

Text Analytics (Text Mining)

LSI (uses SVD), Visualization

Duen Horng (Polo) Chau Georgia Tech

Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Le Song

Singular Value Decomposition (SVD): Motivation

Problem #1: Text - LSI uses SVD find "concepts"

Problem #2:

Compression / dimensionality reduction

SVD - Motivation

Problem #1: text - LSI: find "concepts"

\mathbf{term}	data	information	retrieval	brain	lung
document					
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
MED-TR2	0	0	0	3	3
MED-TR3	0	0	0	1	1

SVD - Motivation

Customer-product, for recommendation system:

SVD - Motivation

 problem #2: compress / reduce dimensionality

Problem - Specification

~10^6 rows; ~10^3 columns; no updates Random access to any cell(s)

Small error: OK

day	We	\mathbf{Th}	\mathbf{Fr}	\mathbf{Sa}	\mathbf{Su}
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
\mathbf{Smith}	0	0	0	2	2
Johnson	0	0	0	3	3
Thompson	0	0	0	1	1

SVD - Motivation day 2

day 1

(reminder: matrix multiplication)

3 x 2 2 x 1

$$\mathbf{A}_{[\mathbf{n} \mathbf{x} \mathbf{m}]} = \mathbf{U}_{[\mathbf{n} \mathbf{x} \mathbf{r}]} \Lambda_{[\mathbf{r} \mathbf{x} \mathbf{r}]} (\mathbf{V}_{[\mathbf{m} \mathbf{x} \mathbf{r}]})^{\mathsf{T}}$$

A: n x m matrix

e.g., n documents, m terms

U: n x r matrix

e.g., n documents, r concepts

Λ : r x r diagonal matrix

r : rank of the matrix; strength of each 'concept'

V: m x r matrix

e.g., m terms, r concepts

m terms

n documents r concepts

SVD - Properties

THEOREM [Press+92]:

- always possible to decompose matrix A into $A = U \Lambda V^{T}$
- U, Λ , V: unique, most of the time
- U, V: column orthonormal

i.e., columns are unit vectors, and orthogonal to each other $\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{I}$ (I: identity matrix) $\mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{I}$

 Λ : diagonal matrix with non-negative diagonal entires, sorted in decreasing order

• $\mathbf{A} = \mathbf{U} \Lambda \mathbf{V}^{\mathsf{T}}$ - example:

'documents', 'terms' and 'concepts':

- U: document-to-concept similarity matrix
- V: term-to-concept similarity matrix
- Λ: diagonal elements: concept "strengths"

'documents', 'terms' and 'concepts': Q: if A is the document-to-term matrix, what is A^T A?

A: Q: A A^T ?

A:

'documents', 'terms' and 'concepts':

- Q: if A is the document-to-term matrix, what is A^T A?
- A: term-to-term ([m x m]) similarity matrix Q: $A A^{T}$?
- A: document-to-document ([n x n]) similarity matrix

SVD properties

• V are the eigenvectors of the covariance matrix $\mathbf{A}^{\mathsf{T}}\mathbf{A}$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \left(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}\right)^{\mathsf{T}}\left(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}\right) = \mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$

• U are the eigenvectors of the *Gram (inner-product) matrix* **AA**^T

$$\mathbf{X}\mathbf{X}^{\mathsf{T}} = \left(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}}\right)\left(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}}\right)^{\mathsf{T}} = \mathbf{U}\mathbf{\Sigma}^{2}\mathbf{U}^{\mathsf{T}}$$

Thus, SVD is closely related to PCA, and can be numerically more stable. For more info, see:

http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca Ian T. Jolliffe, *Principal Component Analysis* (2nd ed), Springer, 2002. Gilbert Strang, *Linear Algebra and Its Applications* (4th ed), Brooks Cole, 2005.

Best axis to project on

('best' = min sum of squares of projection errors)

• $\mathbf{A} = \mathbf{U} \Lambda \mathbf{V}^{\mathsf{T}}$ - example:

variance ('spread') on the v1 axis

• $\mathbf{A} = \mathbf{U} \wedge \mathbf{V}^{\mathsf{T}}$ - example:

 $- \underbrace{U \Lambda}$ gives the coordinates of the points in the projection axis

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \\ 0 & 5.29 \\ 0 & 0.58 & 0.58 & 0.58 & 0 \\ 0 & 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

- More details
- Q: how exactly is dim. reduction done?

