CSE 6242 / CX 4242

Text Analytics (Text Mining)
 LSI (uses SVD), Visualization
 Duen Horng (Polo) Chau
 Georgia Tech

Singular Value Decomposition (SVD): Motivation

Problem \#1:
Text - LSI uses SVD find "concepts"
Problem \#2:
Compression / dimensionality reduction

SVD - Motivation

Problem \#1: text - LSI: find "concepts"

term document	data	information	retrieval	brain	lung
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
MED-TR2	0	0	0	3	3
MED-TR3	0	0	0	1	1

SVD - Motivation

Customer-product, for recommendation system:

SVD - Motivation

- problem \#2: compress / reduce dimensionality

Problem - Specification

~10^6 rows; ~10^3 columns; no updates

Random access to any cell(s) Small error: OK

day	Wc	Th	Fr	Sa	Su
customer	$7 / 10 / 96$	$7 / 11 / 96$	$7 / 12 / 96$	$7 / 13 / 96$	$7 / 14 / 96$
Λ BC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
Smith	0	0	0	2	2
Johnson	0	0	0	3	3
Thompson	0	0	0	1	1

SVD - Motivation

SVD - Motivation

SVD - Definition

(reminder: matrix multiplication)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \times 1
\end{array}\right.} \\
& 3 \times 2 \quad 2 \times
\end{aligned}
$$

SVD - Definition

(reminder: matrix multiplication)

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \\
\underset{3 \times 2}{2 \times 1} & =\left[\begin{array}{l}
3 \times 1
\end{array}\right]
\end{array}
$$

SVD - Definition

(reminder: matrix multiplication)

SVD - Definition

(reminder: matrix multiplication)

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{c}
1 \\
-1
\end{array}\right] } & =\left[\begin{array}{l}
-1 \\
-1 \\
\hline 3 \times 2
\end{array} \underset{\longleftrightarrow}{2 \times 1} 3 \times 1\right.
\end{aligned}
$$

SVD - Definition

(reminder: matrix multiplication)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]
$$

SVD - Definition

$A_{[n \times m]}=U_{[n \times r]} \Lambda_{[r x r]}\left(V_{[m \times r]}\right)^{\top}$

A: n x m matrix
e.g., n documents, m terms

U: n x r matrix
e.g., n documents, r concepts
Λ : r x r diagonal matrix
r : rank of the matrix; strength of each 'concept'
\mathbf{V} : m x r matrix
e.g., m terms, r concepts

SVD - Definition

$A_{[n \times m]}=U_{[n \times r]} \Lambda_{[r x r]}\left(V_{[m \times r]}\right)^{\top}$

n documents m terms
n documents
r concepts

SVD - Properties

THEOREM [Press+92]:
always possible to decompose matrix \mathbf{A} into
$\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top}$
$\mathbf{U}, \Lambda, \mathbf{V}$: unique, most of the time
\mathbf{U}, \mathbf{V} : column orthonormal
i.e., columns are unit vectors, and orthogonal to each other

$$
\begin{aligned}
& \mathbf{U}^{\top} \mathbf{U}=\mathbf{I} \quad \text { (I: identity matrix) } \\
& \mathbf{V}^{\top} \mathbf{V}=\mathbf{I}
\end{aligned}
$$

Λ : diagonal matrix with non-negative diagonal entires, sorted in decreasing order

SVD - Example

$\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top}$ - example:

retrieval
data inf. brain lung
$\begin{aligned} & \uparrow \\ & \mathrm{CS} \\ & \downarrow \\ & \uparrow \\ & \downarrow \\ & \mathrm{MD}\end{aligned}\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{l}0.18 \\ 0.36 \\ 0.36 \\ 0.18 \\ 0\end{array}\right] \times\left[\begin{array}{ll}9.64 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27\end{array}\right] \mathrm{x}$

SVD - Example

- $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top}$ - example:
retrieval CS-concept data ${ }^{\text {inf. }}$ brain lung

$$
\begin{aligned}
& \uparrow \\
& \mathrm{CS} \\
& \downarrow \\
& \hat{\mathrm{MD}} \\
& \downarrow
\end{aligned}\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
0.18 \\
0.36 \\
0.36 \\
0.18 \\
0.9 \\
0.90 \\
0
\end{array}\right] \times\left[\begin{array}{ll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{x}
$$

SVD - Example

$$
\begin{gathered}
\bullet \mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top} \text { - example: }
\end{gathered} \begin{gathered}
\text { doc-to-concept } \\
\text { similarity matrix }
\end{gathered}
$$

SVD - Example

- $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top}$ - example:
retrieval data $^{\text {inf. }}$. brain lung

$$
\begin{gathered}
\uparrow \\
\begin{array}{l}
\uparrow \\
\downarrow \\
\uparrow \\
\uparrow \\
\downarrow
\end{array} \\
\mathrm{MD}
\end{gathered}\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{lll}
\\
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{x}
$$

