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Text is everywhere
We use documents as primary information artifact in our lives

Our access to documents has grown tremendously thanks to the Internet

• WWW: webpages, Twitter, Facebook, Wikipedia, Blogs, ...

• Digital libraries: Google books, ACM, IEEE, ...

• Lyrics, closed caption... (youtube)

• Police case reports

• legislation (law)

• reviews (products, rotten tomatoes)

• medical reports (EHR - electronic health records)

• job descriptions
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Big (Research) Questions
... in understanding and gathering information from text and document collections

• establish authorship, authenticity; plagiarism detection

• finding patterns in human genome

• classification of genres for narratives (e.g., books, articles)

• tone classification; sentiment analysis (online reviews, twitter, social media)

• code: syntax analysis (e.g., find common bugs from students’ answers)
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Outline
• Storage (full text storage and full text search in SQLite, MySQL)

• Preprocessing (e.g., stemming, remove stop words)

• Document representation (most common: bag-of-words model)

• Word importance (e.g., word count, TF-IDF)

• Word disambiguation/entity resolution

• Document importance (e.g., PageRank)

• Document similarity (e.g., cosine similarity, Apolo/Belief Propagation, 
etc.)

• Retrieval (Latent Semantic Indexing)

To learn more:  
Prof. Jacob Eisenstein’s CS 4650/7650 Natural Language Processing
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Stemming
Reduce words to their stems (or base forms)

Words: compute, computing, computer, ...
Stem: comput

Several classes of algorithms to do this:

• Stripping suffixes, lookup-based, etc.

5

http://en.wikipedia.org/wiki/Stemming
Stop words: http://en.wikipedia.org/wiki/Stop_words

http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Stop_words


Bags-of-words model
Represent each document as a bag of words, ignoring 
words’ ordering. Why?

• Unstructured text -> a vector of numbers
• e.g., docs: “I like visualization”, “I like data”.

• “I”: 1, 
• “like”: 2, 
• “data”: 3, 
• “visualization”: 4

• “I like visualization” ->  [1, 1, 0, 1]
• “I like data” ->  [1, 1, 1, 0]
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TF-IDF  
(a word’s importance score in a document, among N documents)

When to use it? Everywhere you use “word 
count”, you may use TF-IDF.

• TF: term frequency  
= #appearance a document

• IDF: inverse document frequency  
= log( N / #document containing that term)

• Score = TF * IDF 
(higher score -> more important)

7Example: http://en.wikipedia.org/wiki/Tf–idf#Example_of_tf.E2.80.93idf

http://en.wikipedia.org/wiki/Tf%E2%80%93idf#Example_of_tf.E2.80.93idf


Vector Space Model and Clustering
• keyword queries (vs Boolean)
• each document: -> vector (HOW?)
• each query: -> vector
• search for ‘similar’ vectors



• main idea:

document

...data...

aaron zoodata

V (= vocabulary size)

‘indexing’

Vector Space Model and Clustering



Then, group nearby vectors together 
• Q1: cluster search? 
• Q2: cluster generation? 

Two significant contributions 
• ranked output 
• relevance feedback

Vector Space Model and Clustering



• cluster search: visit the (k) closest 
superclusters; continue recursively

CS TRs

MD TRs

Vector Space Model and Clustering



• ranked output: easy!

CS TRs

MD TRs

Vector Space Model and Clustering



• relevance feedback (brilliant idea) [Roccio’73]

CS TRs

MD TRs

Vector Space Model and Clustering



• relevance feedback (brilliant idea) [Roccio’73] 
• How?

CS TRs

MD TRs

Vector Space Model and Clustering



• How?  A: by adding the ‘good’ vectors and 
subtracting the ‘bad’ ones

CS TRs

MD TRs

Vector Space Model and Clustering



Outline - detailed

• main idea 
• cluster search 
• cluster generation 
• evaluation



Cluster generation
• Problem: 

– given N points in V dimensions, 
–group them



Cluster generation
• Problem: 

– given N points in V dimensions, 
–group them



Cluster generation
We need 
• Q1: document-to-document similarity 
• Q2: document-to-cluster similarity



Cluster generation
Q1: document-to-document similarity 
(recall: ‘bag of words’ representation) 
• D1: {‘data’, ‘retrieval’, ‘system’} 
• D2: {‘lung’, ‘pulmonary’, ‘system’} 
• distance/similarity functions?



