
Text Analytics (Text Mining)
Concepts and Algorithms

CSE 6242 / CX 4242

Duen Horng (Polo) Chau 
Georgia Tech

Some lectures are partly based on materials by  
Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Le Song

Text is everywhere
We use documents as primary information artifact in our lives

Our access to documents has grown tremendously thanks to the Internet

• WWW: webpages, Twitter, Facebook, Wikipedia, Blogs, ...

• Digital libraries: Google books, ACM, IEEE, ...

• Lyrics, closed caption... (youtube)

• Police case reports

• legislation (law)

• reviews (products, rotten tomatoes)

• medical reports (EHR - electronic health records)

• job descriptions

2

Big (Research) Questions
... in understanding and gathering information from text and document collections

• establish authorship, authenticity; plagiarism detection

• finding patterns in human genome

• classification of genres for narratives (e.g., books, articles)

• tone classification; sentiment analysis (online reviews, twitter, social media)

• code: syntax analysis (e.g., find common bugs from students’ answers)

3

Outline
• Storage (full text storage and full text search in SQLite, MySQL)

• Preprocessing (e.g., stemming, remove stop words)

• Document representation (most common: bag-of-words model)

• Word importance (e.g., word count, TF-IDF)

• Word disambiguation/entity resolution

• Document importance (e.g., PageRank)

• Document similarity (e.g., cosine similarity, Apolo/Belief Propagation,
etc.)

• Retrieval (Latent Semantic Indexing)

To learn more:  
Prof. Jacob Eisenstein’s CS 4650/7650 Natural Language Processing

4

Stemming
Reduce words to their stems (or base forms)

Words: compute, computing, computer, ...
Stem: comput

Several classes of algorithms to do this:

• Stripping suffixes, lookup-based, etc.

5

http://en.wikipedia.org/wiki/Stemming
Stop words: http://en.wikipedia.org/wiki/Stop_words

http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Stop_words

Bags-of-words model
Represent each document as a bag of words, ignoring
words’ ordering. Why?

• Unstructured text -> a vector of numbers
• e.g., docs: “I like visualization”, “I like data”.

• “I”: 1,
• “like”: 2,
• “data”: 3,
• “visualization”: 4

• “I like visualization” -> [1, 1, 0, 1]
• “I like data” -> [1, 1, 1, 0]

6

TF-IDF  
(a word’s importance score in a document, among N documents)

When to use it? Everywhere you use “word
count”, you may use TF-IDF.

• TF: term frequency  
= #appearance a document

• IDF: inverse document frequency  
= log(N / #document containing that term)

• Score = TF * IDF 
(higher score -> more important)

7Example: http://en.wikipedia.org/wiki/Tf–idf#Example_of_tf.E2.80.93idf

http://en.wikipedia.org/wiki/Tf%E2%80%93idf#Example_of_tf.E2.80.93idf

Vector Space Model and Clustering
• keyword queries (vs Boolean)
• each document: -> vector (HOW?)
• each query: -> vector
• search for ‘similar’ vectors

• main idea:

document

...data...

aaron zoodata

V (= vocabulary size)

‘indexing’

Vector Space Model and Clustering

Then, group nearby vectors together
• Q1: cluster search?
• Q2: cluster generation?

Two significant contributions
• ranked output
• relevance feedback

Vector Space Model and Clustering

• cluster search: visit the (k) closest
superclusters; continue recursively

CS TRs

MD TRs

Vector Space Model and Clustering

• ranked output: easy!

CS TRs

MD TRs

Vector Space Model and Clustering

• relevance feedback (brilliant idea) [Roccio’73]

CS TRs

MD TRs

Vector Space Model and Clustering

• relevance feedback (brilliant idea) [Roccio’73]
• How?

CS TRs

MD TRs

Vector Space Model and Clustering

• How? A: by adding the ‘good’ vectors and
subtracting the ‘bad’ ones

CS TRs

MD TRs

Vector Space Model and Clustering

Outline - detailed

• main idea
• cluster search
• cluster generation
• evaluation

Cluster generation
• Problem:

– given N points in V dimensions,
–group them

Cluster generation
• Problem:

– given N points in V dimensions,
–group them

Cluster generation
We need
• Q1: document-to-document similarity
• Q2: document-to-cluster similarity

Cluster generation
Q1: document-to-document similarity
(recall: ‘bag of words’ representation)
• D1: {‘data’, ‘retrieval’, ‘system’}
• D2: {‘lung’, ‘pulmonary’, ‘system’}
• distance/similarity functions?