SVD - Example

- $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top}$ - example:
retrieval
data inf. brain lung
term-to-concept
similarity matrix

SVD - Example

- $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top}$ - example:
retrieval
data $^{\text {inf. }}$ brain lung
term-to-concept
similarity matrix

SVD - Interpretation \#1

'documents', 'terms' and 'concepts':

- \mathbf{U} : document-to-concept similarity matrix
- \mathbf{V} : term-to-concept similarity matrix
- Λ : diagonal elements: concept "strengths"

SVD - Interpretation \#1

'documents', 'terms' and 'concepts':
Q: if \mathbf{A} is the document-to-term matrix, what is $\mathbf{A}^{\top} \mathbf{A}$?
A:
Q: $\mathbf{A l}^{\top}$?
A:

SVD - Interpretation \#1

'documents', 'terms' and 'concepts':
Q: if \mathbf{A} is the document-to-term matrix, what is $\mathbf{A}^{\top} \mathbf{A}$?
A: term-to-term ([m x m]) similarity matrix
Q: $\mathbf{A A}^{\top}$?
A: document-to-document ([n x n]) similarity matrix

SVD properties

- \mathbf{V} are the eigenvectors of the covariance matrix $\mathbf{A}^{\top} \mathbf{A}$

$$
\mathbf{X}^{\top} \mathbf{X}=\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}\right)^{\top}\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}\right)=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top}
$$

- \mathbf{U} are the eigenvectors of the Gram (inner-product) matrix $\mathbf{A A}^{\top}$

$$
\mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{U} \Sigma \mathbf{V}^{\top}\right)\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}\right)^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}
$$

Thus, SVD is closely related to PCA, and can be numerically more stable. For more info, see:
http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca Ian T. Jolliffe, Principal Component Analysis (2 $2^{\text {nd }}$ ed), Springer, 2002. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.

SVD - Interpretation \#2

Best axis to project on

('best' = min sum of squares of projection errors)

SVD - Interpretation \#2

- $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top}$ - example:

variance ('spread') on the v1 axis

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{ll}
9.64 & 0 \\
0 & 5.29 \\
& \\
\hline
\end{array}\right] \mathrm{x}
$$

SVD - Interpretation \#2

- $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\top}$ - example:

$-\mathbb{U} \Lambda$ gives the coordinates of the points in the projection axis

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
0.18 \\
0.36 \\
0.18 \\
0.18 \\
0
\end{array}\right] \times\left[\begin{array}{ll}
9.64 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \mathrm{x}
$$

SVD - Interpretation \#2

- More details
- Q: how exactly is dim. reduction done?

$$
\left.\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{lll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{x} \quad \begin{array}{llll}
&
\end{array}\right] \begin{array}{llll}
0.58 & 0.58 & 0.58 & 0
\end{array} 0
$$

SVD - Interpretation \#2

- More details
- Q: how exactly is dim. reduction done?
- A: set the smallest singular values to zero:
$\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27\end{array}\right] \times\left[\begin{array}{lll}9.64 & 0 \\ 0 & 5.29 \\ & & \end{array}\right] \mathrm{x}$

SVD - Interpretation \#2

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{llll}
9.64 & 0 \\
0 & 0 & \\
& &
\end{array}\right] \mathrm{x}
$$

SVD - Interpretation \#2

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{llll}
9.64 & 0 \\
0 & 0 & \\
& &
\end{array}\right] \mathrm{x}
$$

SVD - Interpretation \#2

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{l}
0.18 \\
0.36 \\
0.18 \\
0.90 \\
0 \\
0 \\
0
\end{array}\right] \times\left[\begin{array}{ll}
9.64 & \\
& \\
&
\end{array}\right] \mathrm{x}
$$

SVD - Interpretation \#2

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

SVD - Interpretation \#2

Exactly equivalent:

"spectral decomposition" of the matrix:

$$
\left.\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{lll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{x} \quad \begin{array}{llll}
&
\end{array}\right] \begin{array}{llll}
0.58 & 0.58 & 0.58 & 0
\end{array} 0
$$

SVD - Interpretation \#2

Exactly equivalent:

'spectral decomposition' of the matrix:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
\\
u_{1} & \mathrm{u}_{2}
\end{array}\right] \times\left[\begin{array}{cc}
\lambda_{1} & \varnothing \\
\varnothing & \lambda_{2}
\end{array}\right] \mathrm{x}
$$

SVD - Interpretation \#2

Exactly equivalent:

'spectral decomposition' of the matrix:

SVD - Interpretation \#2

Exactly equivalent:

'spectral decomposition' of the matrix:

SVD - Interpretation \#2

approximation / dim. reduction: by keeping the first few terms (Q: how many?)
\(\mathrm{n}\left[\begin{array}{lllll}1 \& 1 \& 1 \& 0 \& 0