Cluster generation
A1: # of words in common 
A2: ........ normalized by the vocabulary sizes 
A3: .... etc 

About the same performance - prevailing one: 
cosine similarity



cosine similarity: 
similarity(D1, D2) = cos(θ) =  

sum(v1,i * v2,i) / [len(v1) * len(v2)]

Cluster generation

θ

D1

D2



Cluster generation
cosine similarity - observations: 
• related to the Euclidean distance 
• weights vi,j : according to tf/idf

θ

D1

D2



Cluster generation
tf (‘term frequency’) 

high, if the term appears very often in this document. 

idf (‘inverse document frequency’) 
penalizes ‘common’ words, that appear in almost every 

document



Cluster generation
We need 
• Q1: document-to-document similarity 
• Q2: document-to-cluster similarity

?



Cluster generation
• A1: min distance (‘single-link’) 
• A2: max distance (‘all-link’) 
• A3: avg distance (gives same cluster ranking 

as A4, but different values) 
• A4: distance to centroid

?



Cluster generation
• A1: min distance (‘single-link’) 

–leads to elongated clusters 
• A2: max distance (‘all-link’) 

–many, small, tight clusters 
• A3: avg distance 

–in between the above 
• A4: distance to centroid 

–fast to compute



Cluster generation
We have 
• document-to-document similarity 
• document-to-cluster similarity 

Q: How to group documents into ‘natural’ 
clusters



Cluster generation

A: *many-many* algorithms - in two groups 
[VanRijsbergen]: 

• theoretically sound (O(N^2)) 
–independent of the insertion order 

• iterative (O(N), O(N log(N))



Cluster generation - ‘sound’ 
methods

• Approach#1: dendrograms - create a hierarchy 
(bottom up or top-down) - choose a cut-off 
(how?) and cut

cat tiger horse cow
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0.3
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Cluster generation - ‘sound’ 
methods

• Approach#2: min. some statistical criterion 
(eg., sum of squares from cluster centers) 
–like ‘k-means’ 
–but how to decide ‘k’?



Cluster generation - ‘sound’ 
methods

• Approach#3: Graph theoretic [Zahn]: 
–build MST; 
–delete edges longer than 3* std of the local average



Cluster generation - ‘sound’ 
methods

• Result:
• why ‘3’? 

• variations 

• Complexity?



Cluster generation - ‘iterative’ 
methods

General outline: 
• Choose ‘seeds’ (how?) 
• assign each vector to its closest seed (possibly 

adjusting cluster centroid) 
• possibly, re-assign some vectors to improve 

clusters 
Fast and practical, but ‘unpredictable’



Cluster generation

one way to estimate # of clusters k: the ‘cover 
coefficient’ [Can+] ~ SVD



LSI - Detailed outline
• LSI 

–problem definition 
–main idea 
–experiments



Information Filtering + LSI
• [Foltz+,’92] Goal:  

– users specify interests (= keywords) 
–system alerts them, on suitable news-documents 

• Major contribution:  
LSI = Latent Semantic Indexing 
–latent (‘hidden’) concepts



Information Filtering + LSI
Main idea 
• map each document into some ‘concepts’ 
• map each term into some ‘concepts’ 

‘Concept’:~ a set of terms, with weights,  
e.g. DBMS_concept: 
“data” (0.8),  
“system” (0.5),  
“retrieval” (0.6)



Information Filtering + LSI
Pictorially: term-document matrix (BEFORE)



Information Filtering + LSI
Pictorially: concept-document matrix and...



Information Filtering + LSI
... and concept-term matrix



Information Filtering + LSI
Q: How to search, e.g., for ‘system’?



Information Filtering + LSI
A: find the corresponding concept(s); and the 

corresponding documents



Information Filtering + LSI
A: find the corresponding concept(s); and the 

corresponding documents



Information Filtering + LSI
Thus it works like an (automatically constructed) thesaurus: 

we may retrieve documents that DON’T have the term 
‘system’, but they contain almost everything else (‘data’, 
‘retrieval’)



LSI - Discussion - Conclusions 
• Great idea,  

–to derive ‘concepts’ from documents 
–to build a ‘statistical thesaurus’ automatically 
–to reduce dimensionality (down to few “concepts”) 

• How exactly SVD works? (Details, next)


