with window w > 1?
- A1: YES!



- Q1: Can it work with window w > 1?
- A1: YES! (we'll fit a hyper-plane, then!)



- Q1: Can it work with window w > 1?
- A1: YES! (we'll fit a hyper-plane, then!)



- Q1: Can it work with window w > 1?
- A1: YES! The problem becomes:

$$\mathbf{X}_{[\mathbf{N} \times \mathbf{w}]} \times \mathbf{a}_{[\mathbf{w} \times 1]} = \mathbf{y}_{[\mathbf{N} \times 1]}$$

- OVER-CONSTRAINED
  - a is the vector of the regression coefficients
  - $-\mathbf{X}$  has the N values of the w indep. variables
  - y has the N values of the dependent variable

• 
$$X_{[N \times w]} \times \mathbf{a}_{[w \times 1]} = \mathbf{y}_{[N \times 1]}$$
Ind-var1 Ind-var-w

time 
$$\begin{bmatrix} X_{11}, X_{12}, \dots, X_{1w} \\ X_{21}, X_{22}, \dots, X_{2w} \\ \vdots \\ \vdots \\ X_{N1}, X_{N2}, \dots, X_{Nw} \end{bmatrix} \times \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_w \end{bmatrix} = \begin{bmatrix} \underline{y}_1 \\ \underline{y}_2 \\ \vdots \\ \vdots \\ \underline{y}_N \end{bmatrix}$$



- Q2: How to estimate  $a_1, a_2, \dots a_w = \mathbf{a}$ ?
- A2: with Least Squares fit

$$\mathbf{a} = (\mathbf{X}^T \times \mathbf{X})^{-1} \times (\mathbf{X}^T \times \mathbf{y})$$

- (Moore-Penrose pseudo-inverse)
- a is the vector that minimizes the RMSE from y

#### • Straightforward solution:

$$\mathbf{a} = (\mathbf{X}^T \times \mathbf{X})^{-1} \times (\mathbf{X}^T \times \mathbf{y})$$

a : Regression Coeff. Vector

X : Sample Matrix



#### • Observations:

- Sample matrix X grows over time
- needs matrix inversion
- **O**( $N \times w^2$ ) computation
- **O**( $N \times w$ ) storage

### Even more details

- Q3: Can we estimate a incrementally?
- A3: Yes, with the brilliant, classic method of "Recursive Least Squares" (RLS) (see, e.g., [Yi+00], for details).
- We can do the matrix inversion, WITHOUT inversion! (How is that possible?!)

### Even more details

- Q3: Can we estimate a incrementally?
- A3: Yes, with the brilliant, classic method of "Recursive Least Squares" (RLS) (see, e.g., [Yi+00], for details).
- We can do the matrix inversion, WITHOUT inversion! (How is that possible?!)
- A: our matrix has special form:  $(X^T X)$



At the *N*+1 time tick:





- Let  $\mathbf{G}_N = (\mathbf{X}_N^T \times \mathbf{X}_N)^{-1}$  ("gain matrix")
- $G_{N+1}$  can be computed recursively from  $G_N$





$$G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$c = [1 + x_{N+1} \times G_N \times x_{N+1}^T]$$

Let's elaborate (VERY IMPORTANT, VERY VALUABLE!)

$$a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}]$$



$$a = [X_{N+1}^{T} \times X_{N+1}]^{-1} \times [X_{N+1}^{T} \times y_{N+1}]$$
[w x 1]
[w x (N+1)]
[w x (N+1)]



$$a = [X_{N+1}^{T} \times X_{N+1}]^{-1} \times [X_{N+1}^{T} \times y_{N+1}]$$
[(N+1) x w]

 $[w \times (N+1)]$ 



1 x w row vector

### **EVEN** more details:

$$a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}]$$

 $G_{N+1} = [X_{N+1}^{T} \times X_{N+1}]^{-1}$   $G_{N+1} = G_{N} - [c]^{-1} \times [G_{N} \times x_{N+1}^{T}] \times x_{N+1} \times G_{N}$   $c = [1 + x_{N+1} \times G_{N} \times x_{N+1}^{T}]$ 



$$G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N$$

$$c = [1 + x_{N+1} \times G_N \times x_{N+1}^T]$$



$$G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N$$

**SCALAR!** 

$$c = [1 + x_{N+1} \times G_N \times x_{N+1}^T]$$

## Altogether:

$$a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}]$$

$$G_{N+1} = [X_{N+1}^T \times X_{N+1}]^{-1}$$

$$G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}]^T \times x_{N+1} \times G_N$$

$$c = [1 + x_{N+1} \times G_N \times x_{N+1}^T]$$



# Altogether:

$$G_0 \equiv \delta I$$

where

I: w x w identity matrix

δ: a large positive number

# **Comparison:**

- Straightforward Least Squares
  - Needs huge matrix(growing in size)O(N×w)
  - Costly matrix operation  $O(N \times w^2)$

#### Recursive LS

- Need much smaller, fixed size matrix  $O(w \times w)$
- Fast, incremental computation  $O(1 \times w^2)$
- no matrix inversion

$$N = 10^6$$
,  $w = 1-100$ 

# **Pictorially:**

• Given:



Independent Variable

# **Pictorially:**



Independent Variable

# **Pictorially:**

RLS: quickly compute new best fit



Independent Variable

### Even more details

- Q4: can we 'forget' the older samples?
- A4: Yes RLS can easily handle that [Yi+00]:

# Adaptability - 'forgetting'



eg., #packets sent

# Adaptability - 'forgetting'



Independent Variable eg. #packets sent

# Adaptability - 'forgetting'



• RLS: can \*trivially\* handle 'forgetting'