Cluster generation
A1: # of words in common
A2: normalized by the vocabulary sizes
A3: etc

About the same performance - prevailing one:
cosine similarity

cosine similarity:
similarity(D1, D2) = cos(θ) =

sum(v1,i * v2,i) / [len(v1) * len(v2)]

Cluster generation

θ

D1

D2

Cluster generation
cosine similarity - observations:
• related to the Euclidean distance
• weights vi,j : according to tf/idf

θ

D1

D2

Cluster generation
tf (‘term frequency’)

high, if the term appears very often in this document.

idf (‘inverse document frequency’)
penalizes ‘common’ words, that appear in almost every

document

Cluster generation
We need
• Q1: document-to-document similarity
• Q2: document-to-cluster similarity

?

Cluster generation
• A1: min distance (‘single-link’)
• A2: max distance (‘all-link’)
• A3: avg distance (gives same cluster ranking

as A4, but different values)
• A4: distance to centroid

?

Cluster generation
• A1: min distance (‘single-link’)

–leads to elongated clusters
• A2: max distance (‘all-link’)

–many, small, tight clusters
• A3: avg distance

–in between the above
• A4: distance to centroid

–fast to compute

Cluster generation
We have
• document-to-document similarity
• document-to-cluster similarity

Q: How to group documents into ‘natural’
clusters

Cluster generation

A: *many-many* algorithms - in two groups
[VanRijsbergen]:

• theoretically sound (O(N^2))
–independent of the insertion order

• iterative (O(N), O(N log(N))

Cluster generation - ‘sound’
methods

• Approach#1: dendrograms - create a hierarchy
(bottom up or top-down) - choose a cut-off
(how?) and cut

cat tiger horse cow
0.1
0.3

0.8

Cluster generation - ‘sound’
methods

• Approach#2: min. some statistical criterion
(eg., sum of squares from cluster centers)
–like ‘k-means’
–but how to decide ‘k’?

Cluster generation - ‘sound’
methods

• Approach#3: Graph theoretic [Zahn]:
–build MST;
–delete edges longer than 3* std of the local average

Cluster generation - ‘sound’
methods

• Result:
• why ‘3’?

• variations

• Complexity?

Cluster generation - ‘iterative’
methods

General outline:
• Choose ‘seeds’ (how?)
• assign each vector to its closest seed (possibly

adjusting cluster centroid)
• possibly, re-assign some vectors to improve

clusters
Fast and practical, but ‘unpredictable’

Cluster generation

one way to estimate # of clusters k: the ‘cover
coefficient’ [Can+] ~ SVD

LSI - Detailed outline
• LSI

–problem definition
–main idea
–experiments

Information Filtering + LSI
• [Foltz+,’92] Goal:

– users specify interests (= keywords)
–system alerts them, on suitable news-documents

• Major contribution:  
LSI = Latent Semantic Indexing
–latent (‘hidden’) concepts

Information Filtering + LSI
Main idea
• map each document into some ‘concepts’
• map each term into some ‘concepts’

‘Concept’:~ a set of terms, with weights,  
e.g. DBMS_concept: 
“data” (0.8),  
“system” (0.5),  
“retrieval” (0.6)

Information Filtering + LSI
Pictorially: term-document matrix (BEFORE)

Information Filtering + LSI
Pictorially: concept-document matrix and...

Information Filtering + LSI
... and concept-term matrix

Information Filtering + LSI
Q: How to search, e.g., for ‘system’?

Information Filtering + LSI
A: find the corresponding concept(s); and the

corresponding documents

Information Filtering + LSI
A: find the corresponding concept(s); and the

corresponding documents

Information Filtering + LSI
Thus it works like an (automatically constructed) thesaurus:

we may retrieve documents that DON’T have the term
‘system’, but they contain almost everything else (‘data’,
‘retrieval’)

LSI - Discussion - Conclusions
• Great idea,

–to derive ‘concepts’ from documents
–to build a ‘statistical thesaurus’ automatically
–to reduce dimensionality (down to few “concepts”)

• How exactly SVD works? (Details, next)