2 \& 2 \& 2 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0

5 \& 5 \& 5 \& 0 \& 0

0 \& 0 \& 0 \& 2 \& 2

0 \& 0 \& 0 \& 3 \& 3

0 \& 0 \& 0 \& 1 \& 1\end{array}\right]=\)| λ_{1} | u_{1} | v^{T} | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |
| λ_{2} | u_{2} | $\mathrm{v}^{\mathrm{T}} 2+\ldots$ | |
| assume: $\lambda_{1}>=\lambda_{2}>=\ldots$ | | | |

SVD - Interpretation \#2

A (heuristic - [Fukunaga]): keep 80-90\% of 'energy' (= sum of squares of λ_{i} 's)

Pictorially: matrix form of SVD

-Best rank-k approximation in L2

Pictorially: Spectral form of SVD

$$
\mathbf{A} \approx \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i} \sigma_{i} \mathbf{u}_{i} \circ \mathbf{v}_{i}
$$

-Best rank-k approximation in L2

SVD - Interpretation \#3

- finds non-zero 'blobs' in a data matrix

$$
\left.\left.\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{lll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{x} \begin{array}{l}
\\
\\
0
\end{array}\right] \begin{array}{lllll}
0.58 & 0.58 & 0.58 & 0 & 0 \\
0 & 0 & 0 & 0.71 & 0.71
\end{array}\right]
$$

SVD - Interpretation \#3

- finds non-zero 'blobs' in a data matrix

$$
\left.\left.\left[\begin{array}{lll|ll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
\hline 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{lll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{x} \begin{array}{l}
\\
\\
0
\end{array}\right] \begin{array}{lllll}
0.58 & 0.58 & 0.58 & 0 & 0 \\
0 & 0 & 0 & 0.71 & 0.71
\end{array}\right]
$$

SVD - Interpretation \#3

- finds non-zero 'blobs' in a data matrix =
- 'communities’ (bi-partite cores, here)

SVD algorithm

- Numerical Recipes in C (free)

SVD - Interpretation \#3

- Drill: find the SVD, 'by inspection'!
- Q : rank = ??

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{c}
\\
? ? \\
{\left[\begin{array}{r}
? ?
\end{array}\right]}
\end{array}\right.
$$

SVD - Interpretation \#3

- A: rank = 2 (2 linearly independent rows/ cols)

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
\mid & \mid \\
? ? ? ? \\
\mid & \mathrm{x}\left[\begin{array}{cc}
? ? & 0 \\
0 & ? ?
\end{array}\right] \mathrm{x} \\
{\left[\begin{array}{l}
\square
\end{array}\right]}
\end{array}\right.
$$

SVD - Interpretation \#3

- A: rank = 2 (2 linearly independent rows/ cols)

$$
\left.\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right] \begin{array}{ll}
\mathrm{x}\left[\begin{array}{ll}
? ? & 0 \\
0 & ? ?
\end{array}\right]
\end{array} \begin{array}{l}
\mathrm{x}
\end{array}\right]
$$

orthogonal??

SVD - Interpretation \#3

- column vectors: are orthogonal - but not unit vectors:

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 / \operatorname{sqrt}(3) & 0 \\
1 / \operatorname{sqrt}(3) & 0 \\
1 / \operatorname{sqrt}(3) & 0 \\
0 & 1 / \text { sqrt(2) }
\end{array}\right] \times\left[\begin{array}{ll}
? ? & 0 \\
0 & ? ?
\end{array}\right] \mathrm{x}} \\
& 0 \quad 1 / \operatorname{sqrt}(2) \\
& {\left[\begin{array}{lllll}
1 / \mathrm{sqrt}(3) & 1 / \mathrm{sqrt}(3) & 1 / \mathrm{sqrt}(3) & 0 & 0 \\
0 & 0 & 0 & 1 / \operatorname{sqrt}(2) & 1 / \operatorname{sqrt}(2)
\end{array}\right]}
\end{aligned}
$$

SVD - Interpretation \#3

- and the singular values are:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 / \operatorname{sqrt}(3) & 0 \\
1 / \operatorname{sqrt}(3) & 0 \\
1 / \operatorname{sqrt}(3) & 0 \\
0 & 1 / \operatorname{sqrt}(2) \\
0 & 1 / \operatorname{sqrt}(2)
\end{array}\right] \times\left[\begin{array}{lll}
3 & 0 \\
0 & 2
\end{array}\right] \mathrm{x}
$$

SVD - Interpretation \#3

- Q: How to check we are correct?