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} X \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} X$$

$$\begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

- More details
- Q: how exactly is dim. reduction done?
- A: set the smallest singular values to zero:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} X \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} X$$

Exactly equivalent:

"spectral decomposition" of the matrix:

Exactly equivalent:

'spectral decomposition' of the matrix:

Exactly equivalent:

'spectral decomposition' of the matrix:

Exactly equivalent: 'spectral decomposition' of the matrix:

approximation / dim. reduction: by keeping the first few terms (Q: how _____many?)___

$$\lambda_1$$
 u_1 $v_1^T + \lambda_2$ u_2 $v_2^T + \dots$
assume: $\lambda_1 \ge \lambda_2 \ge \dots$

15-826

n

Copyright: C. Faloutsos (2012)

A (heuristic - [Fukunaga]): keep 80-90% of 'energy' (= sum of squares of λ_i 's)

1

Copyright: C. Faloutsos (2012)

Pictorially: matrix form of SVD

-Best rank-k approximation in L2

finds non-zero 'blobs' in a data matrix

finds non-zero 'blobs' in a data matrix

- finds non-zero 'blobs' in a data matrix =
- 'communities' (bi-partite cores, here)

SVD algorithm

• Numerical Recipes in C (free)

- Drill: find the SVD, 'by inspection'!
- Q: rank = ??

 A: rank = 2 (2 linearly independent rows/ cols)

 A: rank = 2 (2 linearly independent rows/ cols)

 column vectors: are orthogonal - but not unit vectors:

and the singular values are:

Q: How to check we are correct?

- A: SVD properties:
 - -matrix product should give back matrix A
 - -matrix U should be column-orthonormal, i.e., columns should be unit vectors, orthogonal to each other
 - –ditto for matrix $\ensuremath{\mathbf{V}}$
 - $-matrix \ \Lambda$ should be diagonal, with non-negative values

SVD - Complexity

O(n*m*m) or O(n*n*m) (whichever is less)

Faster version, if just want singular values or if we want first *k* singular vectors or if the matrix is sparse [Berry]

No need to write your own!

Available in most linear algebra packages (LINPACK, matlab, Splus/R, mathematica ...)

References

- Berry, Michael: http://www.cs.utk.edu/~lsi/
- Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, Academic Press.
- Press, W. H., S. A. Teukolsky, et al. (1992).
 Numerical Recipes in C, Cambridge University Press.

Q1: How to do queries with LSI? Q2: multi-lingual IR (english query, on spanish text?)

Q1: How to do queries with LSI? Problem: Eg., find documents with 'data'

- Q1: How to do queries with LSI?
- A: map query vectors into 'concept space' how?

- Q1: How to do queries with LSI?
- A: map query vectors into 'concept space' how?

term1

- Q1: How to do queries with LSI?
- A: map query vectors into 'concept space' how?

- Q1: How to do queries with LSI?
- A: map query vectors into 'concept space' how?

compactly, we have:

term-to-concept similarities

Drill: how would the document ('information', 'retrieval') be handled by LSI?

Drill: how would the document ('information', 'retrieval') be handled by LSI? A: SAME:

term-to-concept similarities

Q1: How to do queries with LSI? Q2: multi-lingual IR (english query, on spanish text?)

- Problem:
 - -given many documents, translated to both languages (eg., English and Spanish)
 - -answer queries across languages

Solution: ~ LSI

Switch Gear to Text Visualization

What comes up to your mind?

What visualization have you seen before?

Word Counts (words as bubbles)

http://www.infocaptor.com/bubble-my-page

Word Tree

word tree

We

 \square reverse tree \square one phrase per line

Shift-click to make that word the root.

WP

http://www.jasondavies.com/wordtree/

Phrase Net

Visualize pairs of words that satisfy a particular pattern, e.g., X and Y

http://www-958.ibm.com/software/data/cognos/manyeyes/page/Phrase_Net.html