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 / \operatorname{sqrt}(3) & 0 \\
1 / \operatorname{sqrt}(3) & 0 \\
1 / \operatorname{sqrt}(3) & 0 \\
0 & 1 / \operatorname{sqrt}(2) \\
0 & 1 / \operatorname{sqrt}(2)
\end{array}\right] \times\left[\begin{array}{lll}
3 & 0 \\
0 & 2
\end{array}\right] \mathrm{x}
$$

SVD - Interpretation \#3

- A: SVD properties:
-matrix product should give back matrix A
-matrix U should be column-orthonormal, i.e., columns should be unit vectors, orthogonal to each other
-ditto for matrix \mathbf{V}
-matrix Λ should be diagonal, with non-negative values

SVD - Complexity

$\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~m}^{*} \mathrm{~m}\right)$ or $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{n}^{*} \mathrm{~m}\right)$ (whichever is less)
Faster version, if just want singular values or if we want first k singular vectors or if the matrix is sparse [Berry]

No need to write your own!

Available in most linear algebra packages (LINPACK, matlab, Splus/R, mathematica ...)

References

- Berry, Michael: http://www.cs.utk.edu/~Isi/
- Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, Academic Press.
- Press, W. H., S. A. Teukolsky, et al. (1992). Numerical Recipes in C, Cambridge University Press.

Case study - LSI

Q1: How to do queries with LSI?
Q2: multi-lingual IR (english query, on spanish text?)

Case study - LSI

Q1: How to do queries with LSI?
Problem: Eg., find documents with 'data' retrieval
data $^{\text {inf. }_{1}}$ brain lung

\uparrow
$\underset{\downarrow}{\uparrow}$
\downarrow
\downarrow
\downarrow

2 \& 2 \& 2 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0

5 \& 5 \& 5 \& 0 \& 0

0 \& 0 \& 0 \& 2 \& 2

0 \& 0 \& 0 \& 3 \& 3

0 \& 0 \& 0 \& 1 \& 1\end{array}\right]=\left[$$
\begin{array}{lll}0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27\end{array}
$$\right] \times\left[$$
\begin{array}{lll}9.64 & 0 \\
0 & 5.29\end{array}
$$\right] \mathrm{x}\)

Case study - LSI

Q1: How to do queries with LSI?
A: map query vectors into 'concept space' - how?

Case study - LSI

Q1: How to do queries with LSI?
A: map query vectors into 'concept space' - how?

Case study - LSI

Q1: How to do queries with LSI? A: map query vectors into 'concept space' - how?

Case study - LSI

Q1: How to do queries with LSI?
A: map query vectors into 'concept space' - how?

Case study - LSI

compactly, we have:

$$
\mathrm{q} \mathbf{V}=\mathrm{q}_{\text {concept }}
$$

Case study - LSI

Drill: how would the document ('information', 'retrieval') be handled by LSI?

Case study - LSI

Drill: how would the document ('information', 'retrieval') be handled by LSI? A: SAME:
$\mathrm{d}_{\text {concept }}=\mathrm{d} \mathbf{V}$

CS-concept

$$
\begin{gathered}
\mathrm{g}\left[\begin{array}{ll}
0.58 & 0 \\
0.58 & 0 \\
0.58 & 0 \\
0 & 0.71 \\
0 & 0.71
\end{array}\right] \\
\text { term-to-concept }
\end{gathered}
$$

similarities

Case study - LSI

Observation: document ('information', 'retrieval') will be retrieved by query ('data'), although it does not contain 'data'!!

> CS-concept
> $\left[\begin{array}{cc}1.16 & 0\end{array}\right]$
> $\left[\begin{array}{ll}0.58 & 0\end{array}\right]$

Case study - LSI

Q1: How to do queries with LSI?
Q2: multi-lingual IR (english query, on spanish text?)

Case study - LSI

- Problem:
-given many documents, translated to both languages (eg., English and Spanish)
-answer queries across languages

Case study - LSI

-Solution: ~ LSI

Switch Gear to Text Visualization

What comes up to your mind?
What visualization have you seen before?

Word/Tag Cloud (still popular?)

Word Counts (words as bubbles)

http://www.infocaptor.com/bubble-my-page

Word Tree

word tree

	substitute spectacle for politics, or treat namecalling as reasoned debate. We must act, we must act knowing that our work will be imperfect. We must act, knowing that today's victories will be only partial, and that it will be up to those who stand here in four years, and forty years, and four hundred years hence to advance the timeless spirit once conferred to us in a spare Philadelphia hall. My fellow Americans, the oath I have sworn before you today, like the one recited by others who serve in this Capitol, was an oath to God and country, not party or faction - and we must faithfully execute that pledge during the duration of our service. But the words I spoke today are not so different from the oath that is taken each time a soldier signs up for duty, or an immigrant realizes her dream. My oath is not so

Phrase Net

Visualize pairs of words that satisfy a particular pattern, e.g., X and Y

http://www-958.ibm.com/software/data/cognos/manyeyes/page/Phrase Net.html

